CS420 Combining DFAs and Closed Operations

Monday, February 12, 2024 UMass Boston Computer Science

Announcements

- HW 1 in
 - Due Mon 2/12 12pm
- HW 2 out
 - Due Mon 2/19 12pm
- Check previous Piazza posts before posting!

Languages Are Computation Models

• The language of a machine = set of strings that it accepts

$$\hat{\delta}(q_0, w) \in F$$

• E.g., a DFA $M=(Q,\Sigma,\delta,q_0,F)$ recognizes language A: if $A=\{w|\ M \ \text{accepts}\ w\}$

- A **computation model** = <u>set of machines</u> it defines
 - E.g., all possible DFAs are a computation model

DEFINITION

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, when

- **1.** Q is a finite set called the *states*,
- **2.** Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- **4.** $q_0 \in Q$ is the *start state*, and
- **5.** $F \subseteq Q$ is the **set of accept states**.

Thus: a computation model equivalently = a set of languages

= set of set of strings

This class is <u>really</u> about studying **sets of languages!**

Languages Are Computation Models

• first set of languages we will study: regular languages

If a **DFA** recognizes a language *L*, then *L* is a regular language

DEFINITION

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, whe

- 1. Q is a finite set called the *states*,
- **2.** Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- **4.** $q_0 \in Q$ is the *start state*, and
- **5.** $F \subseteq Q$ is the **set of accept states**.

Thus: a computation model equivalently = a set of languages

This class is <u>really</u> about studying **sets of languages!**

Is it regular?: strings with odd # 1s

- States:
 - 2 states:
 - seen even 1s so far
 - seen odds 1s so far

(Part of Proof requires) **Creating DFA:**

So a DFA's computation recognizes simple string patterns?

Yes!

Have you ever used a **programming language** (feature) for <u>writing string matching computation</u>?

Regular Expressions! (stay tuned!)

• Alphabet: 0 and 1

• Transitions:

• <u>Start</u> / <u>Accept</u> states:

Combining DFAs?

To match <u>all</u> requirements, <u>combine</u> smaller DFAs into one big DFA?

umb.edu/it/software-systems/password/

(We do this with programs all the time)

Password Checker DFAs

To <u>combine</u>
<u>more than</u>
<u>once</u>, this
must be a DFA

Want to be able to easily <u>combine</u> DFAs, i.e., <u>composability</u>

We want these operations:

"OR": DFA \times DFA \rightarrow DFA

"AND": DFA \times DFA \rightarrow DFA

To <u>combine more than once</u>, operations must be **closed**!

"Closed" Operations

- Set of Natural numbers = {0, 1, 2, ...}
 - <u>Closed</u> under addition:
 - if x and y are Natural numbers,
 - then z = x + y is a Natural number
 - Closed under multiplication?
 - yes
 - Closed under subtraction?
 - no
- Integers = $\{..., -2, -1, 0, 1, 2, ...\}$
 - <u>Closed</u> under addition and multiplication
 - Closed under subtraction?
 - yes
 - · Closed under division?
 - · no
- Rational numbers = $\{x \mid x = y/z, y \text{ and } z \text{ are Integers}\}$
 - Closed under division?
 - No?
 - Yes if *z* !=0

A set is <u>closed</u> under an operation if: the <u>result</u> of applying the operation to members of the set <u>is in the same set</u>

i.e., input set(s) = output set

We Want "Closed" Ops For Regular Langs!

- Set of Regular Languages = $\{L_1, L_2, ...\}$
 - Closed under ...?
 - OR (union)
 - AND (intersection)

•

A set is <u>closed</u> under an operation if: the <u>result</u> of applying the operation to members of the set <u>is in the same set</u>

i.e., input set(s) = output set

Why Care About Closed Ops on Reg Langs?

- Closed operations for regular langs preserve "regularness"
- I.e., it preserves the same computation model!
- Allows "combining" smaller "regular" computations to get bigger ones:

For Example:

OR: Regular Lang × Regular Lang → Regular Lang

So this semester, we will look for operations that are closed!

Password Checker: "OR" = "Union"

Union: $A \cup B = \{x | x \in A \text{ or } x \in B\}$

Union of Languages

Let the alphabet Σ be the standard 26 letters $\{a, b, \dots, z\}$.

```
If A = \{ fort, south \} B = \{ point, boston \}
```

$$A \cup B = \{ \text{fort, south, point, boston} \}$$

In this course, we are interested in closed operations for a set of languages (here the set of regular languages)

(In general, a set is closed under an operation if applying the operation to members of the set produces a result in the same set)

The class of regular languages is closed under the union operation.

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

Or this (same) statement

Want to prove this statement

THEOREM

statement

(In general, a set is closed under an operation if applying the operation to members of the set produces a result in the same set)

The class of regular languages is closed under the union operation.

Want to prove this statement

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

Or this (same)

A member of the set of regular languages is ...

... a regular language, which itself is a set (of strings) ...

... so the **operations** we're interested in are **set operations**

THEOREM

Want to prove this statement

The class of regular languages is closed under the union operation.

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

Or this (same) statement

Flashback: Mathematical Statements: IF-THEN

Using:

- If we know: $P \rightarrow Q$ is TRUE, what do we know about P and Q individually?
 - <u>Either P is FALSE</u> (<u>not too useful</u>, can't prove anything about Q), or
 - If P is TRUE, then Q is TRUE (modus ponens)

Proving:

Flashback: Mathematical Statements: IF-THEN

THEOREM

The class of regular languages is closed under the union operation.

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

tQ), or

Proving:

Would have to prove there are <u>no</u> <u>regular languages</u> (impossible)

- To prove: $P \rightarrow Q$ is TRUE:
 - Prove *P* is FALSE (usually hard or impossible)
 - Assume P is TRUE, then prove Q is TRUE

p	q	p o q		
True	True	True		
True	False	False		
False	True	True		
False	False	True		
180				

Statements

Do we know anything about A_1 and A_2 ?

- 1. A_1 and A_2 are regular languages
- 2. A DFA $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognizes A_1
- 3. A DFA $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognizes A_2
- 4. Construct DFA $M = (Q, \Sigma, \delta, q_0, F)$ (todo)
- 5. M recognizes $A_1 \cup A_2$ How to create this? Don't know what A_1 and A_2 are!
- 6. $A_1 \cup A_2$ is a regular language

The class of regular languages is closed under the union operation.

Justifications

- 1. Assumption
- 2. Def of Regular Language
- 3. Def of Regular Language
- 4. Def of DFA
- 5. See examples
- 6. Def of Regular Language
- 7. From stmt #1 and #6

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$

Wait! If A Then B = ?= If B Then A

- 1. A_1 and A_2 are regular languages
- If a **DFA** recognizes a language *L*, then *L* is a regular language
- 2. A DFA $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognizes A_1 2. Def of Regular Language
- 3. A DFA $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognizes A_2 3. Def of Regular Language

If L is a **regular language**, then a **DFA recognizes** L???

Equivalence of Conditional Statements

- Yes or No? "If *X* then *Y*" is equivalent to:
 - "If *Y* then *X*" (converse)
 - No!

If Regular, Then DFA?

If a **DFA** recognizes a language *L*, then *L* is a regular language

- Prove: If L is a **regular language**, then a **DFA recognizes** L
- Proof (Sketch)

Case analysis:

- Look at all If-then statements of the form:
 - "If ... language L, then L is a regular language"
- (At least one is true!)
- Figure out which one(s) led to conclusion:
 - "L is a regular language"
- (There's only 1!)
- So it must be that:

If L is a **regular language**, then a **DFA recognizes** L

DEFINITION

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set called the *states*,
- **2.** Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- **4.** $q_0 \in Q$ is the *start state*, and
- **5.** $F \subseteq Q$ is the **set of accept states**.

Regular language A_1 Regular language A_2

Even if we **don't know** what these languages are, we **still know**...

$$M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$
, recognize A_1 , $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$, recognize A_2 ,

If L is a **regular language**, then a **DFA recognizes** L

Statements

- 1. A_1 and A_2 are regular languages
- 2. A DFA $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognizes A_1
- 3. A DFA $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognizes A_2
- 4. Construct DFA $M = (Q, \Sigma, \delta, q_0, F)$ (todo)
- 5. M recognizes $A_1 \cup A_2$ How to create this? Don't know what A_1 and A_2 are!
- 6. $A_1 \cup A_2$ is a regular language
- 7. The class of regular languages is closed under the union operation. In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

Justifications

- 1. Assumption
- 2. Def of Regular Language
- 3. Def of Regular Language
- 4. Def of DFA
- 5. See examples
- 6. Def of Regular Language
- 7. From stmt #1 and #6

Proof (continuation)

- Given: $M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$, recognize A_1 , $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$, recognize A_2 ,
- Want: M that can simultaneously "be in" both an M_1 and M_2 state
- Construct: $M=(Q,\Sigma,\delta,q_0,F)$, using M_1 and M_2 , that recognizes $A_1 \cup A_2$
- states of M: $Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2$ This set is the *Cartesian product* of sets Q_1 and Q_2

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set called the *states*,
- 2. Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*, ¹
- **4.** $q_0 \in Q$ is the *start state*, and
- **5.** $F \subseteq Q$ is the **set of accept states**.

A state of *M* is a <u>pair</u>:

- the first part is a state of M_1 and
- the second part is a state of M_2

So the states of M is all possible combinations of the states of M_1 and M_2

Proof (continuation)

- Given: $M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$, recognize A_1 , $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$, recognize A_2 ,
- Construct: $M=(Q,\Sigma,\delta,q_0,F)$, using M_1 and M_2 , that recognizes $A_1 \cup A_2$
- $Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2$ This set is the **Cartesian product** of sets Q_1 and Q_2 • states of *M*:

A finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where $a = (\delta_1(r_1, a), \delta_2(r_2, a))$ A step in M is both:

- 1. Q is a finite set called the *states*,
- 2. Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- **4.** $q_0 \in Q$ is the *start state*, and
- **5.** $F \subseteq Q$ is the **set of accept states**.

- a step in M_1 , and
- a step in M_2

Proof (continuation)

- Given: $M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$, recognize A_1 , $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$, recognize A_2 ,
- Construct: $M=(Q,\Sigma,\delta,q_0,F)$, using M_1 and M_2 , that recognizes $A_1 \cup A_2$
- states of M: $Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2$ This set is the *Cartesian product* of sets Q_1 and Q_2
- *M* transition fn: $\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$
- M start state: (q_1, q_2) Start state of M is both start states of M_1 and M_2

Proof (continuation)

- Given: $M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$, recognize A_1 , $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$, recognize A_2 ,
- Construct: $M=(Q,\Sigma,\delta,q_0,F)$, using M_1 and M_2 , that recognizes $A_1 \cup A_2$
- states of M: $Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2$ This set is the *Cartesian product* of sets Q_1 and Q_2
- *M* transition fn: $\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$
- M start state: (q_1, q_2)

Accept if either M_1 or M_2 accept

Remember:
Accept states must
be subset of *Q*

• *M* accept states: $F = \{(r_1, r_2) | r_1 \in F_1 \text{ or } r_2 \in F_2\}$

Statements

- 1. A_1 and A_2 are regular languages
- 2. A DFA $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognizes A_1
- 3. A DFA $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognizes A_2
- 4. Construct DFA $M = (Q, \Sigma, \delta, q_0, F)$
- 5. M recognizes $A_1 \cup A_2$ How to create this? Don't know what A_1 and A_2 are!
- 6. $A_1 \cup A_2$ is a regular language
- 7. The class of regular languages is closed under the union operation. In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

Justifications

- 1. Assumption
- 2. Def of Regular Language
- 3. Def of Regular Language
- 4. Def of DFA
- 5. See examples
- 6. Def of Regular Language
- 7. From stmt #1 and #6

"Prove" that DFA recognizes a language

Let $s_1 \in A_1$ and $s_2 \in A_2$ Let $s_3 \notin A_1$ and $s_4 \notin A_2$

Be careful when choosing examples!

String	In lang $A_1 \cup A_2$?	Accepted by M?
	Yes	
	???	
	???	

Don't know A_1 and A_2 exactly ...

... but we know ...

... they are **sets of strings**!

$$M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$
, recognize A_1 , $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$, recognize A_2 ,

constructed $M=(Q,\Sigma,\delta,q_0,F)$ recognizes $A_1 \cup A_2$?

In this class, a table like this is sufficient to "prove" that a DFA recognizes a language

"Prove" that DFA recognizes a language

Let $s_1 \in A_1$ and $s_2 \in A_2$

Let s₃ ∉ A₁ and s₄ ∉ A₂

Let $s_5 \notin A_1$ and $\notin A_2$

String	In lang $A_1 \cup A_2$?	Accepted by M?
s_1	Yes	
s_2	Yes	
S 3	???	
S 4	222	
<i>S</i> ₅		

$$M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$$
, recognize A_1 , $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$, recognize A_2 , constructed $M=(Q,\Sigma,\delta,q_0,F)$ recognizes $A_1\cup A_2$?

Proof (continuation)

- Given: $M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$, recognize A_1 , $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$, recognize A_2 ,
- Construct: $M=(Q,\Sigma,\delta,q_0,F)$, using M_1 and M_2 , that recognizes $A_1 \cup A_2$
- states of M: $Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2$ This set is the *Cartesian product* of sets Q_1 and Q_2
- *M* transition fn: $\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$
- M start state: (q_1, q_2)

Accept if either M_1 or M_2 accept

• *M* accept states: $F = \{(r_1, r_2) | r_1 \in F_1 \text{ or } r_2 \in F_2\}$

"Prove" that DFA recognizes a language

Let $s_1 \in A_1$ and $s_2 \in A_2$

Let $s_5 \notin A_1$ and $\notin A_2$

String	In lang $A_1 \cup A_2$?	Accepted by M?
s_1	Yes	
s_2	Yes	Accept
S ₃	???	???
s_4	???	???
s_5	No	Reject

$$M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$$
, recognize A_1 , $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$, recognize A_2 , constructed $M=(Q,\Sigma,\delta,q_0,F)$ Accept if either M_1 or M_2 accept

Statements

- 1. A_1 and A_2 are regular languages
- 2. A DFA $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognizes A_1
- 3. A DFA $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognizes A_2
- 4. Construct DFA $M = (Q, \Sigma, \delta, q_0, F)$
- 5. M recognizes $A_1 \cup A_2$
- 6. $A_1 \cup A_2$ is a regular language
- 7. The class of regular languages is closed under the union operation. In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

Justifications

- 1. Assumption
- 2. Def of Regular Language
- 3. Def of Regular Language
- 4. Def of DFA
- 5. See examples
- 6. Def of Regular Language
- 7. From stmt #1 and #6

Another operation: Concatenation

Example: Recognizing street addresses

Concatenation of Languages

```
Let the alphabet \Sigma be the standard 26 letters \{a,b,\ldots,z\}.

If A=\{ fort, south\} B=\{ point, boston\}
A\circ B=\{ fortpoint, fortboston, southpoint, southboston\}
```

Is Concatenation Closed?

THEOREM

The class of regular languages is closed under the concatenation operation.

In other words, if A_1 and A_2 are regular languages then so is $A_1 \circ A_2$.

- Construct a <u>new</u> machine M recognizing $A_1 \circ A_2$? (like union)
 - Using **DFA** M_1 (which recognizes A_1),
 - and **DFA** M_2 (which recognizes A_2)

 M_1

PROBLEM:

Can only read input once, can't backtrack

Let M_1 recognize A_1 , and M_2 recognize A_2 .

<u>Want</u>: Construction of *M* to recognize $A_1 \circ A_2$

Need to switch machines at some point, but when?

 M_2

Overlapping Concatenation Example

- Let M_1 recognize language $A = \{ jen, jens \}$
- and M_2 recognize language $B = \{ smith \}$
- Want: Construct M to recognize $A \circ B = \{ jensmith, jenssmith \}$
- If *M* sees **jen** ...
- *M* must decide to either:

Overlapping Concatenation Example

- Let M_1 recognize language $A = \{ jen, jens \}$
- and M_2 recognize language $B = \{ smith \} \}$
- Want: Construct M to recognize $A \circ B \neq \{$ jensmith, jenssmith $\}$
- If *M* sees **jen** ...
- M must decide to either:
 - stay in M_1 (correct, if full input is **jens smith**)

Overlapping Concatenation Example

- Let M_1 recognize language $A = \{$ jen, jens $\}$
- and M_2 recognize language $B = \{$ smith $\}$
- Want: Construct M to recognize $A \circ B = \{ jensmith, jenssmith \}$
- If *M* sees **jen** ...

A **DFA** can't do this!

- *M* must decide to either:
 - stay in M_1 (correct, if full input is jenssmith)
 - or switch to M_2 (correct, if full input is **jensmith**)
- But to recognize $A \circ B$, it needs to handle both cases!!
 - Without backtracking

Is Concatenation Closed?

FALSE?

THEOREM

The class of regular languages is closed under the concatenation operation.

In other words, if A_1 and A_2 are regular languages then so is $A_1 \circ A_2$.

- Cannot combine A₁ and A₂'s machine because:
 - Need to switch from A_1 to A_2 at some point ...
 - ... but we don't know when! (we can only read input once)
- This requires a <u>new kind of machine!</u>
- But does this mean concatenation is not closed for regular langs?