UMB CS 420
Inductive Proofs

(Proofs involving recursion)

Monday March 4, 2024

%/{/{0«/{0@#{@/{&?

« HW 3 in
+ Due-Mon-3/4-12pm-EST(reon)

* HW 4 out
* Due Mon 3/18 12pm EST (noon)
e (After spring break)

Last [rine

Thm: A Lang Is Regular iff Some Reg Expr Describes It

= If a language Is regular, then it's described by a regular expr

« Use GNFA>RegEXxpr to convert GNFA — equiv regular expression!
M ?2?2?

T8 This time, let’s
really prove equivalence!
(we previously “proved” it
with some examples)

< If a language is described by a regular expr, then it's regular
1 « Convert regular expression — equivalent NFA!

GNFA>RegExpr Equivalence

 Equivalent = the language does not change (i.e., same set of strings)!

Statement to Prove: input output ??? This time, let’s
really prove equivalence!
_ (we previously “proved” it
LANGOF (G) = LANGOF (R) vvi?h some Zxapmples)
* where:
e G=a GNFA
« R =a Regular Expression = GNFA>RegEXpr(G)

Language could be infinite set of strings!

(how can we show equivalence for a possibly infinite set of strings?)

Recursion!

Kinds of Mathematical Proof

 Deductive proof (from before)
« Start with: assumptions, axioms, and definitions
* Prove: news conclusions by making logical inferences (e.g., modus ponens)

* Proof by induction (i.e., “a proof involving recursion”) (now)
e Same as above ...
« But: use this when proving something that is recursively defined

A valid recursive definition has:
- base case(s) and
- recursive case(s) (with “smaller” self-reference)

Pro Of by N d T CtiO N (A proof for each case

of some recursive definition)

To Prove: Statement for recursively defined “thing” x:
1. Prove: Statement for base case of x

2. Prove: Statement for |recursive case of x:
. Assume: induction hypothesis (IH)

.e., Statement is true for{some X, jjer
« E.g, ifxis number, then “smaller” = lesser number

. Prove: Statement for x, using IH (and known definitions, theorems ...)
 Typically: show that going from x__.,... to larger x is true!

A valid recursive definition has:
- base case(s) and

- recursive case(s) |(with| “smaller” |self-reference)

Natural Numbers Are Recursively Defined

A Natural Number is:

Base Case | ¢ O Self-reference

Recursive

e *Ork+1, where kis a Natural Number

Recursive definition is valid because self-reference is “smaller”

So, proving things about:
recursive Natural Numbers requires
recursive proof,

.e., proof by induction!

A valid recursive definition has:
- base case and

- recursive case (with “smaller” self-reference)

Proof By Induction Example (sipser ch o)

M —1

= loan balance after t months
* t = # months
« P =principal = original amount of loan
« M = interest (multiplier)
* Y=monthly payment

t__
Prove true: P, = PM' —Y (M 1)

(Details of these variables not too important here)

Proof By Induction Example (sipser ch o)

MU —1
M —1

Prove true: P, = PM* —Y

A proof by induction follows the
cases of the recursive definition
(here, natural numbers) that
the induction is “on”

Proof: by induction on natural number ¢

Base Case, t = 0: A Natural Number is:
-0 M
« Ork+1,wherekisa

MY —1 natural number
= P

Py=PM"—-Y
0
M —1 ,
P, = P is a true statement !
(amount owed at start =

loan amount)

Plugint=0
Simplify

Proof By Induction Example (sipser ch o)

A proof by induction follows cases of

. Z\jt . 1 recursive definition (here, natural
Prove true: Pt _ PM . Y numbers) that the induction is “on
/\j _ 1 A Natural Number is:
- 0M

m)+ k+1, for some nat numk

Inductive Case: t=k + 1, for some natural num k
- Inductive Hypothesis (IH), assume statement is true for some t = (smalter) k

ugs in Mk — 1
vl P, = PMF—-Y ()

M —1
write t=k+1 | GOal statement to prove, for t = k+1: P = PMFTL Yy (

case in terms .
Plug in IH for P
of “smaller” k 8 i

* Proof of Goal:
Pk:-{-l — Pﬁﬂf - Y

Definition of Loan:
amt owed in month k+1 =
amt owed in month k* interest M - amt paid Y

Mk—|—1_1
)

Simplify, to get to goal statement

In-class Exercise: Proof By Induction

A proof by induction follows cases of
recursive definition (here, natural

Prove: (Z * 1) , _— numbers) that the induction is “on”
— Z

m
: A Natural Number is:
p— . 0
Z | :

_ k+ 1, for some nat num k
1=0

Use Proof by Induction.

Make sure to clearly state what (number) the induction is “on”

Proof by Induction: CS 420 Example

Statement 10 prove:

e Where:
« G=a GNFA

LANGOF (G) = LANGOF (R=GNFA>RegExpr(G))

* R =a Regular Expression GNFA®>RegEXpr(G)

* .e,, GNFA»RegEXxpr must not change the language!

This time, let’s
really prove equivalence!
(we previously “proved” it

with some examples)

Proof by Induction: CS 420 Example

Statement 1o prove: | LANGOF (G) = LANGOF (GNFA»RegEXxpr(G))

Recursively defined “thing”

Proof: by Induction on # of states in G T Er——
1. Prove Statement is true for base case |¢has 2 states (base case
instead of zero)?

(Modified) Recursive definition:

A “NatNumber > 1" is;:
e 2

« Ork+1,wherekisa
“NatNumber > 1"

Last [rine

GNFA->RegEXpr (recursive) function

On GNFA input G:
oo |+ If G has 2 states, return the regular expression (from the transition),

e.8.:. Equivalent regular expression
7 (1) (Ro)™ (13) U (Ry)
z GNFA

Proof by Induction: CS 420 Example

Statement 1o prove: | LANGOF (G) = LANGOF (GNFA»RegEXxpr(G))

Proof: by Induction on # of states in G PUE T

V] 1. Prove Statementis true for base case | has 2 states .— -

Statements _—— — Justifications
1. LANGOF ((«)"~()) = LANGOF (R 1. Definition of GNFA

Plugin R . el
2. GNFA3RegExpr((«)“-(+))=R ne 2. Definition of GNFASRegEXpr (base case)

Goal LANGOF ((«)"“~(s)) = LANGOF (GNFA>RegExpr((» -“~++))) | 3. From(1)and (2)

Don’t forget the
Statements / Justifications !

Proof by Induction: CS 420 Example

Statement 1o prove: | LANGOF (G) = LANGOF (GNFA»RegEXxpr(G))

Proof: by Induction on # of states In G
1. Prove Statement is true for base case |¢has 2 states @)L

2. Prove Statement is true for recursive case: | G has > 2 states

Last [ine

GNFA->RegEXpr (recursive) function

On GNFA Input G:
Base

case |* IT G has 2 states, return the regular expression (from the transition),

e.g.
(Ry) (Ro)* (R3) U (Ry) Q
qi > 4

e Else:

Recursive [+ “Rip out” one state
case L, “Repair” the machine to get an equivalent GNFA G’

* Recursively call GNFA®RegExpr(G") < | Recursive call
(with a “smaller” &)

Proof by Induction: CS 420 Example

Statement 1o prove: | LANGOF (G) = LANGOF (GNFA»RegEXxpr(G))

Proof: by Induction on # of states In G
1. Prove Statement is true for base case |¢has 2 states @)L

2. Prove Statement is true for recursive case: | G has > 2 states

 Assume the induction hypothesis (IH):
o Statement is true for smaller ¢’ _

« Use it to prove Statement is true for G > 2 states | LANGOF (GNFA®RegExpr(G’))

LANGOF (G')

« Show that going from G to smaller G’is true! (Where @’ has less states than G)
Don't fo rget the » @ (Ry) (Ry)* (Ry) U (Ry) @ Show that “rip/repair".step |
' " converts G to smaller, equivalent ¢’

Statements / Justifications ! e
TG smaller ¢’

before

Proof by Induction: CS 420 Example

Statement 10 prove:

LANGOF (G) = LANGOF (GNFA>RegEXpr(G))

Proof: by Induction on # of states In G
1. Prove Statement is true for base case |¢has 2 states @)L

 Show that |

V] 2. Prove Statementis true for recursive case: | ¢ has > 2 states

« Assume the il Known “facts” available to use:
e Statement -MIH

. Use it to proy "¥Equiv of Rip/Repair step tates | LancOF (GNFA>RegEXpr(G'))
-VIDef of GNFA->RegExpr

il]

LANGOF (G')

N (Where G’ has less states than G)

- .- T O

Statements

2. LANGOF (G) = LANGOF (G’)

3. GNFARegEXpr(G)=GNFA>RegExpr(G') Plgin

Justifications

1. LANGOF (G’) = LANGOF (GNFA>RegEXpr(G’)) 1. IH
2. Equivalence of Rip/Repair step (prev)
3. Def of GNFA>RegEXpr (recursive call)

Goal 4. LANGOF (G) = LANGOF (GNFA>RegEXpr(G)) 4. From (1), (2), and (3)

Thm: A Lang Is Regular iff Some Reg Expr Describes It

= If a language Is regular, then it's described by a regular expr

i « Use GNFA>RegEXxpr to convert GNFA — equiv regular expression!

&< If a language Is described by a regular expr, then it's regular

] « Convert regular expression — equiv NFA! B

Now: we can use regular expressions to
re p rese nt regu la I la ngs! So a regular language has these

equivalent representations:

DFA
So we also have another way to prove - NFA

things about regular languages! Regular Expression

S fa~ HoOw to Prove A Language |s Regular?

Kevy step, either:

e Construct DFA
e Construct NFA

» Create Regular Expression mmm | 3lishty different because

of recursive definition

R is a regular expression if R is
1. a for some a in the alphabet X,
2. g,
3. 0,
4. (R1 U Rs), where R; and R, are regular expressions,
5. (R1 o R), where Ry and R; are regular expressions, or
6. (R7), where R; is a regular expression.

Proof by Induction

To Prove: a Statement about a recursively defined “thing” x:
1. Prove: Statement for base case of x

2. Prove: Statement for recursive case of x:
. Assume: induction hypothesis (I1H)

.e., Statement is true for some X, jjer
« E.g,if xis number, then “smaller” = lesser number
=)+ Eg, ifxisregular expression, then “smaller” = ...
. Prove: Statement for x, using IH (and known definitions, theorems ...)
 Usually, must show that going from x,_.,... to larger x is true!

for some a in the alphabet 3,

a
6, “smaller”

Whole reg expr
b)

1.
2.
3.
4. (R1 U Ry), where Ry and R, are regular expressions,

5. (R1 o Rs), where Ry and R are regular expressions, or
6. (R7), where R; is a regular expression.

Thm: Reverse I1s Closed for Regular Langs

Example string: abe R — cba
R

For any string w = wiwsz - - - Wy, the reverse of w, written w'™, is the string w in reverse order, ws, - - - waws.

R _ [R
For any language A, let A™ = {w™|w € A} Example language:

. . . R { a, ab, abc }R — {a,ba, cba}
Theorem: if A is regular, so is A

Proof: by induction on the regular expression of A

Thm: Reverse I1s Closed for Regular Langs
if A is regular, so is A™

Proof: by Induction on regular expression of A: (6 cases)

Base cases | 1. @ for some a in the alphabet 3, | same reg. expr. represents 4™ so it is regular

2. €, | same reg. expr. represents A® so it is regular

3. (ﬂ, same reg. expr. represents A® so it is regular

inductive |4. (27 U Rs), where R; and R, are regular expressions, ¢m=
== (Ry o Rg), where R; and Ry are regular expressions, or

6. (R7), where R; is a regular expression.

Need to Prove: if A is a regular language, described by reg expr R, U R,, then A% is regular
|H1: if A, is a regular language, described by reg expr R,, then A;®is regular

|H1: if A, is a regular language, described by reg expr R,,\then A,% is regular

“smaller”

Thm: Reverse I1s Closed for Regular Langs
if A is regular, so is A™

Proof: by Induction on regular expression of 4: (Case # 4)
Statements Justifications

Language A is regular, with reg expr R, U R, Assumption of IF in [F-THEN
R, and R, are regular expressions Def of Regular Expression
R, and R, describe regular langs A, and A4, Reg Expr < Reg Lang (Prev Thm)
If A, is a regular language, then A, % is regular IH
IH

A ®and A,% are regular
AR U A,Ris regular
ARUAR=(A, UA)R

By (3), (4), and (5)

Union Closed for Reg Langs
Reverse and Union Ops Commute
. A=A4,UA4, By (1), (2), and (3)

Goal | 10. AZRisregular 10 By (7), (8), (9)

W oo NN

1
2
3
A
5. IfA,is aregular language, then A,% is regular
6
7
8
9

Thm: Reverse I1s Closed for Regular Langs

if A is regular, so is A™®
Proof: by Induction on regular expression of A: (6 cases)

Base cases | [] 1. @ for some a in the alphabet 3,

Inductive ZI 4

Ry U Rs), where Ry and R are regular expressions,
cases

will use similar

5. (R1 o Ry), where Ry and R are regular expressions, or | Remaining cases
6. (R7), where R; is a regular expression. reasoning

Newt Tine

Non-Regular Languages?

 Are there languages that are not regular languages?

 How can we prove that a language Is not a regular language?

Non-regular
language?

Regular I
language

Submit in-class work 3/4

See gradescope

