CS 420
Computing With DFAs

Monday, February 5, 2024
UMass Boston Computer Science
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e HW 1
 Due: Wed-2/7 Mon 2/12 12pm (noon)

e TAs and (new!) office hours

Office hours will be held weekly in-person, in McCormack, 3rd Floor, at these times:
¢ Thu 2:00-3:30pm EST (Jean Gerard), room 0139

e Thu 3:30-5:00pm EST (Richard Chang), room 0139

e Fri 2:00-3:30pm EST (Prof Chang), room 0201-03

Office hours will be held weekly via Zoom during these times:

® Thu 3:30-5:00pm EST (Prof Chang) (see Blackboard for Zoom link)

e Sat 12:00-1:30pm EST (Anna Bosunova) (see Blackboard for Zoom link)

Drop-ins are fine, but emailing in advance if you can would be helpful.

These will usually be group meetings, but one-on-ones are available upon request.
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Computation with DFAS (JFLAP demo)

|
« DFA: }o ! e

- Input: “1101”

HINT: always work out concrete
examples to understand how a
machine works




DFA Computation Rules

Informally

Given
« A DFA (~ a “Program”)
« and Input = string of chars, eg “1101"

To run the automata / “program”:
e Start in “start state”

* Repeat:

« Read 1 char from input;
« Change state according to the transition table

« Result of computation =
« Accept if last state is Accept state
« Reject otherwise



DFA Computation Rules

A finite automaton is a 5-tuple (Q. 2.6, qo, F'), where

1. Q is a finite set called the states,

2. X is a finite set called the alphabet,

3. §: Q x ¥—Q is the transition function,
4. gy € Q is the start state, and

5. F C Q is the set of accept states.

Informally

Formally (i.e., mathematically)

Given

« A DFA (~ a “Program”)
« and Input = string of chars, eg “1101"

To run the automata / “program”:
 Start in “start state”

 Repeat:

« Read 1 char from input;
« Change state according to the transition table

e Result of computation =
« Accept if last state is Accept state
« Reject otherwise

c M =

ow:

80




DFA Computation Rules

Informally Formally (i.e, mathematically)
Glven
A DFA (~ a “Program”) - M = (Q,%,9,q,F)
« and Input = string of chars, eg “1101” c W = WiW3 -+ Wy
A run is represented by variables ry, ..., I, ,
To run the automata / “program™; the sequence of states in the computation, where:
e Start in “start state” * To = qo
 Repeat:

« Read 1 char from input;
« Change state according to the transition table

* Result of computation = « M accepts w it | |
« Accept if last state is Accept state sequence of states 19,7, . ..,y in () exists . . .
* Reject otherwise withr, € F &



DFA Computation Rules

0: Q X ¥—Q is the transition function

Informally

Formally (i.e., mathematically)

Given
« ADFA (~ a “Program”)
« and Input = string of chars, eg “1101”

To run the automata / “program”:
 Start in “start state”

- M :_(Q7275 QOvF)

\
* W = |[WWw2g - -+ Wy,

A run is represented by variables ry, ..., I, ,
the sequence of states in the computation, where:

o

= qo

 Repeat:

« Read 1 char from input;

« Change state according to the transition table

e Result of computation =
« Accept if last state is Accept state
« Reject otherwise

- T =
if i=1, ry = 6(ry wy)
if i=2, ry= 6(ry, wy)
« M accepts w it Ifi=3, 3= 6(ry w3)
sequence of states 19,71, ..., 7, in () exists ...

with r,, € I



0: Q X X— Q) is the transition function.

DFA Computation Rules

Informally Formally (i.e, mathematically)
Glven
A DFA (~ a “Program”) - M = (Q,%,9,q,F)
« and Input = string of chars, eg “1101” W = WiW3 - Wy
A run is represented by variables ry, ..., I, ,
To run the automata / “program”; the sequence of states in the computation, where:
e Start in “start state” « To = qo
* Repeat: e r; =0(r;_1,w;), fori=1,...,n

« Read 1 char from input;
« Change state according to the transition table

» Result of computation = » M accepts w if | |
» Accept If last state is Accept state sequence of states 1o, 71, ..., 7, In () exists . . .
* Reject otherwise withr,, € F



0: Q X ¥—Q is the transition function

DFA Computation Rules

Informally Formally (ie, mathematically)

Glven

« ADFA (~ a “Program”) - M = (Qa 2,0, qo, F) This is still a

 and Input = string of chars, eg “1101” W = WLW2 - Wy little “informal”
A run is represented by variables ry, ..., I, ,

To run the automata / “program”; the sequence of states in the computation, where:

e Start in “start state” « To = qo

* Repeat: e r; =0(r;_1,w;), fori=1,...,n

« Read 1 char from input;
« Change state according to the transition table

This is still a
» Result of computation = « M accepts w if | little “informal”
« Accept if last state is Accept state sequence of states 79,71, . ..,y 1N () exists . . .

« Reject otherwise withr,, € F *



d: Q X ¥—Q is the transition function

An Extended Transition Function

set of pairs *=“0 or more”
Define extended transition function: 0:Q XX —Q
 Domain:
+ Input state ¢ € () (doesn’t have to be start state) ¥" = set of all
 Input String w = WwiWs -+ Wy where w; € )y possible strings!
* Range:

 Output state (doesn't have to be an accept state)
(Defined recursively)

e Base case: ...



wtrtide: REcursive Definitions

function factorial( n )

{

Base case if ( 0) Function is called before

o o
return 1: it is fully defined!

Recursive case else - -
Recursive call with

“smaller” argument

return factorial

« Why is this allowed?
e It's a “feature” (i.e., an axiom!) of the programming language

« Why does this “work”? (why doesn't it loop forever?)
« Because the recursive call always has a “smaller” argument ...
e ... and so eventually reaches the base case and stops




Recursive Definitions

A Natural Number is either: | Use of definition before
it is fully defined!
Base case e Zero, Or

Recursive case e the Successor of a Natural Number “smaller” argument

Examples

« Zero

 Successor of Zero ( = “one” )

» Successor of Successor of Zero ( = “two” )

« Successor of Successor of Successor of Zero ( = “three”) ...




Recursive Data Definitions

A node followed by a list

S IEE]
Left sub-tree is a binary tree \ o @ /Right sub-tree is a binary tree

This is a recursive definition:
Node is used before it is fully
defined (but must be “smaller”)

Recursive definitions have: Node { <N
- base case and i | 4

- recursive case Node next :
(with a “smaller” object) ’

9



Strings Are Defined Recursively

A String is either:
Base case e the empty String (8), or

Recursive case « xa (non-empty string) where

e xis a string “smaller” argument
* gisa‘“char’in X

Remember: all strings are
formed with “chars” from
some alphabet set X

¥ =set of all
possible strings!



Recursive Data = Recursive Functions

A Natural Number is either:
« Zero, or
* the Successor of a Natural Number

function factorial( n )

{

Base case if ( == 0 )

return 1;
Recursive case else
return * factorial( -1 );

Recursive case must
have “smaller” ) y
argument Recursive functions are

recursive because ...
its Input data is
recursively defined!



An Extended Transition Function

Define extended transition function: 5 QxY*—Q

 Domain:
« Input state ¢ € () (doesn't have to be start state)

* Inputstring w = wiWs -+ Wn where w; € X

* Range: -
- Output state (doesn’t have to be an accept state) e eete
Recursive Function
. . A String is either:
(Defl ned reCU rS|Vely) Base case e the empty String (E), or
+ xa (non-empty string)
A where

o Base case 6((]7 6) — « xis astring

e agisa‘“char’inX



An Extended Transition Function

Define extended transition function: 5 QxY*—Q

 Domain:
« Input state ¢ € () (doesn't have to be start state)
* Input string w = wiwa2 -+ Wy where w; € 3

* Range: |
 Output state (doesn't have to be an accept state) e ety

Recursive Function

A String is either:
 the empty string (), or
Recursive case e xg (non-empty string)

(Defined recursively)

A where
o Base case ( ) — Recursive call u " « xis astring
6 q, <& q smaller” argument v

string char

A

e| Recursive Case d(q, w’wn) —

where w' = wy -+ - w,_1



0: Q X ¥—Q is the transition function

An Extended Transition Function

Define extended transition function: 0:Q XX —Q
 Domain:
+ Input state ¢ € () (doesn't have to be start state)
* Inputstring w = wyw2 -+ Wy where w; € 2

* Range: |
 Output state (doesn't have to be an accept state) e ety

Recursive Function

A String is either:
 the empty string (), or
+ xa (non-empty string)

(Defined recursively)

A~ where
o Base case ( ) — « xis astring
6 Q7 & q e aisa“char’inX

A A

« ReaursiveCase | §(q, w'w,) = d(d(q,w"), wy,)

where w' = wy -+ - w,_1
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DFA Computation Rules

Informally Formally (ie, mathematically)
Glven
A DFA (~ a “Program”) - M = (Q,%,9,q,F)
« and Input = string of chars, eg “1101” W = WiW3 - Wy
A run is represented by variables ry, ..., I, ,
To run the automata / ‘program”: the sequence of states in the computation, where:
- Start in “start state” * Tp = qo
* Repeat: e r; =0(r;_1,w;), fori=1,...,n

« Read 1 char from input;
« Change state according to the transition table

This is still a
« Result of computation = « M accepts w if | little “informal”
« Accept if last state is Accept state sequence of states 79,71, . ..,y 1N () exists . . .

* Reject otherwise withr, € F



DFA Computation Rules

Informally

Glven
« ADFA (~ a “Program”)
« and Input = string of chars, eg “1101”

To run the automata / “program”:
« Start in “start state”

 Repeat:

« Read 1 char from input;

« Change state according to the transition table

« Result of computation =
« Accept if last state is Accept state
« Reject otherwise

Formally (i.e., mathematically)

- M = (Q72767QO7F)

W = UW1w2o - Wp

A run is represented by variables ry, ..., I, ,
the sequence of states in the computation, where:

* To = 4o

* T; :(5(7“7;_1,11)7;), for ¢ = 1,...,n

« M accepts w if S(QOaw) c F

sequence of states 79,71, ..., 7, 1N () €xists . ..

with r,, € I



Definition of Accepting Computations

An accepting computation, for DFA M =(Q, Z, 6, q,, F) and string w:
1. starts in the start state q,

2. goes through a valid sequence of states according to §

3. ends in an accept state

All 3 must be true for a computation A
to be an accepting computation! M accepts w if §(qg, w) € F



Accepting Computation or Not?

|
DFA: }0 1 e

.5 (q1,1101)

e Yes

0 (q1,110)

_* No (doesn't end in accept state)

.0 (g2, 101)

« No (doesn’t start in start state)



Alphabets, Strings, Languages

Alphabet specifies “all possible strings”

« An alphabet is a non-empty finite set of sSymbols | (possibie to have strings
Y = {O 1} with non-alphabet chars)

22 — {a?b? Cﬂd'?e?f?g?h?i?j7k717m7n?07p7q3r7S7t7u7v?W7X?Y3z}

* A string is a finite sequence of symbols from an alphabet

01001 abracadabra € Empty string (length 0)

A language is a set of strings Languages can be infinite
A = {good, bad} A = {w| w contains at least one 1 and

0 {} an even number of 0s follow the last 1}

Empty set is a language “the set of all ...” “such that ...”



Computation and Languages

« The language of a machine is the set of all strings that it accepts
£g,A DFA M accepts w it 5((]0, w) € F

e Language of M = L(M) ={w| M accepts w}

“the set of all ...” “such that...”



Machine and Language Terminology

DFA M accepts w string
M recognizes language A Set of strings

it A = {w| M accepts w}



Computation and Classes of Languages

« The language of a machine = set of all strings that it accepts

« E.g, every DFA is associated with a language

« A computation model = set of machines it defines

« E.g, all possible DFAs are a computation model

« Thus: a computation model = set of languages




Regular Languages: Definition

If a deterministic finite automata (DFA) recognizes a language,
then that language Is called a regular language.

A language is a set of strings.

M recognizes language A
it A= {w| M accepts w}



A Language, Regular or Not?

* [f given: a DFA M
« We know: L(M), the language recognized by M, is a regular language

If a DFA recognizes a language,

then that language is called a regular language. (modus ponens)

e |If given: a Language A
* |Is A a regular language?
« Not necessarily!
« How do we determine, i.e,, prove, that A is a regular language?



An Inference Rule: Modus Ponens

Premises Example Premises
 If Pthen Q « |f there is an DFA recognizing language A4,
DS T then A Is a regular language

* There i1s an DFA M where L(M) = A

Conclusion Conclusion
e QO must also be true *A s aregular language!



A Language, Regular or Not?

* |f given: a DFA M
« We know: L(M), the language recognized by M, is a regular language

If a DFA recognizes a language,
then that language is called a regular language.

e |If given: a Language A

* |Is A a regular language?
« Not necessarily!

« How do we determine, i.e,, prove, that A is a regular language?

Prove there is a DFA recognizing A!



HINT: always work out
concrete examples to

Language StrS W|th Odd 1S understand a language

m In the language? ‘

> ={0,1} ' ?
If a DFA recognizes a language, How to prove the language is regular

then that language is called a regular language.

Prove there's a DFA recognizing it!




Designing Finite Automata: Tips
 Input is read only once, one char at a time

« Must decide accept/reject after that

- States = the machine’s memory!
e ## states must be decided in advance
e Think about what information must be remembered.

e Every state/symbol pair must have a transition (for DFASs)

« Come up with examples!



Design a DFA: accept strs with odd

e States:

e 2 states:
e seen even 1s so far

e seen odds 1s so far

* Alphabet: @ and 1
0
A AY
. Transitions: @.@
1 O 1 O

- Start / Accept states: @.

1

1s



“Prove” that DFA recognizes a language

> = {01}

m In the language? |
1

Yes

0 No
01 Yes
Ll No
1101 Yes
3 no

0 0
V. [
@-
1

In this class, a table like this
is sufficient to “prove” that a
DFA recognizes a language




Submit 2/5 in-class work to gradescope



