CS420 Computing with NFAs Wednesday, February 21, 2024 UMass Boston CS ### Announcements - HW 2 in - Due Wed 2/21 12pm EST (noon) - HW 3 out - Due Mon 3/4 12pm EST (noon) ## HW 1 Observations Problems must be <u>assigned to the correct pages</u> Proof format must be a Statements and Justifications table Machine formal descriptions must have a tuple ## How to ask for HW help (there's no such thing as a stupid question, but ...) ... there is such thing as a less useful question (gets less useful answers) - "Is this correct?" - "I don't get it" - "Give me a hint?" - "Do I need to do the thing DFA thing?" **Useful question** examples (gets useful answers): - "I think string xyz and zyx is in language A but I'm not sure? Can you clarify?" - "I'm don't understand this notation $A \otimes B >>> C \dots$ and I couldn't find it in the book" - "I couldn't this word's definition ..." - "I know I want to change the machine to add an accept state that ... but I can't figure out how to write it formally. Hint?" ## Concatenation of Languages ``` Let the alphabet \Sigma be the standard 26 letters \{a, b, \ldots, z\}. ``` ``` If A = \{ fort, south \} B = \{ point, boston \} ``` ``` A \circ B = \{ fortpoint, fortboston, southpoint, southboston \} ``` ### Is Concatenation Closed? #### THEOREM The class of regular languages is closed under the concatenation operation. In other words, if A_1 and A_2 are regular languages then so is $A_1 \circ A_2$. - Cannot? combine A_1 and A_2 's machine to make a DFA because: - Unclear when to switch? (can only read input once) - Need a <u>different kind of machine!</u> ## Nondeterministic Finite Automata (NFA) #### DEFINITION ### A nondeterministic finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where - **1.** Q is a finite set of states, - 2. Σ is a finite alphabet, 3. $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is th Transition function maps one state and label to a set of states **4.** $q_0 \in Q$ is the start state, and Transition label can be "empty", accept states. $$\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$$ #### **CAREFUL:** - ϵ symbol is <u>reused</u> here, as a <u>transition label</u> (ie, an argument to δ) - it's not the empty string! - And, it's (still) not a character in alphabet Σ! ## Deterministic vs Nondeterministic Deterministic computation ## Deterministic vs Nondeterministic # NFA Computation (JFLAP demo): 010110 # NFA Computation Sequence (of set of states) NFA accepts input if: at least <u>one path</u> <u>ends in accept state</u> # DFA Computation Rules ### *Informally* #### Given - A DFA (~ a "Program") - and Input = string of chars, e.g. "1101" ### A **DFA** <u>computation</u> (~ "Program run"): - Start in start state - Repeat: - Read 1 char from Input, and - Change state according to transition rules ### Result of computation: - Accept if last state is Accept state - **Reject** otherwise ### Formally (i.e., mathematically) - $M = (Q, \Sigma, \delta, q_0, F)$ - $w = w_1 w_2 \cdots w_n$ # A DFA computation is a sequence of states: • specified by $\hat{\delta}(q_0, w)$ where: - M accepts w if $\hat{\delta}(q_0,w) \in F$ - *M* rejects otherwise ## DFA Computation Rules ### *Informally* #### Given - A DFA (~ a "Program") - and Input = string of chars, e.g. "1101" #### A **DFA** <u>computation</u> (~ "Program run"): - Start in start state - Repeat: - Read 1 char from Input, and - Change state according to transition rules ### Result of computation: - Accept if last state is Accept state - Reject otherwise ### Formally (i.e., mathematically) - $M = (Q, \Sigma, \delta, q_0, F)$ - $w = w_1 w_2 \cdots w_n$ # A **DFA computation** is a **sequence of states:** • specified by $\hat{\delta}(q_0, w)$ where: - *M* accepts w if $\hat{\delta}(q_0, w) \in F$ - *M* rejects otherwise # NFA Computation Rules ### *Informally* #### Given - An **NFA** (~ a "Program") - and Input = string of chars, e.g. "1101" ### An **NFA** computation (~ "Program run"): • Start in start state #### Repeat: • Read 1 char from Input, and go to next states For each "current" state, according to transition rules ... then combine all "next states" #### Result of computation: - Accept if last set of states has accept state - Reject otherwise Formally (i.e., mathematically) - $M = (Q, \Sigma, \delta, q_0, F)$ - $w = w_1 w_2 \cdots w_n$ An **NFA computation** is a ... • specified by $\hat{\delta}(q_0, w)$ where: - *M* accepts *w* if ... - M rejects ... Ignoring ε transitions, for now! # NFA Computation Rules ### *Informally* #### Given - An NFA (~ a "Program") - and Input = string of chars, e.g. "1101" #### A **DFA** <u>computation</u> (~ "Program run"): - Start in start state - Repeat: - Read 1 char from Input, and go to <u>next states</u> For each "current" state, according to transition rules ... then combine all "next states" ### Formally (i.e., mathematically) - $M = (Q, \Sigma, \delta, q_0, F)$ - $w = w_1 w_2 \cdots w_n$ ### An **NFA computation** is a **sequence of:** sets of states • specified by $\hat{\delta}(q_0, w)$ where: #### Result of computation: - Accept if last set of states has accept state - Reject otherwise - *M* accepts *w* if ... - M rejects ... ## DFA Extended Transition Function $$\hat{\delta}: Q \times \Sigma^* \to Q$$ - <u>Domain</u> (inputs): - state $q \in Q$ (doesn't have to be start state) - string $w = w_1 w_2 \cdots w_n$ where $w_i \in \Sigma$ - Range (output): - state $q \in Q$ (doesn't have to be an accept state) Recursive Input Data needs Recursive Function Base case #### A **String** is either: - the **empty string** (ϵ), or - xa (non-empty string) where - x is a **string** - a is a "char" in Σ Base case $$\hat{\delta}(q,\varepsilon) =$$ ## DFA Extended Transition Function $$\hat{\delta}: Q \times \Sigma^* \to Q$$ - <u>Domain</u> (inputs): - state $q \in Q$ (doesn't have to be start state) - string $w = w_1 w_2 \cdots w_n$ where $w_i \in \Sigma$ - Range (output): - state $q \in Q$ (doesn't have to be an accept state) where $w' = w_1 \cdots w_{n-1}$ (Defined recursively) Base case $\hat{\delta}(q, \varepsilon) = q$ Recursion on string string char $\hat{\delta}(q, w'w_n) = \delta(\hat{\delta}(q, w'w_n))$ Recursive Input Data needs Recursive Function #### A **String** is either: - the **empty string** (ε) , or - Recursive case xa (non-empty string) where Recursion - x is a **string** on string on string a is a "char" in Σ a is a char in string \ char "second to last" state "smaller" argument ## DFA Extended Transition Function $$\hat{\delta}: Q \times \Sigma^* \to Q$$ - Domain (inputs): - state $q \in Q$ (doesn't have to be start state) - string $w = w_1 w_2 \cdots w_n$ where $w_i \in \Sigma$ - Range (output): - state $q \in Q$ (doesn't have to be an accept state) (Defined recursively) Base case $$\hat{\delta}(q,arepsilon)=q$$ Recursive Input Data needs Recursive Function #### A **String** is either: - the **empty string** (ε) , or - xa (non-empty string) where - x is a **string** - a is a "char" in Σ Recursive Case $$\hat{\delta}(q, w'w_n) = \delta(\hat{\delta}(q, w'), w_n)$$ where $w' = w_1 \cdots w_{n-1}$ Single step from "second to last" state and last char gets to last state $\delta \colon Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function ## NFA Extended Transition Function $$\hat{\delta}: Q \times \Sigma^* \to \mathcal{P}(Q)_{\mathbb{N}}$$ - Domain (inputs): - Result is set of states - state $q \in Q$ (doesn't have to be start state) - string $w = w_1 w_2 \cdots w_n$ where $w_i \in \Sigma$ - Range (output): states $$qs \subseteq Q$$ ## NFA Extended Transition Function $$\hat{\delta}: Q \times \Sigma^* \to \mathcal{P}(Q)_{\mathbb{R}}$$ - Domain (inputs): - Result is set of states - state $q \in Q$ (doesn't have to be start state) - string $w = w_1 w_2 \cdots w_n$ where $w_i \in \Sigma$ - Range (output): states $$qs \subseteq Q$$ (Defined recursively) $$\hat{\delta}(q,\varepsilon) = \{q\}$$ **Recursively Defined Input** needs **Recursive Function** Base case #### A **String** is either: - the **empty string** (ε), or - xa (non-empty string) where - x is a **string** - *a* is a "char" in Σ $\delta \colon Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function ## NFA Extended Transition Function $$\hat{\delta}: Q \times \Sigma^* \to \mathcal{P}(Q)$$ - Domain (inputs): - state $q \in Q$ (doesn't have to be start state) - string $w = w_1 w_2 \cdots w_n$ where $w_i \in \Sigma$ - Range (output): states $qs \subseteq Q$ ### (Defined recursively) Base case $$\hat{\delta}(q,\varepsilon) = \{q\}$$ Recursive Case $$\hat{\delta}(q, w'w_n) =$$ where $w' = w_1 \cdots w_{n-1}$ $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function ## NFA Extended Transition Function $$\hat{\delta}: Q \times \Sigma^* \to \mathcal{P}(Q)$$ - Domain (inputs): - state $q \in Q$ (doesn't have to be start state) - string $w = w_1 w_2 \cdots w_n$ where $w_i \in \Sigma$ - Range (output): states $qs \subseteq Q$ ### (Defined recursively) Base case $$\hat{\delta}(q,\varepsilon) = \{q\}$$ Recursive Case $$\hat{\delta}(q, w'w_n) = \bigcup_{i=1}^{\infty} \delta(q_i, w_n^{\checkmark})$$ where $w' = w_1 \cdots w_{n-1}$ For each "second to last" state. take single step on last char **Recursively Defined Input** needs **Recursive Function** #### A **String** is either: - the **empty string** (ϵ), or - *xa* (non-empty string) where - x is a **string** - a is a "char" in Σ Last char $$\hat{\delta}(q, w') = \{q_1, \dots, q_k\}$$ ## NFA Extended Transition Function $$\hat{\delta}: Q \times \Sigma^* \to \\ \bullet \ \, \underline{\text{Domain}} \ \, (\text{inpite}) \\ \bullet \ \, \text{state} \ \, q \in \\ \bullet \ \, \text{string} \ \, w = \\ \bullet \ \, \text{string} \ \, w = \\ \bullet \ \, \text{states} \ \, qs = \\ \bullet \ \, \text{state} \ \, qs = \\ \bullet \ \, \text{Start} \ \, \text{in} \ \, \text{start} \ \, \text{state} \\ \bullet \ \, \text{Recursively Defined Input} \\ \bullet \ \, \text{Read 1 char from Input, and} \\ \bullet \ \, \text{Still ignoring ϵ transitions!} \\ \bullet \ \, \text{the empty string} \ \, (\text{por neach "current" state, go to next states}) \\ \bullet \ \, \text{Recursively Defined Input} Defin$$... then combine all sets of "next states" Recursive Case $$\hat{\delta}(q, w'w_n) = \bigcup_{i=1}^{\delta(q_i, w_n)} \delta(q_i, w_n)$$ where $w' = w_1 \cdots w_{n-1}$ $$\hat{\delta}(q, w') = \{q_1, \dots, q_k\}$$ Base case: $$\hat{\delta}(q,\epsilon) = \{q\}$$ ## NFA Extended δ Example Recursive case: $$\hat{\delta}(q,w) = \bigcup_{i=1}^k \delta(q_i,w_n)$$ where: $$i=1$$ $$\hat{\delta}(q, w_1 \cdots w_{n-1}) = \{q_1, \dots, q_k\}$$ • $\hat{\delta}(q_0,\epsilon) =$ We haven't considered empty transitions! • $$\hat{\delta}(q_0,0) =$$ Combine result of recursive call with "last step" • $$\hat{\delta}(q_0, 00) =$$ • $$\hat{\delta}(q_0, 001) = \delta(q_0, 1) \cup \delta(q_1, 1) = \{q_0\} \cup \{q_2\} = \{q_0\}$$ # Adding Empty Transitions - Define the set arepsilon-REACHABLE(q) - ... to be all states reachable from q via zero or more empty transitions (Defined recursively) - Base case: $q \in \varepsilon$ -reachable(q) - Inductive case: A state is in the reachable set if ... $$\varepsilon\text{-reachable}(q) = \{ \overrightarrow{r} \mid p \in \varepsilon\text{-reachable}(q) \text{ and } \overrightarrow{r} \in \delta(p, \varepsilon) \}$$... there is an empty transition to it from another state in the reachable set ## ε -reachable Example ε -REACHABLE(1) = $\{1, 2, 3, 4, 6\}$ Handling ε transitions now! ## NFA Extended Transition Function $$\hat{\delta}: Q \times \Sigma^* \to \mathcal{P}(Q)$$ - Domain (inputs): - state $q \in Q$ (doesn't have to be start state) - string $w = w_1 w_2 \cdots w_n$ where $w_i \in \Sigma$ - Range (output): - states $qs \subseteq Q$ ### (Defined recursively) Base case $$\hat{\delta}(q,\varepsilon) = \frac{\varepsilon\text{-REACHABLE}(q)}{\varepsilon}$$ Recursive Case $$\hat{\delta}(q, w'w_n) =$$ where $$w' = w_1 \cdots w_{n-1}$$ $\hat{\delta}(q, w') = \{q_1, \dots, q_k\}$ $$\bigcup_{i=1}^{k} \delta(q_i, w_n)$$ Handling ε transitions now! ## NFA Extended Transition Function $$\hat{\delta}: Q \times \Sigma^* \to \mathcal{P}(Q)$$ - Domain (inputs): - state $q \in Q$ (doesn't have to be start state) - string $w = w_1 w_2 \cdots w_n$ where $w_i \in \Sigma$ - Range (output): - states $qs \subseteq Q$ ### (Defined recursively) "Take single step, then follow all empty transitions" Base case $\hat{\delta}(q, \varepsilon) = \varepsilon$ -REACHABLE(q) where $w' = w_1 \cdots w_{n-1}$ $\hat{\delta}(q, w') = \{q_1, \dots, q_k\}$ $$\hat{\delta}(q, w'w_n) = \varepsilon\text{-REACHABLE}($$ $$\int_{-1}^{\kappa} \delta(q_i, w_n)$$ # Summary: NFA vs DFA Computation #### **DFAs** - Can only be in <u>one</u> state - Transition: - Must read 1 char - Acceptance: - If final state <u>is</u> accept state #### **NFAs** - Can be in <u>multiple</u> states - Transition - Has empty transitions - Acceptance: - If one of final states is accept state ### Is Concatenation Closed? #### **THEOREM** The class of regular languages is closed under the concatenation operation. In other words, if A_1 and A_2 are regular languages then so is $A_1 \circ A_2$. ### **Proof requires:** Constructing new machine - How does it know when to switch machines? - Can only read input once #### Concatentation Let M_1 recognize A_1 , and M_2 recognize A_2 . <u>Want</u>: Construction of N to recognize $A_1 \circ A_2$ ε = "empty transition" = reads no input N - Keep checking 1st part with M_1 and - Move to M_2 to check 2nd part # Concatenation is Closed for Regular Langs **PROOF** (part of) Let DFA $$M_1 = [Q_1, \Sigma, \delta_1, q_1, F_1]$$ recognize A_1 DFA $M_2 = [Q_2, \Sigma, \delta_2, q_2, F_2]$ recognize A_2 Construct $N = (Q, \Sigma, \delta, q_1, F_2)$ to recognize $A_1 \circ A_2$ 1. $$Q = Q_1 \cup Q_2$$ - 2. The state q_1 is the same as the start state of M_1 - 3. The accept states F_2 are the same as the accept states of M_2 - **4.** Define δ so that for any $q \in Q$ and any $a \in \Sigma_{\varepsilon}$, # Concatenation is Closed for Regular Langs **PROOF** (part of) Let DFA $$M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$ recognize A_1 DFA $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2 Construct $N = (Q, \Sigma, \delta, q_1, F_2)$ to recognize $A_1 \circ A_2$ 1. $$Q = Q_1 \cup Q_2$$ - 2. The state q_1 is the same as the start state of M_1 - 3. The accept states F_2 are the same as the accept states of M_2 - **4.** Define δ so that for any $q \in Q$ and any $a \in \Sigma_{\varepsilon}$, $$\delta(q,a) = \begin{cases} \{\delta_1(\mbox{\it ?},a)\} & q \in Q_1 \text{ and } q \notin F_1 \\ \{\delta_1(\mbox{\it ?},a)\} & q \in F_1 \text{ and } a \neq \varepsilon \end{cases}$$ NFA def says δ must map every state and and each states $$\{\delta_2(\mbox{\it ?},a)\} & q \in F_1 \text{ and } a \neq \varepsilon \end{cases}$$ $$\{\delta_2(\mbox{\it ?},a)\} & q \in Q_2.$$ And: $\delta(q,\epsilon) = \emptyset$, for $q \in Q$, $q \notin F_1$ Wait, is this true? # Is Union Closed For Regular Langs? Proof #### **Statements** - 1. A_1 and A_2 are regular languages - 2. A DFA $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognizes A_1 - 3. A DFA $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognizes A_2 - 4. Construct DFA $M = (Q, \Sigma, \delta, q_0, F)$ - 5. M recognizes $A_1 \cup A_2$ - 6. $A_1 \cup A_2$ is a regular language - 7. The class of regular languages is closed under the union operation. In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$. ### **Justifications** - 1. Assumption - 2. **Def of Reg Lang** (Coro) - 3. **Def of Reg Lang** (Coro) - 4. Def of DFA - 5. See examples - 6. Def of Regular Language - 7. From stmt #1 and #6 # Is Concat Closed For Regular Langs? Proof? #### **Statements** - 1. A_1 and A_2 are regular languages - 2. A DFA $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognizes A_1 - 3. A DFA $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognizes A_2 - 4. Construct NFA $N = (Q, \Sigma, \delta, q_0, F)$ - 5. N recognizes $A_1 \cup A_2 A_1 \circ A_2$ - 6. $A_1 \cup A_2 A_1 \circ A_2$ is a regular language - 7. The class of regular languages is closed under concatenation operation. In other words, if A_1 and A_2 are regular languages then so is $A_1 \circ A_2$. ### **Justifications** - 1. Assumption - 2. Def of Reg Lang (Coro) - 3. Def of Reg Lang (Coro) - 4. Def of NFA - 5. See examples - 6. Poes NFA recognize reg langs? - 7. From stmt #1 and #6 Q.E.D.? # A DFA's Language • For DFA $M=(Q,\Sigma,\delta,q_0,F)$ • *M* accepts w if $\hat{\delta}(q_0,w) \in F$ • M recognizes language $\{w|\ M$ accepts $w\}$ Definition: A DFA's language is a regular language # An NFA's Language? - - i.e., accept if final states contain at least one accept state - Language of N = $\mathit{L}(\mathit{N})$ = $\left\{ w \mid \hat{\delta}(q_0, w) \cap F \neq \emptyset \right\}$ Q: What kind of languages do NFAs recognize? ## Concatenation Closed for Reg Langs? • Combining DFAs to recognize concatenation of languages produces an NFA So to prove concatenation is closed we must prove that NFAs also recognize regular languages. Specifically, we must <u>prove</u>: NFAs ⇔ regular languages # "If and only if" Statements ``` X \Leftrightarrow Y = "X \text{ if and only if } Y" = X \text{ iff } Y = X <=> Y ``` Represents <u>two</u> statements: - 1. \Rightarrow if X, then Y - "forward" direction - 2. \Leftarrow if Y, then X - "reverse" direction ## How to Prove an "iff" Statement ``` X \Leftrightarrow Y = "X \text{ if and only if } Y" = X \text{ iff } Y = X <=> Y ``` Proof has <u>two</u> (If-Then proof) parts: - 1. \Rightarrow if X, then Y - "forward" direction - assume X, then use it to prove Y - 2. \Leftarrow if Y, then X - "reverse" direction - assume *Y*, then use it to prove *X*