CS 420 Nondeterminism

Wednesday, February 14, 2024 UMass Boston Computer Science

Announcements

- HW 2 out
 - Due Mon 2/19 12pm EST (noon)
 - Due Wed 2/21 12pm EST (noon)

In this course, we are interested in closed operations for a set of languages (here the set of regular languages)

(In general, a set is closed under an operation if applying the operation to members of the set produces a result in the same set)

The class of regular languages is closed under the union operation.

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

Or this (same) statement

THEOREM

statement

(In general, a set is closed under an operation if applying the operation to members of the set produces a result in the same set)

Want to prove this statement

The class of regular languages is closed under the union operation.

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

Or this (same)

A member of the set of regular languages is ...

... a regular language, which itself is a set (of strings) ...

... so the **operations** we're interested in are **set operations**

THEOREM

Want to prove this statement

The class of regular languages is closed under the union operation.

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

Or this (same) statement

Flashback: Mathematical Statements: IF-THEN

Using:

- If we know: $P \rightarrow Q$ is TRUE, what do we know about P and Q individually?
 - Either P is FALSE (not too useful, can't prove anything about Q), or
 - If P is TRUE, then Q is TRUE (modus ponens)

Proving:

- To prove: $P \rightarrow Q$ is TRUE:
 - Prove P is FALSE (usually hard or impossible)
 - Assume P is TRUE, then prove Q is TRUE

O /			
\boldsymbol{p}	q	p o q	
True	True	True	
True	False	False	
False	True	True	
False	False	True	
			203

Statements

Do we know anything about A_1 and A_2 ?

- 1. A_1 and A_2 are regular languages
- 2. A DFA $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognizes A_1
- 3. A DFA $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognizes A_2
- 4. Construct DFA $M = (Q, \Sigma, \delta, q_0, F)$ (todo)
- 5. M recognizes $A_1 \cup A_2$ How to create this? Don't know what A_1 and A_2 are!
- 6. $A_1 \cup A_2$ is a regular language
- 7. The class of regular languages is closed under the union operation.

Justifications

- 1. Assumption
- 2. Def of Regular Language
- 3. Def of Regular Language
- 4. Def of DFA
- 5. See examples
- 6. Def of Regular Language
- 7. From stmt #1 and #6

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

Wait! If A Then B = ?= If B Then A

- -1. A_1 and A_2 are regular languages
- 1. Assumption
- \searrow 2. A DFA $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognizes A_1 2. Def of Regular Language

 - 3. A DFA $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognizes A_2 3. Def of Regular Language

If a **DFA recognizes** a **language** *L*, then L is a **regular language**

If L is a regular language, then a **DFA** recognizes L???

Equivalence of Conditional Statements

- Yes or No? "If *X* then *Y*" is equivalent to:
 - "If *Y* then *X*" (converse)
 - No!

If Regular, Then DFA?

If a **DFA** recognizes a language *L*, then *L* is a regular language

- Prove: If L is a **regular language**, then a **DFA recognizes** L
- Proof (Sketch)

Case analysis:

- Look at all If-then statements of the form:
 - "If ... language L, then L is a regular language"
- (At least one is true, because we know "L is a regular language"!)
- Figure out which one(s) led to conclusion:
 - "L is a regular language"
- (There's only 1!)
- So it must be that:

"Corollary"

If L is a **regular language**, then a **DFA recognizes** L

Statements

- 1. A_1 and A_2 are regular languages
- 2. A DFA $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognizes A_1
- 3. A DFA $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognizes A_2
- 4. Construct DFA $M = (Q, \Sigma, \delta, q_0, F)$ (todo)
- 5. M recognizes $A_1 \cup A_2$ How to create this? Don't know what A_1 and A_2 are!

- 6. $A_1 \cup A_2$ is a regular language
- The class of regular languages is closed under the union operation. In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

Justifications

1. Assumption

"Corollary"

- 2. Def of Regular Language
- 3. Def of Regular Language
- 4. Def of DFA
- 5. See examples
- 6. Def of Regular Language
- 7. From stmt #1 and #6

DEFINITION

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set called the *states*,
- **2.** Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- **4.** $q_0 \in Q$ is the *start state*, and
- **5.** $F \subseteq Q$ is the **set of accept states**.

Regular language A_1 Regular language A_2

Even if we **don't know** what these languages are, we **still know**...

$$M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$
, recognize A_1 , $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$, recognize A_2 ,

If L is a **regular language**, then a **DFA recognizes** L

Proof (continuation)

- Given: $M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$, recognize A_1 , $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$, recognize A_2 ,
- Want: M that can simultaneously "be in" both an M_1 and M_2 state
- Construct: $M=(Q,\Sigma,\delta,q_0,F)$, using M_1 and M_2 , that recognizes $A_1 \cup A_2$
- states of M: $Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2$ This set is the *Cartesian product* of sets Q_1 and Q_2

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set called the *states*,
- 2. Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*, ¹
- **4.** $q_0 \in Q$ is the *start state*, and
- **5.** $F \subseteq Q$ is the **set of accept states**.

A state of *M* is a <u>pair</u>:

- $\underline{\text{first}}$ part: state of M_1
- second part: state of M₂

states of M: all possible pair combinations of states of M_1 and M_2

Proof (continuation)

- Given: $M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$, recognize A_1 , $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$, recognize A_2 ,
- Construct: $M=(Q,\Sigma,\delta,q_0,F)$, using M_1 and M_2 , that recognizes $A_1 \cup A_2$
- $Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2$ This set is the **Cartesian product** of sets Q_1 and Q_2 • states of *M*:

A finite automaton is a 5-tuple
$$(Q, \Sigma, \delta, q_0, F)$$
, where $a = (\delta_1(r_1, a), \delta_2(r_2, a))$ A step in M is both:

- 1. Q is a finite set called the *states*,
- 2. Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- **4.** $q_0 \in Q$ is the *start state*, and
- **5.** $F \subseteq Q$ is the **set of accept states**.

- a step in M_1 , and
- a step in M_2

Proof (continuation)

- Given: $M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$, recognize A_1 , $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$, recognize A_2 ,
- Construct: $M=(Q,\Sigma,\delta,q_0,F)$, using M_1 and M_2 , that recognizes $A_1 \cup A_2$
- states of M: $Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2$ This set is the *Cartesian product* of sets Q_1 and Q_2
- *M* transition fn: $\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$
- M start state: (q_1, q_2) Start state of M is both start states of M_1 and M_2

Proof (continuation)

- Given: $M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$, recognize A_1 , $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$, recognize A_2 ,
- Construct: $M=(Q,\Sigma,\delta,q_0,F)$, using M_1 and M_2 , that recognizes $A_1 \cup A_2$
- states of M: $Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2$ This set is the *Cartesian product* of sets Q_1 and Q_2
- *M* transition fn: $\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$
- M start state: (q_1, q_2)

Accept if either M_1 or M_2 accept

Remember:

Accept states must be subset of *Q*

• *M* accept states: $F = \{(r_1, r_2) | r_1 \in F_1 \text{ or } r_2 \in F_2\}$

Statements

- 1. A_1 and A_2 are regular languages
- 2. A DFA $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognizes A_1
- 3. A DFA $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognizes A_2
- 4. Construct DFA $M = (Q, \Sigma, \delta, q_0, F)$
- 5. M recognizes $A_1 \cup A_2$ How to create this? Don't know what A_1 and A_2 are!
- 6. $A_1 \cup A_2$ is a regular language
- 7. The class of regular languages is closed under the union operation. In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

Justifications

- 1. Assumption
- 2. Def of Regular Language
- 3. Def of Regular Language
- 4. Def of DFA
- 5. See examples
- 6. Def of Regular Language
- 7. From stmt #1 and #6

"Prove" that DFA recognizes a language

Let $s_1 \in A_1$ and $s_2 \in A_2$ Let $s_3 \notin A_1$ and $s_4 \notin A_2$

Be careful when choosing examples!

In this class, a table like this is sufficient to "prove" that a DFA recognizes a language

String	In lang $A_1 \cup A_2$?	Accepted by M?
	Yes	
	???	
	???	

Don't know A_1 and A_2 exactly ...

... but we know ...

... they are **sets of strings**!

$$M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$
, recognize A_1 , $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$, recognize A_2 ,

constructed
$$M=(Q,\Sigma,\delta,q_0,F)$$
 recognizes $A_1 \cup A_2$?

"Prove" that DFA recognizes a language

Let $s_1 \in A_1$ and $s_2 \in A_2$

Let $s_3 \notin A_1$ and $s_4 \notin A_2$

Let $s_5 \notin A_1$ and $\notin A_2$

String	In lang $A_1 \cup A_2$?	Accepted by M?
s_1	Yes	
s_2	Yes	
S 3	???	
s_4	???	
s_5		

$$M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$$
, recognize A_1 , $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$, recognize A_2 , constructed $M=(Q,\Sigma,\delta,q_0,F)$ recognizes $A_1\cup A_2$?

Proof (continuation)

- Given: $M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$, recognize A_1 , $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$, recognize A_2 ,
- Construct: $M=(Q,\Sigma,\delta,q_0,F)$, using M_1 and M_2 , that recognizes $A_1 \cup A_2$
- states of M: $Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2$ This set is the *Cartesian product* of sets Q_1 and Q_2
- *M* transition fn: $\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$
- M start state: (q_1, q_2)

Accept if either M_1 or M_2 accept

• *M* accept states: $F = \{(r_1, r_2) | r_1 \in F_1 \text{ or } r_2 \in F_2\}$

"Prove" that DFA recognizes a language

Let $s_1 \in A_1$ and $s_2 \in A_2$

Let $s_5 \notin A_1$ and $\notin A_2$

String	In lang $A_1 \cup A_2$?	Accepted by M?
s_1	Yes	
s_2	Yes	Accept
S 3	???	???
S 4.	???	???
s_5	No	Reject

$$M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$$
, recognize A_1 , $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$, recognize A_2 , constructed $M=(Q,\Sigma,\delta,q_0,F)$ Accept if either M_1 or M_2 accept

Statements

- 1. A_1 and A_2 are regular languages
- 2. A DFA $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognizes A_1
- 3. A DFA $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognizes A_2
- 4. Construct DFA $M = (Q, \Sigma, \delta, q_0, F)$
- 5. M recognizes $A_1 \cup A_2$
- 6. $A_1 \cup A_2$ is a regular language
- 7. The class of regular languages is closed under the union operation. In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

Justifications

- 1. Assumption
- 2. Def of Regular Language
- 3. Def of Regular Language
- 4. Def of DFA
- 5. See examples
- 6. Def of Regular Language
- 7. From stmt #1 and #6

Another operation: Concatenation

Example: Recognizing street addresses

Concatenation of Languages

```
Let the alphabet \Sigma be the standard 26 letters \{a,b,\ldots,z\}.

If A=\{ fort, south\} B=\{ point, boston\}
A\circ B=\{ fortpoint, fortboston, southpoint, southboston\}
```

Is Concatenation Closed?

THEOREM

The class of regular languages is closed under the concatenation operation.

In other words, if A_1 and A_2 are regular languages then so is $A_1 \circ A_2$.

- Construct a <u>new</u> machine M recognizing $A_1 \circ A_2$? (like union)
 - Using **DFA** M_1 (which recognizes A_1),
 - and **DFA** M_2 (which recognizes A_2)

 M_1

PROBLEM:

Can only read input once, can't backtrack

Let M_1 recognize A_1 , and M_2 recognize A_2 .

<u>Want</u>: Construction of *M* to recognize $A_1 \circ A_2$

Need to switch machines at some point, but when?

 M_2

Overlapping Concatenation Example

- Let M_1 recognize language $A = \{ jen, jens \}$
- and M_2 recognize language $B = \{ smith \}$
- Want: Construct M to recognize $A \circ B = \{ jensmith, jenssmith \}$
- If *M* sees **jen** ...
- *M* must decide to either:

Overlapping Concatenation Example

- Let M_1 recognize language $A = \{ jen, jens \}$
- and M_2 recognize language $B = \{ smith \}$
- Want: Construct M to recognize $A \circ B = \{ jensmith, jenssmith \}$
- If *M* sees **jen** ...
- *M* must decide to either:
 - stay in M_1 (correct, if full input is **jenssmith**)

Overlapping Concatenation Example

- Let M_1 recognize language $A = \{ jen, jens \}$
- and M_2 recognize language $B = \{ smith \}$
- Want: Construct *M* to recognize $A \circ B = \{ jensmith, jenssmith \}$
- If *M* sees **jen** ...
- *M* must decide to either:
 - stay in M_1 (correct, if full input is **jenssmit**h)
 - or switch to M_2 (correct, if full input is **jensmith**)
- But to recognize $A \circ B$, it needs to handle both cases!!
 - Without backtracking

A **DFA** can't do this!

Is Concatenation Closed?

FALSE?

THEOREM

The class of regular languages is closed under the concatenation operation.

In other words, if A_1 and A_2 are regular languages then so is $A_1 \circ A_2$.

- Cannot combine A₁ and A₂'s machine because:
 - Need to switch from A_1 to A_2 at some point ...
 - ... but we don't know when! (we can only read input once)
- This requires a <u>new kind of machine!</u>
- But does this mean concatenation is not closed for regular langs?

Nondeterminism

Deterministic vs Nondeterministic

Deterministic computation

Deterministic vs Nondeterministic

DFAs: The Formal Definition

DEFINITION

deterministic

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set called the *states*,
- 2. Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- **4.** $q_0 \in Q$ is the **start state**, and
- **5.** $F \subseteq Q$ is the **set of accept states**.

Deterministic Finite Automata (DFA)

Nondeterministic Finite Automata (NFA)

DEFINITION

Compare with DFA:

A nondeterministic finite automaton

is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- **1.** Q is a finite set of states,
- 2. Σ is a finite alphabet,

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- **1.** *Q* is a finite set called the *states*,
- 2. Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- **4.** $q_0 \in Q$ is the **start state**, and
- **5.** $F \subseteq Q$ is the **set of accept states**.

3. $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function,

Difference

- **4.** $q_0 \in Q$ is the start state, and
- **5.** $F \subseteq Q$ is the set of accept states.

Power set, i.e. a transition results in <u>set</u> of states

Power Sets

• A power set is the set of all subsets of a set

• Example: $S = \{a, b, c\}$

- Power set of *S* =
 - { { }, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c} }
 - Note: includes the empty set!

Nondeterministic Finite Automata (NFA)

DEFINITION

A nondeterministic finite automaton

is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- **1.** Q is a finite set of states,
- 2. Σ is a finite alphabet,
- 3. $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function,
- **4.** $q_0 \in Q$ is the start state, and

Francisco de la company accept states.

Transition label can be "empty", i.e., machine can transition without reading input

CAREFUL:

- ε symbol is reused here, as a transition label.
- It's not the empty string!
- And it's (still) not a character in the alphabet Σ !

$$\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$$

NFA Example

• Come up with a formal description of the following NFA:

DEFINITION

A nondeterministic finite automaton

is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- **1.** Q is a finite set of states,
- **2.** Σ is a finite alphabet,
- **3.** $\delta \colon Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function,
- **4.** $q_0 \in Q$ is the start state, and
- **5.** $F \subseteq Q$ is the set of accept states.

The formal description of N_1 is $(Q, \Sigma, \delta, q_1, F)$, where

1.
$$Q = \{q_1, q_2, q_3, q_4\},\$$

- 2. $\Sigma = \{0,1\},$
- 3. δ is given as

Result of transition is a set

4. q_1 is the start state, and

5.
$$F = \{q_4\}.$$

Empty transition

(no input read)

 $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$

In-class Exercise

Come up with a formal description for the following NFA

• $\Sigma = \{ a, b \}$

DEFINITION

A nondeterministic finite automaton

is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set of states,
- **2.** Σ is a finite alphabet,
- **3.** $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function,
- **4.** $q_0 \in Q$ is the start state, and
- **5.** $F \subseteq Q$ is the set of accept states.

In-class Exercise Solution

```
Let N = (Q, \Sigma, \delta, q_0, F)
                                         \delta(q_1, a) = \{\}
• Q = \{ q_1, q_2, q_3 \}
                                         \delta(q_1, b) = \{q_2\}
• \Sigma = \{ a, b \}
                                         \delta(q_1, \varepsilon) = \{q_3\}
                                         \delta(q_2, a) = \{q_2, q_3\}
                                     \rightarrow \delta(q_2, b) = \{q_3\}
• δ ... —
                                         \delta(q_2, \varepsilon) = \{\}
                                         \delta(q_3, a) = \{q_1\}
• q_0 = q_1
                                         \delta(q_3, b) = \{\}
• F = \{ q_1 \}
                                          \delta(q_3, \varepsilon) = \{\}
```

NFA Computation (JFLAP demo): 010110

NFA Computation Sequence

Each step can branch into multiple states at the same time!

So this is an accepting computation

Submit in-class work 2/14

On gradescope