CS420

Computing with NFAs
Wednesday, February 21, 2024
UMass Boston CS

%/{/{M/me/ﬂe/{f@

« HW 2 Iin
+ Due-Wed 22+ R2pm-EST{roon)

« HW 3 out
* Due Mon 3/4 12pm EST (noon)

HW 1 Observations

* Problems must be assigned to the correct pages

* Proof format must be a Statements and Justifications table

« Machine formal descriptions must have a tuple

How to ask for HW help

(there’'s no such thing as a stupid question, but ...)

.. there i1s such thing as a less useful
question (gets less useful answers)

* “Is this correct?”
* “I don't get It”

* “Glve me a hint?”

 “Do | need to do the
thing DFA thing?”

Useful question examples
(gets useful answers):

“I think string xyz and zyx is In
language A but I'm not sure? Can
you clarify?”

“I'm don’t understand this notation

AR B> C...and | couldn’t find it in

the book”
“I couldn’t this word’s definition ...”

“I know | want to change the
machine to add an accept state that
... but | can’t figure out how to write
It formally. Hint?”

2 /‘w/'amffy

Concatenation: Ao B = {zy|x € Aand y € B}

Concatenation of Languages

Let the alphabet ¥ be the standard 26 letters {a, b, ..., z}.

If A= {fort,south} B = {point,boston}

Ao B = { fortpoint, fortboston, southpoint, southboston }

2 /‘w/'a«@é

s Concatenation Closed?

THEOREM ---

The class of regular languages is closed under the concatenation operation.

In other words, it A; and As are regular languages then so is A4; o As.

« Cannot? combine A, and 4,’s machine to make a DFA because:
 Unclear when to switch? (can only read input once)

 Need a different kind of machine!

f&@w%wé%

Nondeterministic Finite Automata (NFA)

DEFINITION

A nondeterministic finite automaton
is a S-tuple (Q, X, 4, qo, F'), where

1. () 1s a finite set of states,

2. 3 is a finite alphabet,
3.0: Q x 2. —P(Q)

Transition function maps

one state and label to a

4. qp € Q is the start state, and

Transition label can be “empty”,

accept states.

is th set of states

=y

Ye =X U{e}

CAREFUL:

e symbol is reused here, as a transition label
(ie, an argument to §)

- it's not the empty string!

- And, it's (still) not a character in alphabet !

2 /‘w/'a«@é

Deterministic vs Nondeterministic

Deterministic
computation

e Start

states

b k£ Ak Ak— £k
.. [° ° ®

* accept or reject

DFAs

2 /‘w/'a«@é

Deterministic vs Nondeterministic

Deterministic Nondeterministic
computation computation

° Start (.

. ()

can be in multiple states at

. : f \' the same time
reject (1

()

* accept or reject * accept

states {{-\: .f\\ Nondeterministic computation
Y

b k£ Ak Ak— £k

DFAs NFA

NFA Computation (JFLAP demo): 010110

s
O OO

NFA Computation Sequence (of set of states)

Symbol read
S
1 __________________
Each step can
U branch into

multiple states at
the same time!

ends In accept state () (2)
1 _________
0 —-eeeee- @ @ @ So this is an accepting
computation
(9

Flashback

DFA Computation Rules

Informally

Given
« A DFA (~ a “Program”)
« and Input = string of chars, eg “1101"

A DFA computation (~ “Program run”):
« Start in start state

* Repeat:

« Read 1 char from Input, and
« Change state according to transition rules

Result of computation:
« Accept if last state is Accept state
« Reject otherwise

Flashback

DFA Computation Rules

Informally Formally (ie, mathematically)
Glven

 ADFA (~ a “Program”) - M = (Q,%,9,q,F)
« and Input = string of chars, eg “1101" c W = WiW9 -+ Wy

A DFA computation (~ “Program run”): A DFA computation is a
 Start in start state sequence of states:

« Repeat:

« Read 1 char from Input, and
« Change state according to transition rules

Result of computation:
« Accept if last state is Accept state
« Reject otherwise

NFA

Computation Rules

Informally

Given

e AN

NFA [(~ a “Program”)

« and Input = string of chars, eg “1101"

An

NFA

computation (~ “Program run”):

e Start in start state

* Repeat:

« Read 1 char from Input, and

For each “current” state, |according to transition rules
go to next states ... then combine all “next states”

lgnoring € transitions, for now!

Result of computation:

 Accept if last| set of states has accept state

« Reject otherwrse

lgnoring € transitions, for now!

NFA |Computation Rules

Informally Formally (ie, mathematically)
Glven
e An| NFA |(~ a “Program”) - M = (Q,%,9,q,F)
« and Input = string of chars, eg “1101" W = WiW3 - Wy
A DFA computation (~ “Program run”): An NFA computation is a sequence of:
- Start in start state sets of states
 Repeat:
« Read 1 char from Input, and
For each “current” state, |according to transition rules 99o
go to next states ... then combine all “next states” ===

Result of computation:

 Accept if last| set of states has accept state
« Reject otherwise

Flashback

DFA Extended Transition Function
0:Q XY = Q

« Domain (inputs):

e state q © Q (doesn't have to be start state)
* string w = wWiws -+ Wy where w; € X

Base case

A

5((]7 5) —

Recursive Input Data
needs
Recursive Function

A String is either:
-—the empty string (), or

« xa (non-empty string)
where
« xisastring
* aisa“char"inZ

Base case

Flashback

DFA Extended Transition Function
0:Q XY = Q

« Domain (inputs):
e state q © Q (doesn’t have to be start state)
e string w = wWiws -+ Wy where w; € X

- Range (output): |
. state ¢ € () (doesn't have to be an accept state) R

Recursive Function

A String is either:

(Defined recursively) . the empty string (&), or
Recursive case >« xq (non-empty string)
B A where . . Recursion
dase Case — Recursion on string “ " « xisastring“ onstring
5((]7 5) q smaller” argument 7 s 3 “chap” iny
string char string
N char

Recursive Case d(q, w’wn) —

“second to last” state
where w' = wy -+ - w,_1

Hshback 0: Q X ¥—Q is the transition function

DFA Extended Transition Function
0:Q XY = Q

« Domain (inputs):
e state q © Q (doesn’t have to be start state)
e string w = wWiws -+ Wy where w; € X

- Range (output): |
. state ¢ € () (doesn't have to be anjaccept state) R

Recursive Function

A String is either:

(Defined recursively) e
+ xa (non-empty string)
A where
Base case (g, ¢) = g sy

A A

. / /
Recursive Case (S(Q, w wn) = 5((5((], w), wn) Single step from “second to last” state

and last char gets to last state
where w' = wy -+ - w,_1

NFA

- Range (output):

states

s C Q

\ Result is set of states

d: @ x X¥e—>"P(Q) is the transition function

Extended Transition Function
0:Q x T = P(Q)

« Domain (inputs):
. state ¢ € () (doe
« string w = ww

't have to be start state)

+ Wn where w; € X

d: @ x Xe—>"P(Q) is the transition function
NFA [Extended Transition Function
5 Q x X" —>73(Q)\

« Domain (inputs): Result is set of states
e state q © Q (doesn’t have to be/start state)
* string w = wiws - Wy where w; € 2

* 4g_Ran € (OUtpUt)I Recursively Defined Input
states ¢s C () needs

Recursive Function

A String is either:
« the empty string (), or

(Deﬂned recu rSively) « xa (non-empty string)

where
« xis astring

Base case 5((]7 5) —{q} + aisa‘char’ inz

Base case

d: Q x X.—P(Q) is the transition function

NFA |[Extended Transition Function
S:QXZ*%P(Q)

« Domain (inputs):
. state ¢ € () (doesn’t have to be start state)
* string w = wiw2 -+ Wy where w; € X

* @gg (OUtpUt): Recursively Defined Input
states (S C Q needs

Recursive Function

A String is either:
 the empty string (), or

(Deﬂ ned recursive ly) Recursive case |~ xah(non—empty string)
where
A « _xis astring
Base case 5 (Q7 6) — {Q} Recursive part < aqisa“char’inz
“second to last”
A Recursion on recursive part set of states

Recursive Case d(q, wlwn) — -
where w' = wy - - - wy,_1 5(Q7 ”LU’) — {Q17"- ,C.Hc}

0: Q x X.—>P(Q) is the transition function

NFA |[Extended Transition Function
S:QXZ*%P(Q)

« Domain (inputs):
. state ¢ € (Q (doesn’t have to be start state)
* string w = wWiws -+ Wy where w; € 2

* @gg (OUtpUt): Recursively Defined Input
states (S C Q needs

Recursive Function

A String is either:

: : or each “secand * the empty string (¢), or
(Deﬂ N ed recursive ly) to last” state, + xa (non-empty string)
take single step where . _
2 on last char ° xIsastring
Base case 6((]7 5‘) — {q} L e agisa“char’inx

Last char
Recursive Case 8(% w’wn) — ?EJI 5(%? wn)) |
where w' = wy - - - wy,_1 5(Q7w):{Q177q16}

0:0Q x O

 Domain (inp!
- state q ©

W= A DFA computation (~ “Program run”):

* string

d: Q x X.—P(Q) is the transition function

NFA [Extended Transition Function

Glven
7o An NFA (~ a “Program”)

* Range (OUtPU. start in start state

states

qs 9
* Repeat:

« Read 1 char from Input, and

(Defined recur:

« and Input = string of chars, eg “1101”

Recursively Defined Input
needs

Still ignoring € transitions!

 the empty string (g), or

For each “current” state, |according to transition rules - xa (non-empty string)
t t stat N where
e « xis astring

\ [Y | 1

... then combine all sets of “next states”

k
Recursive Case 8((]7 w’wn) :\LJ 0 1 wn)

1=1
r_
where w' = wq -+ - w,,_1

e agisa‘char’inX

A

o(q,w") =4q1,...,qx}

Base case: 5(q, €) = {q}

N FA EXte ﬂ d ed 6 Exa m p le Recursive case: S(Q,UJ) _

0, 1

k
5((]’127 w’n)
1=1

where
o(q,wi - wp—1) ={q1, ..., qr }
Start m 0 1 1 : : :
—={%) -(41)
. 0 — :
(90, €) We haven’t considered

empty transitions!

® ‘5(‘?09 0) —

Combine result of recursive call with “last step”
° 5(‘?0; 00) —

s

® 5(QU, 001) =

Adding Empty Transitions

» Define the set e-REACHABLE(q)
* ...to be all states reachable from q via zero or more empty transitions

(Defined recursively)

» Base case: ¢ € e-REACHABLE(q)

 Inductive case: A state is in the reachable set if ...

e-REACHABLE(q) = {r | p € e-REACHABLE(q) and r € d(p,€)}

... there i1s an empty transition to it from
another state in the reachable set

e-REACHABLE Example

(X /
o\

O——0—10

e-REACHABLE(1) ={1,2,3,4,6}

Handling € transitions now!

NFA |[Extended Transition Function
S:QXZ*%p(Q)

(Defined recursively)

A

Base case 5((]7 g) — g—REACHABLE(q)

Recursive Case

Handling € transitions now!

NFA |[Extended Transition Function
S:QXZ*%P(Q)

“Take single step,

(Defined recursively) then follow all where w' = wy - wp 3
empty transitions” o(q,w') ={qi,...,qn}

Base case 5((]7 g) — g—REACHABLE(q)
k
Recursive Case d(q, w/wn) — 5—REACHABLE(U 6(qi, wn))

1=1

Summary: NFA vs DFA Computation

DFAs NFAs
« Can only be in one state « Can be in multiple states
 Transition: * Transition
« Must read 1 char « Has empty transitions
* Acceptance: * Acceptance:

« If final state is accept state * If one of final states is accept state

Previnusty Concatenation: Ao B = {xy|x € Aand y € B}

s Concatenation Closed?

THEOREM

The class of regular languages is closed under the concatenation operation.

In other words, if A; and A3 are regular languages then so is A; o As.

Proof requires: Constructing new machine
« How does it know when to switch machines?
« Can only read Iinput once

Concatentation

_ oo©/\ ° © ©/

N is an NFA! It can:
- Keep checking 15t part with M,

: : and
Want: Construction of N to recognize A1 © Azl _ ymove to M. to check 21
2

Let M, recognize A;, and M, recognize As.

N part
e = “empty transition” = reads no input
(Allows N to be in both machines at the same time! I
~ 4 N\

O L
O ° OfH30 oo
O~ o

Concatenation is Closed for Regular Langs

PROOF (part of)

Let DFA Ml = [Qli Z; 51; CI1, Fl) I’eCognize Al
DFA MZ = [QZ’ Z; 52; qz, Fz) reCOgnIZG AZ

Construct N = (Q, X, 9, q1, F») to recognize A; o A M, M,
LIQ]F Q1 U Q2 - 5
. @ @ —>O O O ©
2. The state ¢; is the same as the start state of M, i °° 9 oo | ©
3. The accept states|F5 jare the same as the accept states of M, l
4. Define § so that for any ¢ € @ and any a € X, N
e
=
o Ot ©
jo @ © O‘ £ 5@ o © @ |

Concatenation is Closed for Regular Langs

PROOF (part of)

Let DFA Ml = (Qli Z; 61; ql; Fl) I’eCognlze Al
DFA MZ = (QZ) Z; 62; qz; Fz) I’eCognlze AZ

Wait, is this true?

Construct N = (Q, X, 9, q1, F») to recognize A; o A M, M,
1. Q=Q1UQs — ©

. @ @ —>O O ©
2. The state ¢; is the same as the start state of M, °©° 9 o o

3. The accept states F5 are the same as the accept states of M, ﬂ
4. Define § so that for any ¢ € @ and any a € X,

(61(R a)) E(
{01(®a)} @ - O oo
{ o O t o

0(ga) =9

NFA def says 6§ must N

map every state and { ?a)} ?2?7? -
¢ to set of states nd:S(q,E):(b, for CIEQ,CIEFl

2 /‘w/'a«@é

s Union Closed For Regular Langs?

Proof

Statements
1. A;and A, are regular languages

N LR WS

Construct DFA M =(Q, %, 5, q, F)
M recognizes A, U A4,
A, UA, is aregular language

In other words, if A; and As are regular languages, so is A; U As.

Justifications

1.
ADFAM,=(Q, % 8, q, F,) recognizes A; 2.
A DFA M, =(Q,, %, 6,, q,, F,) recognizes A, 3.
4,

Assum
Def of
Def of
Def of

ntion

Reg Lang (Coro)
Reg Lang (Coro)
DFA

5. See examples

6. Def of Regular Language
The class of regular languages is closed under the union operation. 7. From stmt #1 and #6

0ED. IR

|s Concat Closed For Regular Langs?

Proof?

Statements Justifications

1. A, and A, are regular languages 1. Assumption

2. ADFAM,=(0Q,,%, 6, q,, F,) recognizes A, 2. Def of Reg Lang (Coro)
3. ADFAM,=(0Q,%,6,,q, F,) recognizes A, 3. Def of Reg Lang (Coro)
4. Construct/NFA|N=(Q, %, 6, q,, F) 4, Def of | NFA

5. Nrecognizes A,-J-A, A, 0 A, 5. See examples

6. A-UA, A, oA, isaregular language 6. 2727 Does NFA recognize reg langs?
/. The class of regular languages is closed under { concatenation 1operation. 7. From stmt #1 and H6

In other words, if A; and As are regular languages then sois A; o As.
Q.E.D.?

2 /‘w/b«@é

A DFA’'s Language

« For DFAM = (Q, %, 0, qo, F)
» Macceptswif §(qy,w) € F

« M recognizes language {w| M accepts w}

Definition: A DFA’s language is a regular language

An NFA's Language?

- For NFA N = (Q, %, 6, qo, F)

intersection accept states

e N accepts w if 0(qg,w) N F £) not empty
* .., accept If final states contain at least one accept state

« Language of N=L(N) = {,w | S(QO,w) NEF # @}

Q: What kind of languages do NFAs recognize?

Concatenation Closed for Reg Langs?

« Combining DFAs to recognize concatenation of languages ...

... produces an NFA

SO to prove concatenation is closed ...

... we must prove that NFAs also recognize regular languages.

Specifically, we must prove:
NFAs < regular languages

‘If and only If” Statements

XY = “Xifandonlyif Y7 = Xiffy = X<=>Y
Represents two statements:

1. =>i1fX,thenY
« “forward” direction

2. <iIfY thenX
* “reverse” direction

How to Prove an “Iff” Statement

XY = “Xifandonlyif Y7 = Xiffy = X<=>Y
Proof has two (If-Then proof) parts:

1. =>i1fX,thenY
e “forward” direction
« assume X, then use it to prove Y

2. <iIfY thenX
* “reverse” direction
« assume Y, then use it to prove X

