CS420

(Deterministic) Finite Automata

Monday, January 29, 2024
UMass Boston Computer Science

%/{/{0«/{0@%@/{5&’

« HW Lectures
« Weekly; in/out Mon noon « Slides posted

* HW 0 in, HW 1 out * Closely follow the listed textbook
» ~3-4 questions, Paper-and-pencil chapters
proofs (no programming) . Office Hours

* Discussing with classmates ok . Wed 11:30-1pm (in person,

* Final answers written up and McCormack 3 floor, Rm 201)

submitted individually « Fri 11:30-1pm (zoom, access link
from blackboard)

« Let me know in advance if
possible, but drop-ins also fine
« TAs TBD

Last Tie: HOW Mathematics Works

Today:
- “Facts” can have many different “shapes”!
- How do we USE known facts? More Theorems
- How can we PROVE new facts?
- More Axioms ~
Mathematician
(or student) More Definitions
< Theorem
It's not easy to create the next . Theorem ~ | “facts”
level ... :
Preciseness is important Axioms
Proofs = Figure out how to (precisely) fit Definitions
known “facts” together -

Last Tive: HOW CS 420 Works

Theory

— Set Theory

Prerequisite S]
(see hwo) S Boolean

Logic

| Mathematical « How to combine known
Logic “facts” to discover new “facts”

5

Mathematical Logic Operators

« Conjunction (AND, A)

- Disjunction (OR, V)

/s Semester:

Must understand difference

- Negation (NOT, -) between Using vs Proving a
mathematical statement!

e Implication (IF-THEN, =, -)

Mathematical Statements: AND

Using:
[T we
what do we know about A and B individually?

A

B

know A A B Is TRUE,

IS TRUE, and
IS TRUE

A

B AAB

True

True

True False False

False | True

False | False False

True

False

=

Mathematical Statements: AND

Using:
* If we know A A B is TRUE, -
what do we know about A and B individually?

A 1s TRUE, and

* Bis TRUE A | B AAB
True | [True | True <:|

Provi ng: True False False

* To prove A A B Is TRUE: False True @ False

e Prove|A|ls TRUE, and
e Prove|B|is TRUE

False False False

Mathematical Statements: IF-THEN

Using:
* If we know P — Q Is TRUE, -
what do we know about P and Q individually?

e Fither PiIs FALSE, or
- If we prove P is TRUE, then Q is TRUE (modus ponens)

1Y q P—4q
PrOVing; True True True <:|

True False False

False = True @ True <:|
False False True <:|

Using an IF-THEN statement:
The “Modus Ponens” Inference Rule

Premises (if these statements are true)
 [f Pthen Q
e Pis TRUE

_IDON'T KNOW WHAT MODUS
~—— PONENSIS

Conclusion (then we can say that this is also true) =

*) must also be TRUE

< - /
‘Auur n%mm MiT00®

. NAFRAIDTOIASK]

emegenetHBPAM]

Mathematical Logic Operators: IF-THEN

Using:
* If we know P - @Q Is TRUE, -
what do we know about P and Q individually?
e Either Pis FALSE, or

- |f we prove P is TRUE, then Q is TRUE (modus ponens)

p a9 DP—(g

Proving: | True = True = True -
* To prove P— QIs TRUE:

e Either Prove P Is FALSE (usu. hard or impossible), Or
» Assume (not prove!) P is TRUE, False True | True

then prove Q is TRUE False False True -

True False | False

bumple: Proving an IF-THEN Statement

Prove the following:

Proving IF-THEN Using IF-THEN
« |F:If z > 4, then 2% > 22 Assume this (AND stmt) is true

Using AND

AND:z is the sum of the squares of four positive integers) ¢ |p—q

True True | True <:|

e THEN: 2% 2 aj2 Prove this is true e Eolse | False

Proving: | False True @ True
To prove P— QIs TRUE:
Either Prove P is FALSE (usu. hard or impossible), Or False False True

Assume (not prove!) P is TRUE, then prove Q is TRUE

Statements / Justifications Table

bumple: Proving an IF-THEN Statement

Prove: |F If > 4, then 2* > 22 AND =z is, the sum of the squares of four positive integers

THEN 2% > 2°
Proof:
Statement Justification
1. x=a®* +b°+c* +d° 1. Assumption (F part of IF-THEN)
2. a>1:b>1;¢>1;d>1 2. Assumption (F part of IF-THEN)
5. If z > 4, then 2° > 27 5. Assumption (F part of IF-THEN)

6. 2% > g?

Statements / Justifications Table

bumple: Proving an IF-THEN Statement

Prove: |F If > 4, then 2* > 22 AND z is the sum of the squares of four positive integers

THEN 2% > 2°
Proof:
Statement Justification
1. x =a*+b* + ¢ +d° 1. Assumption (iF part of IF-THEN)

2. a>1:b>1:¢>1;:d>1 2. Assumption (F part of IF-THEN)

3. 2> >1:2>1:d> > 1 3. By Stmt #2 & arithmetic laws

b, x> 4 4. Stmts #1, #3, and arithmetic

5. Ifz >4, then 2° > o2 5. Assumption (i pq ecustonss
=) 6. 27 > g2 6. Stmts #4 and #5|-IfPthen g

- P
Then we’ve proved:

K

last Tire: MOdels of Computation Hierarchy

Turing Machines

Linear bounded Automata

More powerful
More complex
Less restricted

Push-down Automata

We’'ll start here ...

30

Finite Automata: “Simple” Computation / “Programs”

B2 HHREE
Us'BAEAA

31

Finite Automata

« A finite automata or finite state machine (FSM) ...

e .. computes with a finite number of states

A Microwave Finite Automata

Input “symbols” change states
(possibly)

press stop press start

press start

press stop

States

Finite Automata: Not Just for Microwaves

State pattern

From Wikipedia, the free encyclopedia

The state pattern is a behavioral software design pattern that allows an object to alter its behavior when its internal
state changes. This pattern is close to the concept of finite-state machines. The state pattern can be interpreted as a
strategy pattern, which is able to switch a strategy through invocations of methods defined in the pattern's interface.

Finite Automata: |
acommon——

programming pattern

(More powerful) Computation Simulating
other (weaker) Computation
(a common theme this semester)

36

Video Games Love Finite Automata

@ Unity Documentation

State Machine Basics

The basic idea is that a character is engaged in some particular kind of action at any given time. The actions available will depend
on the type of gameplay but typical actions include things like idling, walking, running, jumping, etc. These actions are referred to as
states, in the sense that the character is in a “state” where it is walking, idling or whatever. In general, the character will have
restrictions on the next state it can go to rather than being able to switch immediately from any state to any other. For example, a
running jump can only be taken when the character is already running and not when it is at a standstill, so it should never switch
straight from the idle state to the running jump state. The options for the next state that a character can enter from its current state
are referred to as state transitions. Taken together, the set of states, the set of transitions and the variable to remember the current
state form a state machine.

The states and transitions of a state machine can be represented using a graph diagram, where the nodes represent the states and
the arcs (arrows between nodes) represent the transitions. You can think of the current state as being a marker or highlight that is
placed on one of the nodes and can then only jump to another node along one of the arrows.

/ Running Jump
Fall \

Idle X Run

\ Walk /

Standing Jump

39

Finite Automata 1n Video Games

H ValveSoftware / halflife G

<> Code (D) Issues 1.6k {1 Pull requests 23 () Actions [Projects [wiki C

5d761709a3 ~ halflife / game_shared / bot / simple_state_machine.h

Alfred Reynolds initial seed of Half-Life 1 SDK

A2 0 contributors

85 lines (67 sloc) 2.15 KB

// simple state machine.h
// Simple finite state machine el capsulation
// Author: Michael S. Booth (mike@turtlerockstudios.com), November 2003

#ifndef SIMPLE_STATE MACHINE H_
#define STMPLE_STATE_MACHINE H_

JE*
* Encapsulation of a finite-state-machine state
*/

template < typename T >

class SimpleState

r

40

Model-view-controller (MVC) is an FSM

(MODEL \
States
el HMANIFBLATES == Input events change states
VIEW CONTROLLER
: s /
The View draws states R &
N\ /

A Finite Automata I1s a “Program”

« A very limited “program” that uses finite memory
 Actually, only 1 “cell” of memory!
« States = the possible things that can be written to memory

* Finite Automata has different representations:

« Code (wont use in this class)
»>State diagrams

Finite Automata state diagram

Accept State
1
1 0
RO O =0
Start State " ™ Inputs specify state transitions

States

