CS420 NFA <-> DFA ### Monday, February 26, 2024 UMass Boston CS #### A nondeterministic finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where - **1.** Q is a finite set of states, - **2.** Σ is a finite alphabet, - **3.** $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function, - **4.** $q_0 \in Q$ is the start state, and - **5.** $F \subseteq Q$ is the set of accept states. #### A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where - 1. Q is a finite set called the *states*, - **2.** Σ is a finite set called the *alphabet*, - **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*, - **4.** $q_0 \in Q$ is the *start state*, and - **5.** $F \subseteq Q$ is the **set of accept states**. ### Announcements - HW 3 out - Due Mon 3/4 12pm EST (noon) - HW 1 grades returned - Use Gradescope re-grade request for all questions / complaints! ### Is Concatenation Closed? #### **THEOREM** The class of regular languages is closed under the concatenation operation. In other words, if A_1 and A_2 are regular languages then so is $A_1 \circ A_2$. ### **Proof requires:** Constructing new machine - How does it know when to switch machines? - Can only read input once ### Concatentation Let M_1 recognize A_1 , and M_2 recognize A_2 . <u>Want</u>: Construction of N to recognize $A_1 \circ A_2$ ε = "empty transition" = reads no input N *N* is an **NFA**! It can: - Keep checking 1st part with M_1 and - Move to M_2 to check 2^{nd} part ## Concatenation is Closed for Regular Langs **PROOF** (part of) Let DFA $$M_1 = [Q_1, \Sigma, \delta_1, q_1, F_1]$$ recognize A_1 DFA $M_2 = [Q_2, \Sigma, \delta_2, q_2, F_2]$ recognize A_2 Construct $N = (Q, \Sigma, \delta, q_1, F_2)$ to recognize $A_1 \circ A_2$ 1. $$Q = Q_1 \cup Q_2$$ - 2. The state q_1 is the same as the start state of M_1 - 3. The accept states F_2 are the same as the accept states of M_2 - **4.** Define δ so that for any $q \in Q$ and any $a \in \Sigma_{\varepsilon}$, ## Concatenation is Closed for Regular Langs **PROOF** (part of) Let DFA $$M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$ recognize A_1 DFA $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2 Construct $N = (Q, \Sigma, \delta, q_1, F_2)$ to recognize $A_1 \circ A_2$ 1. $$Q = Q_1 \cup Q_2$$ - 2. The state q_1 is the same as the start state of M_1 - 3. The accept states F_2 are the same as the accept states of M_2 - **4.** Define δ so that for any $q \in Q$ and any $a \in \Sigma_{\varepsilon}$, $$\delta(q,a) = \begin{cases} \{\delta_1(q;a)\} & q \in Q_1 \text{ and } q \notin F_1 \\ \{\delta_1(q;a)\} & q \in F_1 \text{ and } a \neq \varepsilon \end{cases}$$ $$\begin{cases} \{q_2\} & q \in F_1 \text{ and } a \neq \varepsilon \\ \{\delta_2(q;a)\} & q \in Q_2. \end{cases}$$ $$\underbrace{\{\delta_2(q;a)\}}_{\text{And: }} \delta(q,\epsilon) = \emptyset, \text{ for } q \in Q, q \notin F_1 \end{cases}$$ negulai Langs Wait, is this true? # Is Concat Closed For Regular Langs? Proof? #### **Statements** - 1. A_1 and A_2 are regular languages - 2. A DFA $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognizes A_1 - 3. A DFA $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognizes A_2 - 4. Construct NFA $M = (Q, \Sigma, \delta, q_0, F)$ - 5. M recognizes $A_1 \cup A_2 A_1 \circ A_2$ - 6. $A_1 \cup A_2 A_1 \circ A_2$ is a regular language - 7. The class of regular languages is closed under concatenation operation. In other words, if A_1 and A_2 are regular languages then so is $A_1 \circ A_2$. ### **Justifications** - 1. Assumption - 2. Def of Reg Lang (Coro) - 3. Def of Reg Lang (Coro) - 4. Def of NFA - 5. See Examples Table - 6. Does NFA recognize reg langs? - 7. From stmt #1 and #6 Q.E.D.? ## A DFA's Language • For DFA $M=(Q,\Sigma,\delta,q_0,F)$ • *M* accepts w if $\hat{\delta}(q_0,w) \in F$ • M recognizes language $\{w|\ M$ accepts $w\}$ Definition: A DFA's language is a regular language ## An NFA's Language? - For NFA $N=(Q,\Sigma,\delta,q_0,F)$ - Intersection ... with accept states ... $N \ \textit{accepts} \ w \ \text{if} \ \hat{\delta}(q_0,w) \cap F \neq \emptyset \qquad \text{... is not empty set}$ - i.e., accept if final states contains at least one accept state - Language of $N = L(N) = \left\{ w \mid \hat{\delta}(q_0, w) \cap F \neq \emptyset \right\}$ Q: What kind of languages do NFAs recognize? ### Concatenation Closed for Reg Langs? • Combining DFAs to recognize concatenation of languages produces an NFA So to prove concatenation is closed we must prove that NFAs also recognize regular languages. Specifically, we must <u>prove</u>: NFAs ⇔ regular languages ## "If and only if" Statements ``` X \Leftrightarrow Y = "X \text{ if and only if } Y" = X \text{ iff } Y = X <=> Y ``` Represents <u>two</u> statements: - 1. \Rightarrow if X, then Y - "forward" direction - 2. \Leftarrow if Y, then X - "reverse" direction ### How to Prove an "iff" Statement ``` X \Leftrightarrow Y = "X \text{ if and only if } Y" = X \text{ iff } Y = X <=> Y ``` Proof has <u>two</u> (If-Then proof) parts: - 1. \Rightarrow if X, then Y - "forward" direction - assume X, then use it to prove Y - 2. \Leftarrow if Y, then X - "reverse" direction - assume *Y*, then use it to prove *X* ## Proving NFAs Recognize Regular Langs ### Theorem: A language L is regular **if and only if** some NFA N recognizes L. ### Proof: 2 parts - \Rightarrow If L is regular, then some NFA N recognizes it. (Easier) - We know: if L is regular, then a DFA exists that recognizes it. - So to prove this part: Convert that DFA → an equivalent NFA! (see HW 3) - \Leftarrow If an NFA N recognizes L, then L is regular. Full Statements & Justifications? "equivalent" = "recognizes the same language" ### \Rightarrow If L is regular, then some NFA N recognizes it #### **Justifications Statements** Assume the 1. Assumption 1. L is a regular language "if" part ... 2. A DFA *M* recognizes *L* 2. Def of Regular lang (Coro) 3. Construct NFA N = convert(M)3. See hw 2 3! 4. DFA *M* is **equivalent** to NFA *N* 4. See Equiv. table! ... use it to prove 5. An NFA N recognizes L 5. ??? "then" part 6. If L is a regular language, 6. By Stmts #1 and # 5 then some NFA N recognizes it # "Proving" Machine Equivalence (Table) There is some sequence of states: $r_1 \dots r_n$, where $r_i \in Q$ and $$r_1 = q_0$$ and $r_n \in F$ Then N accepts?/rejects? w because ... Justification #1? There is an accepting sequence of set of states in N ... for string w ## "Proving" Machine Equivalence (Table) ``` Let: DFA M=(Q,\Sigma,\delta,q_0,F) \mathsf{NFA}\ N=\mathsf{convert}(M) \hat{\delta}(q_0,w)\in F\ \mathsf{for\ some\ string}\ w \hat{\delta}(q_0,w') \not \in F\ \mathsf{for\ some\ string}\ w' ``` | | String | M accepts? | N accepts? | N accepts? Justification | |---------------------|--------|------------|------------|--------------------------| | | w | Yes | ??? | See justification #1 | | If M rejects w' | w' | No | ??? | See justification #2? | | Then we know | • • • | | | | Then N accepts?/rejects? w' because ... Justification #2? ## Proving NFAs Recognize Regular Langs ### Theorem: A language L is regular **if and only if** some NFA N recognizes L. ### **Proof**: - \boxtimes \Rightarrow If *L* is regular, then some NFA *N* recognizes it. (Easier) - We know: if L is regular, then a DFA exists that recognizes it. - So to prove this part: Convert that DFA → an equivalent NFA! (see HW 3) - ← If an NFA N recognizes L, then L is regular. (Harder) "equivalent" = "recognizes the same language" - We know: for L to be regular, there must be a DFA recognizing it - Proof Idea for this part: Convert given NFA N → an equivalent DFA ### How to convert NFA→DFA? ### A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where - 1. Q is a finite set called the *states*, - 2. Σ is a finite set called the *alphabet*, - **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*, - **4.** $q_0 \in Q$ is the **start state**, and - **5.** $F \subseteq Q$ is the *set of accept states*. #### Proof idea: Let each "state" of the DFA = set of states in the NFA ### A nondeterministic finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where - **1.** Q is a finite set of states, - 2. Σ is a finite alphabet, - 3. $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function, - **4.** $q_0 \in Q$ is the start state, and - **5.** $F \subseteq Q$ is the set of accept states. ### Convert **NFA→DFA**, Formally - Let NFA N = $(Q, \Sigma, \delta, q_0, F)$ - An equivalent DFA M has states $Q' = \mathcal{P}(Q)$ (power set of Q) ### Example: - Let NFA N_4 = $(Q, \Sigma, \delta, q_0, F)$ - An equivalent DFA D has states = $\mathcal{P}(Q)$ (power set of Q) The NFA N_4 A DFA D that is equivalent to the NFA N_4 ### **NFA→DFA** <u>Have</u>: NFA $N = (Q_{NFA}, \Sigma, \delta_{NFA}, q_{0NFA}, F_{NFA})$ Want: DFA $D = (Q_{DFA}, \Sigma, \delta_{DFA}, q_{0DFA}, F_{DFA})$ 1. $Q_{\text{DFA}} = \mathcal{P}(Q_{\text{NFA}})$ A DFA state = a set of NFA states qs = DFA state = set of NFA states - 2. For $qs \in Q_{DFA}$ and $a \in \Sigma$ - $\delta_{\mathsf{DFA}}(qs, a) = \bigcup_{q \in qs} \delta_{\mathsf{NFA}}(q, a)$ A DFA step = an NFA step for all states in the set - 3. $q_{\text{ODFA}} = \{q_{\text{ONFA}}\}$ - 4. $F_{DFA} = \{ qs \in Q_{DFA} \mid qs \text{ contains accept state of } N \}$ ## Flashback: Adding Empty Transitions - Define the set ε -REACHABLE(q) - ... to be all states reachable from q via zero or more empty transitions (Defined recursively) - Base case: $q \in \varepsilon$ -reachable(q) - Recursive case: A state is in the reachable set if ... $$\varepsilon$$ -reachable $(q) = \{ \overrightarrow{r} \mid p \in \varepsilon$ -reachable $(q) \text{ and } r \in \delta(p, \varepsilon) \}$... there is an empty transition to it from another state in the reachable set ### **NFA→DFA** <u>Have</u>: NFA $N = (Q_{NFA}, \Sigma, \delta_{NFA}, q_{0NFA}, F_{NFA})$ <u>Want</u>: DFA $D = (Q_{DFA}, \Sigma, \delta_{DFA}, q_{0DFA}, F_{DFA})$ Almost the same, except ... - 1. $Q_{\mathsf{DFA}} = \mathcal{P}(Q_{\mathsf{NFA}})$ - 2. For $q \in \Sigma$ $\delta_{DFA}(q, q, a)$ $\delta_{DFA}(q, a)$ $$\bigcup_{s \in S} \varepsilon\text{-REACHABLE}(s)$$ - 3. $q_{\text{0DFA}} = \{q_{\text{0NFA}}\}_{\varepsilon\text{-REACHABLE}}(q_{\text{0NFA}})$ - 4. $F_{DFA} = \{ qs \in Q_{DFA} \mid qs \text{ contains accept state of } N \}$ ## Proving NFAs Recognize Regular Langs ### Theorem: A language L is regular **if and only if** some NFA N recognizes L. ### Proof: - \Rightarrow If *L* is regular, then some NFA *N* recognizes it. (Easier) - We know: if L is regular, then a DFA exists that recognizes it. - So to prove this part: Convert that DFA → an equivalent NFA! (see HW 3) - \Leftarrow If an NFA N recognizes L, then L is regular. (Harder) Examples table? - We know: for L to be regular, there must be a DFA recognizing it - Proof Idea for this part: Convert given NFA N → an equivalent DFA using our NFA to DFA algorithm! Statements & Justifications? ## Concatenation is Closed for Regular Langs 🗹 #### **PROOF** Let DFA $$M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$ recognize A_1 DFA $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2 Construct $N = (Q, \Sigma, \delta, q_1, F_2)$ to recognize $A_1 \circ A_2$ **1.** $$Q = Q_1 \cup Q_2$$ - 2. The state q_1 is the same as the start state of M_1 - 3. The accept states F_2 are the same as the accept states of M_2 - **4.** Define δ so that for any $q \in Q$ and any $a \in \Sigma_{\varepsilon}$, If a language has an NFA recognizing it, then it is a regular language ## Concat Closed for Reg Langs: Use NFAs O #### **PROOF** Let $$N_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$$ recognize A_1 , and NFAS $N_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$ recognize A_2 . If language is regular, then it has an NFA recognizing it ... Construct $N = (Q, \Sigma, \delta, q_1, F_2)$ to recognize $A_1 \circ A_2$ 1. $$Q = Q_1 \cup Q_2$$ - 2. The state q_1 is the same as the start state of N_1 - 3. The accept states F_2 are the same as the accept states of N_2 - **4.** Define δ so that for any $q \in \mathbb{Q}$ and any $a \in \Sigma_{\varepsilon}$, $$\delta(q, a) = \begin{cases} \delta_1(\mathbf{?}, a) & q \in Q_1 \text{ and } q \notin F_1 \\ \delta_1(\mathbf{?}, a) & q \in F_1 \text{ and } a \neq \varepsilon \end{cases}$$ $$\mathbf{?} \qquad \{q_2\} \qquad q \in F_1 \text{ and } a = \varepsilon$$ $$\delta_2(\mathbf{?}, a) \qquad q \in Q_2.$$ **Union**: $A \cup B = \{x | x \in A \text{ or } x \in B\}$ ## Flashback: Union is Closed For Regular Langs #### **THEOREM** The class of regular languages is closed under the union operation. In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$. ### **Proof:** - How do we prove that a language is regular? - Create a DFA or NFA recognizing it! - Combine the machines recognizing A_1 and A_2 - Should we create a <u>DFA or NFA</u>? ## Flashback: Union is Closed For Regular Langs ### <u>Proof</u> - Given: $M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$, recognize A_1 , $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$, recognize A_2 , - Construct: a <u>new</u> machine $M=(Q,\Sigma,\delta,q_0,F)$ using M_1 and M_2 - states of M: $Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\} = Q_1 \times Q_2$ This set is the *Cartesian product* of sets Q_1 and Q_2 State in $M = M_1$ state + M_2 state • *M* transition fn: $\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$ M step = a step in M_1 + a step in M_2 • M start state: (q_1, q_2) Accept if either M_1 or M_2 accept • *M* accept states: $F = \{(r_1, r_2) | r_1 \in F_1 \text{ or } r_2 \in F_2\}$ ### Union is Closed for Regular Languages ### Union is Closed for Regular Languages #### **PROOF** Let $$N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$ recognize A_1 , and $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2 . Construct $N = (Q, \Sigma, \delta, q_0, F)$ to recognize $A_1 \cup A_2$. - **1.** $Q = \{q_0\} \cup Q_1 \cup Q_2$. - **2.** The state q_0 is the start state of N. - **3.** The set of accept states $F = F_1 \cup F_2$. ### Union is Closed for Regular Languages #### **PROOF** Let $$N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$ recognize A_1 , and $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2 . Construct $N = (Q, \Sigma, \delta, q_0, F)$ to recognize $A_1 \cup A_2$. - **1.** $Q = \{q_0\} \cup Q_1 \cup Q_2$. - **2.** The state q_0 is the start state of N. - **3.** The set of accept states $F = F_1 \cup F_2$. - **4.** Define δ so that for any $q \in Q$ and any $a \in \Sigma_{\varepsilon}$, $$\delta(q, a) = \begin{cases} \delta_1(?, a) & q \in Q_1 \\ \delta_2(?, a) & q \in Q_2 \\ \{q_1?q_2\} & q = q_0 \text{ and } a = \varepsilon \\ \emptyset & ? & q = q_0 \text{ and } a \neq \varepsilon \end{cases}$$ Don't forget Statements and Justifications! ## List of Closed Ops for Reg Langs (so far) ✓ • Union • Concatentation Kleene Star (repetition) ? **Star**: $A^* = \{x_1 x_2 \dots x_k | k \ge 0 \text{ and each } x_i \in A\}$ ## Kleene Star Example ``` Let the alphabet \Sigma be the standard 26 letters \{a, b, \dots, z\}. ``` ``` If A = \{ good, bad \} ``` ``` A^* = \begin{cases} \varepsilon, \text{ good, bad, goodgood, goodbad, badgood, badbad,} \\ \text{goodgoodgood, goodgoodbad, goodbadgood, goodbadbad,} \ldots \end{cases} ``` Note: repeat zero or more times (this is an infinite language!) ## Kleene Star is Closed for Regular Langs #### **THEOREM** The class of regular languages is closed under the star operation. ## Kleene Star is Closed for Regular Langs (part of) **PROOF** Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1 . Construct $N = (Q, \Sigma, \delta, q_0, F)$ to recognize A_1^* . 1. $$Q = \{q_0\} \cup Q_1$$ **3.** $$F = \{q_0\} \cup F_1$$ Kleene star of a language must accept the empty string! ## Kleene Star is Closed for Regular Langs #### (part of) **PROOF** Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1 . Construct $N = (Q, \Sigma, \delta, q_0, F)$ to recognize A_1^* . - 1. $Q = \{q_0\} \cup Q_1$ - **2.** The state q_0 is the new start state. - **3.** $F = \{q_0\} \cup F_1$ - **4.** Define δ so that for any $q \in Q$ and any $a \in \Sigma_{\varepsilon}$, ## Next Time: Why These Closed Operations? - Union - Concat - Kleene star All regular languages can be constructed from: - single-char strings, and - these three combining operations! ### Submit in-class work 2/26 On gradescope