CS420

(Deterministic) Finite Automata

Wednesday, January 31, 2024
UMass Boston Computer Science

%/(/(ﬂa/(&@/f(e/(lf&

e HW 1
 due date extended: Wed 2/7, 12pm EST (noon)

 Please ask all HW questions on Piazza!
* So all course staff can see,
« and entire class can benefit
« Please: do not email course staff with HW questions

last Tire: MOdels of Computation Hierarchy

Turing Machines

Linear bounded Automata

We’'ll start here ...

More powerful
More complex
Less restricted

46

Aty FINIte Automata is a “Program”

* A restricted “program” with access to finite memory
* Only 1 %cell” of memory!
* Possible contents of memory = # of states

 Finite Automata has different representations:
 Code (wont use in this class)

Aty FINIte Automata is a “Program”

* A restricted “program” with access to finite memory
* Only 1 %cell” of memory!
» Possible contents of memory = # of states

 Finite Automata has different representations:
e Code (wont use in this class)
»Formal math description (like code, just a different “programming lang”)

49

Finite Automata: The Formal Definition

NDFFINITION

deterministic

A finite automaton is a 5-tuple (Q, X, 0, qo, F'), where
(DFA)

1. () is a finite set called the states,

2. 3 1s a finite set called the alphabet,

3. 0: Q X X—(Q is the transition function,
4. qo € Q is the start state, and

5. F C Q is the set of accept states.

Aralagy
fhic cenester . This is the “programming
Things in bold have precise formal language” for (deterministic)
definitions.

(be sure to look up and review the finite automata “programs

definition whenever you are unsure)

Finite Automata: The Formal Definition

4 5 components

Set or sequence”

DEFINITION

A finite automaton is a 5-tuple (Q, X, 0, qo, F'), where

1. () is a finite set called the states,

2. 3 1s a finite set called the alphabet,

3. 0: Q X X—(Q is the transition function,
4. qo € Q is the start state, and

5. F C Q is the set of accept states.

mtertide: SETS aNd Sequences

= Both are: mathematical objects that group other objects
= Members of the group are called elements

= Can be: empty, finite, or infinite

= Can contain: other sets or sequences

Sets Sequences

« Unordered * Ordered

« Duplicates not allowed « Duplicates ok

« Notation: { } « Notation: varies: (), comma, or append
« Empty set written: @ or { } « Empty sequence: ()

» Alanguage is a (possibly infinite) < A tuple is a finite sequence Sueices veeda

- lot in this course
A daloti . . 30
Set Of strings, Asetusedalotin . A string is a finite sequence of characters

Setor|Sequence|?

A function is ... | ... a set of pairs .. has many representations:
(15t of each pair from domain, 2" from range) a mapping, a table, ...
DEFINITION

sequence

nite automaton is a 5-tuple (Q, X, 9, qo, F),Aﬁlﬁ:

set

() is a finite set called the states,

Set of pairs is a finite set called the alphabet,<— set

1 . % . . _ e .
(domain) | 3.6: QxX—Q &Wzonﬁnazon,
Don't know! }y qo € Q is the start state, and Set (range)
know! _

(states can be 3+ F' C Q is the set of accept states.

anything) '\
set

A pair is ... H a sequence of 2 elements

55

Aty FINIte Automata is a “Program”

* A restricted “program” with access to finite memory
* Only 1 %cell” of memory!
» Possible contents of memory = # of states

 Finite Automata has different representations:
e Code (wont use in this class)
 Formal math description (like code, just a different “programming lang”)
»State Diagrams

56

DEFINITION
A finite automaton is a S-tuple (Q, X, 6, qo, F'), where

1. Q is a finite set called the states,

2. 3 is a finite set called the alphabet,

3. 0: Q x X—Q is the transition function,
4. qo € Q is the start state, and

5. F C Q is the set of accept states.

Arrows specify
transition function

Start State

Finite Automata:
State Diagram

DEFINITION
A finite automaton is a S-tuple (Q, X, 6, qo, F'), where

1. Q is a finite set called the states,

2. 3 is a finite set called the alphabet,

3. 0: Q x X—Q is the transition function,
4. qo € Q is the start state, and

5. F C Q is the set of accept states.

An Example (as state diagram)

DEFINITION
A finite automaton is a S-tuple (Q, 3, 6, qo, F'), where

1. @ is a finite set called the states, s

2. ¥ is a finite set called the alphabet, | Notthe same @
3. 0: Q x X—Q is the transition function,

4. go € Q is the start state, and

5. F C Q is the set of accept states.

@

An Example (as state diagram)

An Example (as formal description)

M, =(Q,%,9,q1, F'), where
1. Q — {ql;qQaQ3}a

2. Y =1{0,1}, braces =
3. 0 1s described as (snec)tdnu%’fizi’gltcgg
0O 1
91 | 91 G2
42 | 43 G2
43 | 92 42,

4. ¢, 1s the start state, and
5. F ={qg2}.

60

DEFINITION

A finite automaton is a S-tuple (Q, X, 6, qo, F'), where

1. @ is a finite set called the states,
2. Y 1s a finite set called the alphabet,
3. 0: Q x X—Q is the transition function,

4. qo € Q is the start state, and

5. F C Q is the set of accept states.

M, =(Q,%,0,q, F), where
1. Q — {ql;qQaqL‘))}a

2.) = {0’1};— Possible chars of input

3. 4 1s described as
0 1
d1 | d1 g2
d2 | 43 g2
q3 | 42 42,

4. ¢, 1s the start state, and
5. F = {QQ}.

61

DEFINITION
A finite automaton is a S-tuple (Q, X, 6, qo, F'), where My = (Q, 2, (53 g1, F), where

1. Q is a finite set called the states, 1 _
2. Y is a finite set called the alphabet, | Q {Ql 42, 43 }’
3. 0: Q x X—Q is the transition function, 2. Y = {0,1},
4. qo € Q 1s the start state, and 3. §1s described as And this is next
5. F C Q is the set of accept states. inout svymbol”
0 1 put sy
0 e a1 | 91 g2 :
“If in this “Then go to
state” @2 |43 92 this state”
a3 | 92 92,
q1

4. ¢, 1s the start state, and
5. F ={qg2}.

DEFINITION
A finite automaton is a S-tuple (Q, X, 6, qo, F'), where My = (Q, 2, (53 g1, F), where

1. Q is a finite set called the states, 1 _
2. 3 is a finite set called the alphabet,) Q {Ql 42, 43 }’
3. 0: Q x X—Q is the transition function, 2.3 = {0,1},
4. qo € Q is the start state, and 3. §is described as
5. F C Q is the set of accept states.
o) 1
0 1 q1 [91 42
‘ d2 | 43 42
1 43 | 42 g2,

- 4. ¢ 1s the start state, and
s 5. F ={qg2}.

DEFINITION
A finite automaton is a S-tuple (Q, X, 6, qo, F'), where My = (Q, 2, (53 g1, F), where

1. Q is a finite set called the states, 1 _
2. 3 is a finite set called the alphabet,) Q {Ql 42, 43 }’
3. 0: Q x X—Q is the transition function, 2. Y = {071},
4. qo € Q is the start state, and 3. § is described as
5. F C Q is the set of accept states.
o) 1
0 qd1 | 91 g2
q2 | 43 g2
1 43 | 92 {42,
q1 .
4. ¢ 1s the start state, and
q ’

5. F = {QQ}.

A “Programming Language” +
v

A finite automaton is a S-tuple (Q, %, 6, qo, F'), where

DEFINITION

1. Q is a finite set called the states,
2. 3 is a finite set called the alphabet,

An Example (as formal description)

M, =(Q,%,9,q1, F'), where
1. Q — {ql;qQaQ3}:

3. 0: Q x X—Q is the transition function, 2. Y = {0,1},
4. qo € Q is the start state, and 3. §is described as
5. F C Q is the set of accept states.
0] 1
A “Program” —
0 € d1 | q1 g2
q2 | 43 @2
1 43 | 42 g2,
q1

4. ¢ 1s the start state, and
5. F = {QQ}.

This “analogy” is meant to help your intuition

///D/‘%/‘d/f(//(/;g/ ”#/(a/ay%

But it's important not to confuse with formal definitions.

Submit in-class work in gradescope!

In-class Exercise

Come up with a formal description of the following machine:

DEFINITION
A finite automaton is a S-tuple (Q, X, 0, qo, F'), where

1. Q is a finite set called the states,

2. Y is a finite set called the alphabet,

3. 0: Q X X—Q is the transition function,
4. qo € Q) is the start state, and

5. F C Q is the set of accept states.

In-class Exercise: solution

* Q={CI1, g2, CI3} M = (QZ(S Q[}FF)

*2={ab}

0)
* 4(gl,a)=q2
- 5(q1,b) =q1
. 5(q2,2) = 3
* 0(g2,b)=q3
* 0(g3,a)=q2
* 0(g3,b)=q1l

* qo=q

* F={q2}

A Computation Model Is ... (from lecture 1)

« Some definitions ...

e.g., A Natural Number is either
- Zero

- a Natural Number + 1

« And rules that describe how to compute with the definitions ...

To add two Natural Numbers:

- Add the ones place of each num

- Carry anything over 10

- Repeat for each of remaining digits ...

A Computation Model IS ... (from lecture 1

@ docs.python.org/3/reference/grammar.html

10. Full Grammar specification

This is the full Python grammar, derived directly from the grammar used to generate the CPython pe

L] [] []
PY S O m e d efl n I tl O n S Grammar/python.gram). The version here omits details related to code generation and error recovet
eeo L

========================= START OF THE GRAMMAR =========================

General grammatical elements and rules:

Strings with double quotes (") denote SOFT KEYWORDS

Strings with single quotes (') denote KEYWORDS

Upper case names (NAME) denote tokens in the Grammar/Tokens file

Rule names starting with "invalid " are used for specialized syntax errors

- These rules are NOT used in the first pass of the parser.

- Only if the first pass fails to parse, a second pass including the invalid
rules will be executed.

- If the parser fails in the second phase with a generic syntax error, the
Location of the generic failure of the first pass will be used (this avoids
reporting incorrect locations due to the invalid rules).

- The order of the alternatives involving invalid rules matter
(like anu rule in PFG)

« And rules that describe how to compute with the definitions ...

@ docs.python.org/3/reference/executionmodel.html

4. Execution model
4.1. Structure of a program

A Python program is constructed from code blocks. A block is a piece of Python program text that is execute:

BoH R B R R R R ¥R B R H R

a unit. The following are blocks: a module, a function body, and a class definition. Each command typed intel
tively is a block. A script file (a file given as standard input to the interpreter or specified as a command line &
ment to the interpreter) is a code block. A script command (a command specified on the interpreter commant
with the -c option) is a code block. A module run as a top level script (as module __main__) from the comm:
line using a -m argument is also a code block. The string argument passed to the built-in functions eval() a

exec() is a code block.

A code block is executed in an execution frame. A frame contains some administrative information (used for .
bugging) and determines where and how execution continues after the code block's execution has complete

4 2 Namina and hindina

A Computation Model Is ... (from lecture 1)

DEFINITION

« Some definitions ...

A finite automaton is a S-tuple (Q), X, 4, qo, F'), where

1. @ is a finite set called the states,

2. ¥ is a finite set called the alphabet,

3. 0: Q x ¥—Q is the tramnsition function,
4. qo € Q is the start state, and

5. F C Q is the set of accept states.

« And rules that describe how to compute with the definitions ...

P??7?

Computation with DFAS (JFLAP demo)

|
« DFA: }o ! e

- Input: “1101”

HINT: always work out concrete
examples to understand how a
machine works

DFA Computation Rules

Informally

Given
« A DFA (~ a “Program”)
« and Input = string of chars, eg “1101"

To run the automata / “program”:
e Start in “start state”

* Repeat:

« Read 1 char from input;
« Change state according to the transition table

« Result of computation =
« Accept if last state is Accept state
« Reject otherwise

DFA Computation Rules

Informally
Glven

Formally (i.e., mathematically)

« A DFA (~ a “Program”)

« and Input = string of chars, eg “1101"

To run the automata / “program”:
 Start in “start state”

 Repeat:

« Read 1 char from input;
« Change state according to the transition table

e Result of computation =
» Accept If last state is Accept state
« Reject otherwise

- M = (Q72767QO7F)

W = UW1w2o - Wp

79

DFA Computation Rules

Informally Formally (i.e, mathematically)
Given
A DFA (~ a “Program”) - M = (Q,%,9,q,F)
« and Input = string of chars, eg “1101" « W = WiW3 - Wy
Define: variables ry, ..., I,
To run the automata / “program"; representing sequence of states in the computation
e Start in “start state” * 7o = qo
° Repeat:

« Read 1 char from input;
« Change state according to the transition table

- Result of computation = « M accepts w if

 Accept if last state is Accept state sequence of states 19,7, . ..,y in () exists . . .

« Reject otherwise withr,, € F *°

DFA Computation Rules

Informally

Given
« A DFA (~ a “Program”)
« and Input = string of chars, eg “1101"

To run the automata / “program”:
e Start in “start state”

* Repeat:

« Read 1 char from input;
« Change state according to the transition table

« Result of computation =

« Accept if last state is Accept state
« Reject otherwise

Formally (i.e., mathematically)

- M = (Q72757QO7F)
W = UW1w2o - Wp

Define: variables r, ..., ',

representing sequence of states in the computation

* To = 4o

* T; — 5(7“7;_1,@07;), for ¢ = 1, e N
if i=1, ry = 6(ry, wy)
if i=2, ry= 6(ry, wy)

« M accepts w it if =3, 3= 6(ry, w3)

sequence of states 19,7, . ..,y in () exists . . .

with r,, € F

DFA Computation Rules

Informally

Given
« ADFA (~ a “Program”)
« and Input = string of chars, eg “1101”

To run the automata / “program”:
« Start in “start state”

 Repeat:

« Read 1 char from input;
« Change state according to the transition table

« Result of computation =
« Accept if last state is Accept state
« Reject otherwise

Formally (i.e., mathematically)

- M = (Q72767QO7F)

W = UW1w2o - Wp

Define: variables r, ..., ',

representing sequence of states in the computation

* To = 4o

N :(5(7"7;_1,11]7;), for ¢ = 1,...,72,

This is still a
« M accepts w if | little “informal”

sequence of states 79,71, . ..,y 1N () exists . . .

withr, € ' ¥

d: Q X ¥—Q is the transition function

An Extended Transition Function

set of pairs *=“0 or more”
Define extended transition function: 0:Q XX —Q
 Domain:
+ Input state ¢ € () (doesn’t have to be start state) ¥" = set of all
 Input String w = WwiWs -+ Wy where w; €)y possible strings!
* Range:

 Output state (doesn't have to be an accept state)
(Defined recursively)

e Base case: ...

Recursive Definitions

function factorial(n)

{

Base case if (0) Function is called before

o o
return 1: it is fully defined!

Recursive case else - -
Recursive call with

“smaller” argument

return factorial

« Why is this allowed?
e It's a “feature” (i.e,, an axiom!) of the programming language

« Why does this “work”? (why doesn't it loop forever?)
« Because the recursive call always has a “smaller” argument ...
e ... and so eventually reaches the base case and stops

Recursive Definitions

A Natural Number is either: | use of definition before
it is fully defined!
Base case e Zero, Or

Recursive case e the Successor of a Natural Number “smaller” argument

Examples

« Zero

 Successor of Zero (= “one”)

» Successor of Successor of Zero (= “two”)

« Successor of Successor of Successor of Zero (= “three”) ...

Recursive Definitions

A node followed by a list

S IEE]
Left sub-tree is a binary tree \ o @ /Right sub-tree is a binary tree

Recursive definitions have: - This is a recursive definition:
2 > Node is used before it is fully

- base case and)
- recursive case data; > defined (but must be “smaller”)
Node next;

(with a “smaller” object)

118

