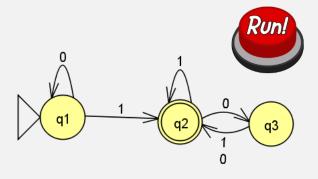
CS 420 Computing With DFAs

Monday, February 5, 2024 UMass Boston Computer Science



Announcements

- HW 1
 - <u>Due</u>: Wed 2/7 Mon 2/12 12pm (noon)

• TAs and (new!) office hours

Office hours will be held weekly **in-person**, in McCormack, 3rd Floor, at these times:

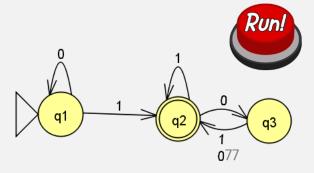
- Thu 2:00-3:30pm EST (Jean Gerard), room 0139
- Thu 3:30-5:00pm EST (Richard Chang), room 0139
- Fri 2:00-3:30pm EST (Prof Chang), room 0201-03

Office hours will be held weekly **via Zoom** during these times:

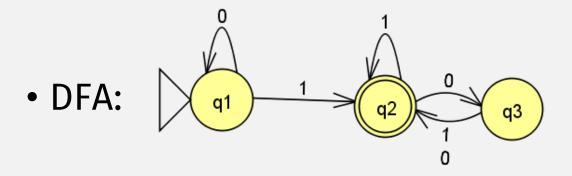
- Thu 3:30-5:00pm EST (Prof Chang) (see Blackboard for Zoom link)
- Sat 12:00-1:30pm EST (Anna Bosunova) (see Blackboard for Zoom link)

Drop-ins are fine, but emailing in advance if you can would be helpful.

These will usually be group meetings, but one-on-ones are available upon request.



Computation with DFAs (JFLAP demo)



• Input: "1101"

HINT: always work out concrete examples to understand how a machine works

Informally

Given

- A **DFA** (~ a "Program")
- and Input = string of chars, e.g. "1101"

To **run** the automata / "program":

- Start in "start state"
- Repeat:
 - Read 1 char from input;
 - Change state according to the transition table
- Result of computation =
 - Accept if last state is Accept state
 - Reject otherwise

DEFINITION

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set called the *states*,
- 2. Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- **4.** $q_0 \in Q$ is the **start state**, and
- **5.** $F \subseteq Q$ is the **set of accept states**.

Informally

Formally (i.e., mathematically)

Given

- A DFA (~ a "Program") \longrightarrow M=
- and Input = string of chars, e.g. "1101" \longrightarrow w =

DFA Computation Rules

To run the automata / "program":

- Start in "start state"
- Repeat:
 - Read 1 char from input;
 - Change state according to the transition table
- Result of computation =
 - Accept if last state is Accept state
 - Reject otherwise

Informally

Given

- A DFA (~ a "Program")
- and Input = string of chars, e.g. "1101"

To **run** the automata / "program":

• Start in "start state"

• Repeat:

- Read 1 char from input;
- Change state according to the transition table
- Result of computation =
 - Accept if last state is Accept state
 - Reject otherwise

Formally (i.e., mathematically)

- $M = (Q, \Sigma, \delta, q_0, F)$
- $w = w_1 w_2 \cdots w_n$

A run is represented by variables r_0 , ..., r_n , the <u>sequence of states</u> in the computation, where:

$$\rightarrow \cdot r_0 = q_0$$

$$\Rightarrow$$
 • M accepts w if sequence of states r_0, r_1, \ldots, r_n in Q exists \ldots with $r_n \in F^{-81}$

Informally

Given

- A DFA (~ a "Program")
- and Input = string of chars, e.g. "1101"

To run the automata / "program":

- Start in "start state"
- Repeat:
 - Read 1 char from input;
 - Change state according to the transition table
- Result of computation =
 - Accept if last state is Accept state
 - Reject otherwise

Formally (i.e., mathematically)

•
$$M = (Q, \Sigma, \delta, q_0, F)$$

•
$$w = w_1 w_2 \cdots w_n$$

A run is represented by variables r_0 , ..., r_n , the <u>sequence of states</u> in the computation, where:

$$\bullet r_0 = q_0$$

$$\rightarrow$$
 $r_i =$

if
$$i=1, r_1 = \delta(r_0, w_1)$$

if
$$i=2$$
, $r_2 = \delta(r_1, w_2)$

• M accepts w if

if
$$i=3$$
, $r_3 = \delta(r_2, w_3)$

sequence of states r_0, r_1, \ldots, r_n in Q exists \ldots

with
$$r_n \in F^{-82}$$

Informally

Given

- A DFA (~ a "Program")
- and Input = string of chars, e.g. "1101"

To run the automata / "program":

- Start in "start state"
- Repeat:
 - Read 1 char from input;
 - <u>Change</u> state according to the <u>transition</u> table
- Result of computation =
 - Accept if last state is Accept state
 - Reject otherwise

Formally (i.e., mathematically)

- $M = (Q, \Sigma, \delta, q_0, F)$
- $w = w_1 w_2 \cdots w_n$

A run is represented by variables r_0 , ..., r_n , the <u>sequence of states</u> in the <u>computation</u>, where:

• $r_0 = q_0$

$$\rightarrow \cdot r_i = \delta(r_{i-1}, w_i), \text{ for } i = 1, \dots, n$$

• M accepts w if sequence of states r_0, r_1, \ldots, r_n in Q exists \ldots with $r_n \in F^{-83}$

Informally

Given

- A DFA (~ a "Program")
- and Input = string of chars, e.g. "1101"

To run the automata / "program":

- Start in "start state"
- Repeat:
 - Read 1 char from input;
 - Change state according to the transition table
- Result of computation =
 - Accept if last state is Accept state
 - Reject otherwise

Formally (i.e., mathematically)

• $M=(Q,\Sigma,\delta,q_0,F)$ This is still a little "informal"

A run is represented by variables r_0 , ..., r_n , the <u>sequence of states</u> in the computation, where:

- $r_0 = q_0$
- $r_i = \delta(r_{i-1}, w_i)$, for i = 1, ..., n

• M accepts w if little "informal" sequence of states r_0, r_1, \ldots, r_n in Q exists \ldots with $r_n \in F^{-84}$

set of pairs

* = "0 or more"

Define extended transition function:

 $\hat{\delta}: Q \times \Sigma^* \to Q$

- Domain:
 - Input state $q \in Q$ (doesn't have to be start state)
 - Input string $w = w_1 w_2 \cdots w_n$ where $w_i \in \Sigma$
- Range:
 - Output state (doesn't have to be an accept state)

(Defined recursively)

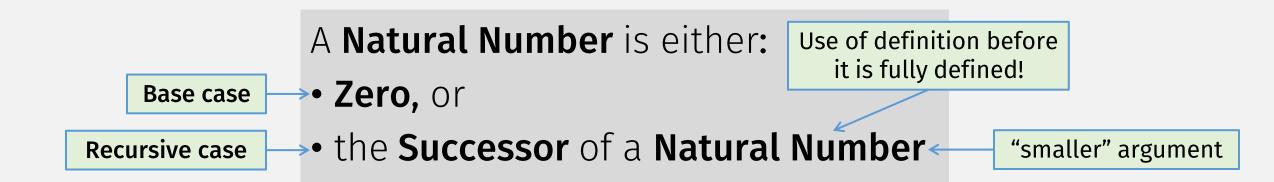
• <u>Base</u> case: ...

 Σ^* = set of all possible strings!

Interlude: Recursive Definitions

- Why is this <u>allowed</u>?
 - It's a "feature" (i.e., an axiom!) of the programming language
- Why does this "work"? (Why doesn't it loop forever?)
 - Because the recursive call always has a "smaller" argument ...
 - ... and so eventually reaches the base case and stops

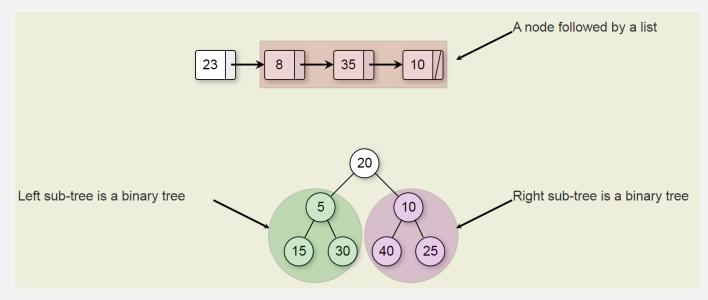
Recursive Definitions



Examples

- Zero
- Successor of Zero (= "one")
- Successor of Successor of Zero (= "two")
- Successor of Successor of Successor of Zero (= "three") ...

Recursive Data Definitions



Recursive definitions have:

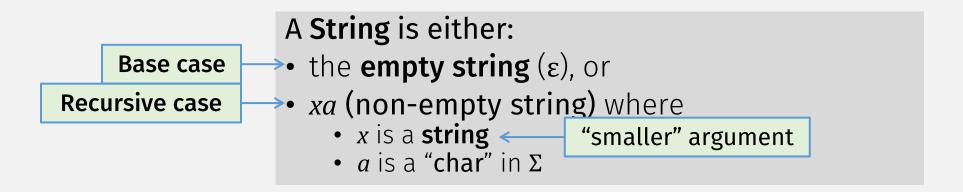
- base case and
- <u>recursive case</u> (with a "smaller" object)

```
/* Linked list Node*/
class Node {
   int data;
   Node next;
}
```

This is a <u>recursive definition</u>:

Node is used before it is fully defined (but must be "smaller")

Strings Are Defined Recursively



Remember: all strings are formed with "chars" from some alphabet set Σ

 Σ^* = set of all possible strings!

Recursive Data ⇒ Recursive Functions

A Natural Number is either: • Zero, or • the Successor of a Natural Number Recursive case return n * factorial(n) return 1; return n * factorial(n - 1);

Recursive case must have "smaller" argument

Recursive functions are recursive because ... its input data is recursively defined!

Define **extended transition function**:

 $\hat{\delta}: Q \times \Sigma^* \to Q$

- Domain:
 - Input state $q \in Q$ (doesn't have to be start state)
 - Input string $w = w_1 w_2 \cdots w_n$ where $w_i \in \Sigma$
- Range:
 - Output state (doesn't have to be an accept state)

Recursive Input Data needs Recursive Function

(Defined recursively)

Base case $\hat{\delta}(q, \varepsilon) =$

Base case A **String** is either:

- the **empty string** (ϵ), or
- xa (non-empty string) where
 - x is a string
 - a is a "char" in Σ

Define extended transition function:

 $\hat{\delta}: Q \times \Sigma^* \to Q$

- Domain:
 - Input state $q \in Q$ (doesn't have to be start state)
 - Input string $w = w_1 w_2 \cdots w_n$ where $w_i \in \Sigma$
- Range:
 - Output state (doesn't have to be an accept state)

Recursive Input Data needs Recursive Function

(Defined recursively)

- Base case
- $\hat{\delta}(q,\varepsilon) = q$

string

Recursive call

Recursive case

xa (non-empty string)
where
 x is a string

A **String** is either:

"smaller" argument

• a is a "char" in Σ

• the **empty string** (ϵ), or

Recursive Case

 $\hat{\delta}(q, w'w_n) = \delta$

where $w' = w_1 \cdot \cdot \cdot w_{n-1}$

95

Define **extended transition function**:

$$\hat{\delta}: Q \times \Sigma^* \to Q$$

- Domain:
 - Input state $q \in Q$ (doesn't have to be start state)
 - Input string $w = w_1 w_2 \cdots w_n$ where $w_i \in \Sigma$
- Range:
 - Output state (doesn't have to be an accept state)

(Defined recursively)

- Base case $\hat{\delta}(q,arepsilon)=q$
- Recursive Case $\hat{\delta}(q,w'w_n)=\check{\delta}(\hat{\delta}(q,w'),w_n)$ where $w'=w_1\cdots w_{n-1}$

Recursive Input Data needs Recursive Function

A **String** is either:

- the **empty string** (ε) , or
- xa (non-empty string) where
 - x is a string
 - a is a "char" in Σ

Informally

Given

- A DFA (~ a "Program")
- and Input = string of chars, e.g. "1101"

To **run** the automata / "program":

- Start in "start state"
- Repeat:
 - Read 1 char from input;
 - Change state according to the transition table
- Result of computation =
 - Accept if last state is Accept state
 - Reject otherwise

Formally (i.e., mathematically)

- $M = (Q, \Sigma, \delta, q_0, F)$
- $w = w_1 w_2 \cdots w_n$

A run is represented by variables r_0 , ..., r_n , the <u>sequence of states</u> in the <u>computation</u>, where:

- $r_0 = q_0$
- $r_i = \delta(r_{i-1}, w_i)$, for i = 1, ..., n

• M accepts w if little "informal" sequence of states r_0, r_1, \ldots, r_n in Q exists \ldots with $r_n \in F^{-99}$

Informally

Given

- A DFA (~ a "Program")
- and Input = string of chars, e.g. "1101"

To run the automata / "program":

- Start in "start state"
- Repeat:
 - Read 1 char from input;
 - Change state according to the transition table
- Result of computation =
 - Accept if last state is Accept state
 - Reject otherwise

Formally (i.e., mathematically)

- $M = (Q, \Sigma, \delta, q_0, F)$
- $w = w_1 w_2 \cdots w_n$

A run is represented by variables r_0 , ..., r_n , the <u>sequence of states</u> in the computation, where:

- $r_0 = q_0$
- $r_i = \delta(r_{i-1}, w_i)$, for i = 1, ..., n

• M accepts w if $\hat{\delta}(q_0, w) \in F$ sequence of states r_0, r_1, \ldots, r_n in Q exists \ldots with $r_n \in F$ 100

Definition of Accepting Computations

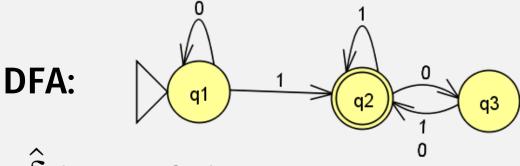
An accepting computation, for DFA $M = (Q, \Sigma, \delta, q_0, F)$ and string w:

- 1. starts in the start state q_0
- 2. goes through a valid sequence of states according to δ
- 3. ends in an accept state

All 3 must be true for a computation to be an accepting computation!

M accepts w if $\hat{\delta}(q_0,w) \in F$

Accepting Computation or Not?



- $oldsymbol{\cdot}\hat{\delta}$ (q1, 1101)
- \cdot Yes $\cdot \hat{\delta}$ (q1, 110)
 - No (doesn't end in accept state)
- $\bullet\delta$ (q2, 101)
 - No (doesn't start in start state)

Alphabets, Strings, Languages

Alphabet specifies "all possible strings"

(impossible to have strings with non-alphabet chars)

An alphabet is a <u>non-empty finite set</u> of symbols

$$\Sigma_1 = \{\mathtt{0,1}\}$$

$$\Sigma_2 = \{ a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z \}$$

• A **string** is a **finite sequence** of **symbols** from an **alphabet**

01001

abracadabra

 ε \leftarrow

Empty string (length 0)

A language is a <u>set</u> of strings

$$A = \{ \mathsf{good}, \mathsf{bad} \}$$

0 { }

Empty set is a language

Languages can be infinite

 $A = \{w | w \text{ contains at least one 1 and } \}$

an even number of 0s follow the last 1}

"the set of all ..."

"such that ..."

Computation and Languages

The language of a machine is the set of all strings that it accepts

• E.g., A **DFA** M accepts w if $\hat{\delta}(q_0, w) \in F$

• Language of $M = L(M) = \{w \mid M \text{ accepts } w\}$

"the set of all ..."

"such that ..."

Machine and Language Terminology

```
DFA M accepts w \leftarrow \text{string} M recognizes language A \leftarrow \text{Set of strings} if A = \{w | M \text{ accepts } w\}
```

Computation and Classes of Languages

- The language of a machine = set of all strings that it accepts
 - E.g., every **DFA** is **associated with** a **language**
- A computation model = <u>set of machines</u> it defines
 - E.g., all possible DFAs are a computation model
- Thus: a **computation model** = **set** of **languages**

Regular Languages: Definition

If a **deterministic finite automata** (**DFA**) <u>recognizes</u> a language, then **that language** is called a **regular language**.

A *language* is a set of strings.

M recognizes language A if $A = \{w | M \text{ accepts } w\}$

A Language, Regular or Not?

- If given: a DFA M
 - We know: L(M), the language recognized by M, is a regular language

If a **DFA** <u>recognizes</u> a language, then that language is called a regular language.

(modus ponens)

- If given: a Language A
 - Is A a regular language?
 - Not necessarily!
 - How do we determine, i.e., prove, that A is a regular language?

An Inference Rule: Modus Ponens

Premises

- If P then Q
- P is true

Conclusion

Q must also be true

Example Premises

- If there is an DFA recognizing language A, then A is a regular language
- There is an DFA M where L(M) = A

Conclusion

• A is a regular language!

A Language, Regular or Not?

- If given: a DFA M
 - We know: L(M), the language recognized by M, is a regular language

If a DFA <u>recognizes</u> a language, then that language is called a <u>regular language</u>.

- If given: a Language A
 - Is A a regular language?
 - Not necessarily!
 - How do we determine, i.e., prove, that A is a regular language?

Prove there is a DFA recognizing A!

HINT: always work out concrete examples to understand a language

Language: strs with odd # 1s

Example	In the language?
	No
11	No
	no

$$\Sigma_{1} = \{0,1\}$$

If a DFA <u>recognizes</u> a language, then that language is called a <u>regular language</u>. How to prove the language is regular?

Prove there's a DFA recognizing it!

Designing Finite Automata: Tips

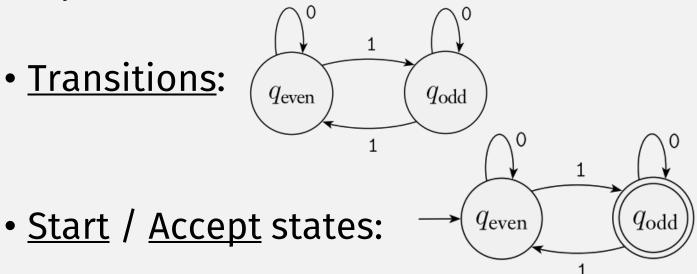
- Input is read only once, one char at a time
- Must decide accept/reject after that
- States = the machine's **memory**!
 - # states must be decided in advance
 - Think about what information must be remembered.
- Every state/symbol pair must have a transition (for DFAs)
- Come up with examples!

Design a DFA: accept strs with odd # 1s

- States:
 - 2 states:
 - seen even 1s so far
 - seen odds 1s so far

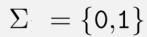
Alphabet: 0 and 1

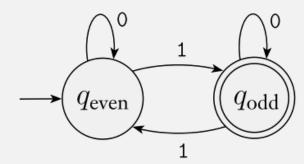
• Transitions:



"Prove" that DFA recognizes a language

Example	In the language?
1	Yes
0	No
01	Yes
11	No
1101	Yes
3	no





In this class, a table like this is sufficient to "prove" that a DFA recognizes a language

Submit 2/5 in-class work to gradescope