CS 420 Nondeterminism Wednesday, February 14, 2024 UMass Boston Computer Science ### Announcements - HW 2 out - Due Mon 2/19 12pm EST (noon) - Due Wed 2/21 12pm EST (noon) In this course, we are interested in closed operations for a set of languages (here the set of regular languages) (In general, a set is closed under an operation if applying the operation to members of the set produces a result in the same set) The class of regular languages is closed under the union operation. In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$. Or this (same) statement THEOREM statement (In general, a set is closed under an operation if applying the operation to members of the set produces a result in the same set) Want to prove this statement The class of regular languages is closed under the union operation. In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$. Or this (same) A member of the set of regular languages is a regular language, which itself is a set (of strings) so the **operations** we're interested in are **set operations** #### **THEOREM** Want to prove this statement The class of regular languages is closed under the union operation. In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$. Or this (same) statement ## Flashback: Mathematical Statements: IF-THEN ### **Using:** - If we know: $P \rightarrow Q$ is TRUE, what do we know about P and Q individually? - Either P is FALSE (not too useful, can't prove anything about Q), or - If P is TRUE, then Q is TRUE (modus ponens) ### **Proving:** - To prove: $P \rightarrow Q$ is TRUE: - Prove P is FALSE (usually hard or impossible) - Assume P is TRUE, then prove Q is TRUE | O / | | | | |------------------|-------|--------|-----| | \boldsymbol{p} | q | p o q | | | True | True | True | | | True | False | False | | | False | True | True | | | False | False | True | | | | | | 203 | #### **Statements** Do we know anything about A_1 and A_2 ? - 1. A_1 and A_2 are regular languages - 2. A DFA $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognizes A_1 - 3. A DFA $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognizes A_2 - 4. Construct DFA $M = (Q, \Sigma, \delta, q_0, F)$ (todo) - 5. M recognizes $A_1 \cup A_2$ How to create this? Don't know what A_1 and A_2 are! - 6. $A_1 \cup A_2$ is a regular language - 7. The class of regular languages is closed under the union operation. ### **Justifications** - 1. Assumption - 2. Def of Regular Language - 3. Def of Regular Language - 4. Def of DFA - 5. See examples - 6. Def of Regular Language - 7. From stmt #1 and #6 In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$. ## Wait! If A Then B = ?= If B Then A - -1. A_1 and A_2 are regular languages - 1. Assumption - \searrow 2. A DFA $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognizes A_1 2. Def of Regular Language - 3. A DFA $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognizes A_2 3. Def of Regular Language If a **DFA recognizes** a **language** *L*, then L is a **regular language** If L is a regular language, then a **DFA** recognizes L??? # Equivalence of Conditional Statements - Yes or No? "If *X* then *Y*" is equivalent to: - "If *Y* then *X*" (converse) - No! # If Regular, Then DFA? If a **DFA** recognizes a language *L*, then *L* is a regular language - Prove: If L is a **regular language**, then a **DFA recognizes** L - Proof (Sketch) ### Case analysis: - Look at all If-then statements of the form: - "If ... language L, then L is a regular language" - (At least one is true, because we know "L is a regular language"!) - Figure out which one(s) led to conclusion: - "L is a regular language" - (There's only 1!) - So it must be that: "Corollary" If L is a **regular language**, then a **DFA recognizes** L #### **Statements** - 1. A_1 and A_2 are regular languages - 2. A DFA $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognizes A_1 - 3. A DFA $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognizes A_2 - 4. Construct DFA $M = (Q, \Sigma, \delta, q_0, F)$ (todo) - 5. M recognizes $A_1 \cup A_2$ How to create this? Don't know what A_1 and A_2 are! - 6. $A_1 \cup A_2$ is a regular language - The class of regular languages is closed under the union operation. In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$. ### **Justifications** 1. Assumption "Corollary" - 2. Def of Regular Language - 3. Def of Regular Language - 4. Def of DFA - 5. See examples - 6. Def of Regular Language - 7. From stmt #1 and #6 #### **DEFINITION** A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where - 1. Q is a finite set called the *states*, - **2.** Σ is a finite set called the *alphabet*, - **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*, - **4.** $q_0 \in Q$ is the *start state*, and - **5.** $F \subseteq Q$ is the **set of accept states**. ### Regular language A_1 Regular language A_2 Even if we **don't know** what these languages are, we **still know**... $$M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$, recognize A_1 , $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$, recognize A_2 , If L is a **regular language**, then a **DFA recognizes** L ### Proof (continuation) - Given: $M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$, recognize A_1 , $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$, recognize A_2 , - Want: M that can simultaneously "be in" both an M_1 and M_2 state - Construct: $M=(Q,\Sigma,\delta,q_0,F)$, using M_1 and M_2 , that recognizes $A_1 \cup A_2$ - states of M: $Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2$ This set is the *Cartesian product* of sets Q_1 and Q_2 #### A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where - 1. Q is a finite set called the *states*, - 2. Σ is a finite set called the *alphabet*, - **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*, ¹ - **4.** $q_0 \in Q$ is the *start state*, and - **5.** $F \subseteq Q$ is the **set of accept states**. ### A state of *M* is a <u>pair</u>: - $\underline{\text{first}}$ part: state of M_1 - second part: state of M₂ states of M: all possible pair combinations of states of M_1 and M_2 ### Proof (continuation) - Given: $M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$, recognize A_1 , $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$, recognize A_2 , - Construct: $M=(Q,\Sigma,\delta,q_0,F)$, using M_1 and M_2 , that recognizes $A_1 \cup A_2$ - $Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2$ This set is the **Cartesian product** of sets Q_1 and Q_2 • states of *M*: A finite automaton is a 5-tuple $$(Q, \Sigma, \delta, q_0, F)$$, where $a = (\delta_1(r_1, a), \delta_2(r_2, a))$ A step in M is both: - 1. Q is a finite set called the *states*, - 2. Σ is a finite set called the *alphabet*, - **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*, - **4.** $q_0 \in Q$ is the *start state*, and - **5.** $F \subseteq Q$ is the **set of accept states**. - a step in M_1 , and - a step in M_2 ### Proof (continuation) - Given: $M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$, recognize A_1 , $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$, recognize A_2 , - Construct: $M=(Q,\Sigma,\delta,q_0,F)$, using M_1 and M_2 , that recognizes $A_1 \cup A_2$ - states of M: $Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2$ This set is the *Cartesian product* of sets Q_1 and Q_2 - *M* transition fn: $\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$ - M start state: (q_1, q_2) Start state of M is both start states of M_1 and M_2 ### Proof (continuation) - Given: $M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$, recognize A_1 , $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$, recognize A_2 , - Construct: $M=(Q,\Sigma,\delta,q_0,F)$, using M_1 and M_2 , that recognizes $A_1 \cup A_2$ - states of M: $Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2$ This set is the *Cartesian product* of sets Q_1 and Q_2 - *M* transition fn: $\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$ - M start state: (q_1, q_2) Accept if either M_1 or M_2 accept ### Remember: Accept states must be subset of *Q* • *M* accept states: $F = \{(r_1, r_2) | r_1 \in F_1 \text{ or } r_2 \in F_2\}$ #### **Statements** - 1. A_1 and A_2 are regular languages - 2. A DFA $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognizes A_1 - 3. A DFA $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognizes A_2 - 4. Construct DFA $M = (Q, \Sigma, \delta, q_0, F)$ - 5. M recognizes $A_1 \cup A_2$ How to create this? Don't know what A_1 and A_2 are! - 6. $A_1 \cup A_2$ is a regular language - 7. The class of regular languages is closed under the union operation. In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$. ### **Justifications** - 1. Assumption - 2. Def of Regular Language - 3. Def of Regular Language - 4. Def of DFA - 5. See examples - 6. Def of Regular Language - 7. From stmt #1 and #6 # "Prove" that DFA recognizes a language Let $s_1 \in A_1$ and $s_2 \in A_2$ Let $s_3 \notin A_1$ and $s_4 \notin A_2$ Be careful when choosing examples! In this class, a table like this is sufficient to "prove" that a DFA recognizes a language | String | In lang $A_1 \cup A_2$? | Accepted by M? | |--------|--------------------------|----------------| | | | | | | Yes | | | | ??? | | | | ??? | | Don't know A_1 and A_2 exactly but we know they are **sets of strings**! $$M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$, recognize A_1 , $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$, recognize A_2 , constructed $$M=(Q,\Sigma,\delta,q_0,F)$$ recognizes $A_1 \cup A_2$? # "Prove" that DFA recognizes a language Let $s_1 \in A_1$ and $s_2 \in A_2$ Let $s_3 \notin A_1$ and $s_4 \notin A_2$ Let $s_5 \notin A_1$ and $\notin A_2$ | String | In lang $A_1 \cup A_2$? | Accepted by M? | |----------------|--------------------------|----------------| | s_1 | Yes | | | s_2 | Yes | | | S 3 | ??? | | | s_4 | ??? | | | s_5 | | | $$M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$$, recognize A_1 , $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$, recognize A_2 , constructed $M=(Q,\Sigma,\delta,q_0,F)$ recognizes $A_1\cup A_2$? ### Proof (continuation) - Given: $M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$, recognize A_1 , $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$, recognize A_2 , - Construct: $M=(Q,\Sigma,\delta,q_0,F)$, using M_1 and M_2 , that recognizes $A_1 \cup A_2$ - states of M: $Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2$ This set is the *Cartesian product* of sets Q_1 and Q_2 - *M* transition fn: $\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$ - M start state: (q_1, q_2) Accept if either M_1 or M_2 accept • *M* accept states: $F = \{(r_1, r_2) | r_1 \in F_1 \text{ or } r_2 \in F_2\}$ # "Prove" that DFA recognizes a language Let $s_1 \in A_1$ and $s_2 \in A_2$ Let $s_5 \notin A_1$ and $\notin A_2$ | String | In lang $A_1 \cup A_2$? | Accepted by M? | |-----------------|--------------------------|----------------| | s_1 | Yes | | | s_2 | Yes | Accept | | S 3 | ??? | ??? | | S 4. | ??? | ??? | | s_5 | No | Reject | $$M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$$, recognize A_1 , $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$, recognize A_2 , constructed $M=(Q,\Sigma,\delta,q_0,F)$ Accept if either M_1 or M_2 accept #### **Statements** - 1. A_1 and A_2 are regular languages - 2. A DFA $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognizes A_1 - 3. A DFA $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognizes A_2 - 4. Construct DFA $M = (Q, \Sigma, \delta, q_0, F)$ - 5. M recognizes $A_1 \cup A_2$ - 6. $A_1 \cup A_2$ is a regular language - 7. The class of regular languages is closed under the union operation. In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$. ### **Justifications** - 1. Assumption - 2. Def of Regular Language - 3. Def of Regular Language - 4. Def of DFA - 5. See examples - 6. Def of Regular Language - 7. From stmt #1 and #6 ## Another operation: Concatenation Example: Recognizing street addresses ## Concatenation of Languages ``` Let the alphabet \Sigma be the standard 26 letters \{a,b,\ldots,z\}. If A=\{ fort, south\} B=\{ point, boston\} A\circ B=\{ fortpoint, fortboston, southpoint, southboston\} ``` ### Is Concatenation Closed? #### **THEOREM** The class of regular languages is closed under the concatenation operation. In other words, if A_1 and A_2 are regular languages then so is $A_1 \circ A_2$. - Construct a <u>new</u> machine M recognizing $A_1 \circ A_2$? (like union) - Using **DFA** M_1 (which recognizes A_1), - and **DFA** M_2 (which recognizes A_2) M_1 **PROBLEM**: Can only read input once, can't backtrack Let M_1 recognize A_1 , and M_2 recognize A_2 . <u>Want</u>: Construction of *M* to recognize $A_1 \circ A_2$ Need to switch machines at some point, but when? M_2 # Overlapping Concatenation Example - Let M_1 recognize language $A = \{ jen, jens \}$ - and M_2 recognize language $B = \{ smith \}$ - Want: Construct M to recognize $A \circ B = \{ jensmith, jenssmith \}$ - If *M* sees **jen** ... - *M* must decide to either: # Overlapping Concatenation Example - Let M_1 recognize language $A = \{ jen, jens \}$ - and M_2 recognize language $B = \{ smith \}$ - Want: Construct M to recognize $A \circ B = \{ jensmith, jenssmith \}$ - If *M* sees **jen** ... - *M* must decide to either: - stay in M_1 (correct, if full input is **jenssmith**) # Overlapping Concatenation Example - Let M_1 recognize language $A = \{ jen, jens \}$ - and M_2 recognize language $B = \{ smith \}$ - Want: Construct *M* to recognize $A \circ B = \{ jensmith, jenssmith \}$ - If *M* sees **jen** ... - *M* must decide to either: - stay in M_1 (correct, if full input is **jenssmit**h) - or switch to M_2 (correct, if full input is **jensmith**) - But to recognize $A \circ B$, it needs to handle both cases!! - Without backtracking A **DFA** can't do this! ### Is Concatenation Closed? ### **FALSE?** #### THEOREM The class of regular languages is closed under the concatenation operation. In other words, if A_1 and A_2 are regular languages then so is $A_1 \circ A_2$. - Cannot combine A₁ and A₂'s machine because: - Need to switch from A_1 to A_2 at some point ... - ... but we don't know when! (we can only read input once) - This requires a <u>new kind of machine!</u> - But does this mean concatenation is not closed for regular langs? ## Nondeterminism ## Deterministic vs Nondeterministic Deterministic computation ### Deterministic vs Nondeterministic ### DFAs: The Formal Definition #### DEFINITION deterministic A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where - 1. Q is a finite set called the *states*, - 2. Σ is a finite set called the *alphabet*, - **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*, - **4.** $q_0 \in Q$ is the **start state**, and - **5.** $F \subseteq Q$ is the **set of accept states**. **Deterministic Finite Automata (DFA)** ## Nondeterministic Finite Automata (NFA) #### DEFINITION #### Compare with DFA: ### A nondeterministic finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where - **1.** Q is a finite set of states, - 2. Σ is a finite alphabet, A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where - **1.** *Q* is a finite set called the *states*, - 2. Σ is a finite set called the *alphabet*, - **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*, - **4.** $q_0 \in Q$ is the **start state**, and - **5.** $F \subseteq Q$ is the **set of accept states**. 3. $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function, Difference - **4.** $q_0 \in Q$ is the start state, and - **5.** $F \subseteq Q$ is the set of accept states. Power set, i.e. a transition results in <u>set</u> of states ### Power Sets • A power set is the set of all subsets of a set • Example: $S = \{a, b, c\}$ - Power set of *S* = - { { }, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c} } - Note: includes the empty set! ## Nondeterministic Finite Automata (NFA) #### **DEFINITION** ### A nondeterministic finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where - **1.** Q is a finite set of states, - 2. Σ is a finite alphabet, - 3. $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function, - **4.** $q_0 \in Q$ is the start state, and Francisco de la company accept states. Transition label can be "empty", i.e., machine can transition without reading input #### **CAREFUL:** - ε symbol is reused here, as a transition label. - It's not the empty string! - And it's (still) not a character in the alphabet Σ ! $$\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$$ ## NFA Example • Come up with a formal description of the following NFA: #### **DEFINITION** #### A nondeterministic finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where - **1.** Q is a finite set of states, - **2.** Σ is a finite alphabet, - **3.** $\delta \colon Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function, - **4.** $q_0 \in Q$ is the start state, and - **5.** $F \subseteq Q$ is the set of accept states. ### The formal description of N_1 is $(Q, \Sigma, \delta, q_1, F)$, where 1. $$Q = \{q_1, q_2, q_3, q_4\},\$$ - 2. $\Sigma = \{0,1\},$ - 3. δ is given as Result of transition is a set **4.** q_1 is the start state, and 5. $$F = \{q_4\}.$$ **Empty transition** (no input read) $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ ### In-class Exercise Come up with a formal description for the following NFA • $\Sigma = \{ a, b \}$ #### **DEFINITION** #### A nondeterministic finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where - 1. Q is a finite set of states, - **2.** Σ is a finite alphabet, - **3.** $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function, - **4.** $q_0 \in Q$ is the start state, and - **5.** $F \subseteq Q$ is the set of accept states. ### In-class Exercise Solution ``` Let N = (Q, \Sigma, \delta, q_0, F) \delta(q_1, a) = \{\} • Q = \{ q_1, q_2, q_3 \} \delta(q_1, b) = \{q_2\} • \Sigma = \{ a, b \} \delta(q_1, \varepsilon) = \{q_3\} \delta(q_2, a) = \{q_2, q_3\} \rightarrow \delta(q_2, b) = \{q_3\} • δ ... — \delta(q_2, \varepsilon) = \{\} \delta(q_3, a) = \{q_1\} • q_0 = q_1 \delta(q_3, b) = \{\} • F = \{ q_1 \} \delta(q_3, \varepsilon) = \{\} ``` # NFA Computation (JFLAP demo): 010110 ## NFA Computation Sequence Each step can branch into multiple states at the same time! So this is an accepting computation ## Submit in-class work 2/14 On gradescope