UMB CS 420

Non-Regular Languages
Wednesday March 6, 2024

Non-regular
language?

Regular I ? ?
language

%/{/{0«/{0@%@/{5&’

« HW 4 out
* Due Mon 3/18 12pm EST (noon)
« (After spring break)

* Problem 4, Part 2c Update:

* Prove the statement for
* 1 base case
e 1 recursive case

Non-regular
language?

Regular I
language

A language is a set of strings.

$ fa: Regular or Not?

« Many ways to prove a language is regular:
« Construct a DFA recognizing it
« Construct an NFA recognizing it
 Create a regular expression describing the language

M recognizes language A
if A= {w| M accepts w}

« Bc we proved: Regular Expression <> NFA <> DFA < Regular Language

» But not all languages are regular!
« £.g, programming language syntaxes are not regular
 language of all Python programs, or all HTML/XML pages, are not regular
* That means:

 There is no DFA or NFA that: accepts valid Python programs (and rejects invalid ones)

 And, there is no regular expression that: describes all valid Python or HTML programs
(a common mistake)!

HTML is a language of sufficient complexity that it cannot be parsed by regular

* expressions. Even Jon Skeet cannot parse HTML using regular expressions. Every
O | I I e O n e \/\/ O D I N Ot P atime you attempt to parse HTML with regular expressions, the unholy child weeps

the blood of virgins, and Russian hackers pwn your webapp. Parsing HTML with

regex summons fainted souls into the realm of the living. HTML and regex go
| Reg EX matCh Open tag SI exce pt XH TM L Se|f-COI’ together like love, marriage, and ritual infanticide. The <center> cannot hold it is too

late. The force

) , . e conceptual space will
Asked 10 years, 10 months ago Active 1 month ag Viewed 2.9m times 9.0 .
destroy your ummm ... th IS'IS rse HTML with regex you are
giving in to TK 3 » % doom us all to inhuman toil for
| need to match all of these opening tags: the One whos gettmg a little weird ic Multilingual Plane, he

omes. HTML-plus-regexp will liquify the nerves of the sentient whilst you observe,

1553 Tryl ng to use regUlar expressmns to our psyche withering in the onslaught of horror. Reg?x-based HTML parsers are
4z describe the non-regu lar HTML langu d8€ he cancer that is killing StackOverflow it is too late it s too late we cannot be saved

<@ href="foo" the trangession of a childlensures regex will consume all living tissue|(except for
HTML which it cannot, as previously prophesied) dear lord help us how can anyone
But not these: survive this scourge using regex to pars| ve ry wel rd anity to an eternity
of dread torture and security holes using—~egerosctooroprocess HTML
establishes a breach between this world and the dread realm of corrupt entities (like

S - : SGML entities, but more corrupt) a mere glimpse of the world of regex parsers for
| You can't parse [X]HTML with regex. Because HTML can't be parse - Pl J ,p : 01 regex p
HTML will instantly transport a programmer’'s consciousness into a world of

Regex is not a tool that can be used to correctly parse HTML. As | h ceaseless screamina ha comas tha nactilent slithy regex-infection will devour your

4414 HTML-and-regex questions here so many times before, the use of reHTML parser, aj 22727 all time like Visual Basic only worse he
allow you to consume HTML. Regular expressions are a tool that is

e nfi?ghtenment, HTML tags leaking fegm your eye_s/’.'?ke liquid pain, the song of
sophisticated to understand the constructs employed by HTML.I HTN

ular expressien—parsmg—will extinguish the voices of mortal man from the sphen
V I regular language and hence cannot be parsed by regular expressior |can see it can you see_it rt it is beautiful the f inal snuf fing of the lies of Man ALL I
L into its meaningful pe

OSTALL IS LOST the pony he comes he comes-hecomes thé:ichor permea,te§
Someone who paid attention in 420 ... I @Y FACE MY FACE oh gooanWomooo NO stop the an-_g!_s ae not real
g g ‘ed irregular regular eX ZArGoT S’TOJ\I-yTHEP NY, B COMES

used by Perl are not up to the task of parsing HTML. You will never 1

IHave you tried using an XML parser

hmm ... what's this?

thstback: Designing DFAS or NFAS 5

« Each state “remembers” information about input @-.

* Eg, q.., = Seen even # of 1s”
q.qq = Seen odd # of 1s”

« But finite states = finite amount of info storage (and must decide in advance)

« SO DFAs can't remember an arbitrary count!
« would require infinite states

A Non-Regular Language

An arbitrary count

L={0"1"|1n>0)}

*|A DFA recognizing L would require infinite states! (impossible)
 States representing zero 0s seen, one 0 seen, two 0s, ...

* This language Is the same as many PLs, e.g., HTML!

« To better see this replace:
° HO" Wlth “<tag>“ Or H(H

« “1” with “</tag>" or “)” SO, how can we
prove non-regularness?

« The Problem: remembering nestedness

« Need to count arbitrary nesting depths
« Eg if { if { if { . } } }
« Thus: most programming language syntax is not regular!

Prove: Spider-Man does not exist 299

In general, proving
something not true is
different (and harder)

than proving it true

In some cases, it’'s possible,
but typically requires new
proof techniques!

We know how to: prove a language is regular
Can we: prove a language is not regular?

YES! but requires a new proof technique!

Step 1: find a fact that is true for all regular languages ...

A Fact (Lemma) About Regular Languages

Pumping lemma If A is a regular language, then here is a number p (the
pumping length) where if s is any string in A of length a¢ least p, then s may be
divided into three pieces, s = xyz, satistying the following \conditions:
1. foreach i > 0, zy'z € A,
2. |y| > 0, and

3. eyl < p. This is an
Remember: To use an “If X then Y” statement, “If X then Y”
1. prove X is true, statement
2. conclude that Y Is true

tsitck- The Modus Ponens Inference Rule

If we know these statements are true ...
 [f Pthen Q

P

Then we also know this statement is true ...

°

A Lemma About Regular Languages

Pumping lemma If A is a regular language, then

... then we can conclude ...

Uh ... whatever this says ...

To use The Pumping lemma for a language A ...

... first prove that A is a regular language
(but maybe it can be

used to prove that a

Q: Can we use The Pumping lemma to prove that a language is regular? language is not regular!)

NO (but we already know many other ways to do that!)

Equivalence of Conditional Statements

* Yes or No? “If Xthen Y” Is equivalent to:

* “If Ythen X" (converse) | Seer Frevinsty
* No!

 “If not X then not Y” (inverse)
* NO!

* “If not Y then not X" (contrapositive)
e Yes!

f-then statement ... then the language is not regular!

Pumping lemma If A is a regular language, then there is a number p (the
pumping length) where if s is any string in A of length at least p, then s may be
divided into three pieces, s = zyz, satistying the following conditions:

1. for each i > 0, zy'z € A,

2. |y| > 0, and Equivalent (contrapositive):
3. |lzy| < p. If any of these are not true ...

Contrapositive:
“If X then Y” is equivalent to “If not Y then not X"

Logical Inference Rules

Modus Ponens
Premises (known facts)

* [f Pthen Q

* Pis true
Conclusion (new fact)
e QIS true

Modus Tollens (contrapositive)
Premises (known facts)

Step 1: find a fact that is true
° hc P theﬂ Q for all regular languages ...

o Q IS not true Step 2: where the fact can be

proven not truel

Conclusion (new fact)

How to: prove a language

*PIs M true IS not regular?

Fact About Regular Languages: Detalls

Pumping lemma If A is a regular language, then| there is a number ﬂ(the
pumping length) where if s is any string in A of length at least p, then s may be
divided into three pieces, s = zyz, satistying-the tollowing cornditions:

Conditions are on strings in

1. for each i > 0, zy'z € A, the language with length > p

2. |y| > 0, and Any regular language satisfies
3. |zy| < p. these three conditions!

The exact value of p differs
NOTE: for every regular language

- Lemma doesn't give an exact p!
- Only that there is some string length p ...

Conclusion: pumping
lemma is only interesting
for infinite langs!

The Pumping Lemma: Finite Lan{ (wnich contain strines

Lemma doesn’t say what p is! Just that “thereisap..” with repeating parts)

Pumping lemma If A is a regular language, then there is a number p (the
pumping length) where if s is any string in A of length at least p, then s may be
divided into three pieces, s = zyz, satistying the following conditions:

Possible p for finite langs?

1. for each i > 0, xy'z € A,

How about:
So finite langs (specifically, all strings p = LENGTH(longest string) + 1

2. |ly| > 0, and

3. |zy| < p. in the language “of length at least p”)
must satisfy these conditions
(whatever they are)

strings in the language
with length > p? None!

Therefore, all strings with
o length > p satisfy the pumping
Example: a finite language {“ab”, “cd”} lemma conditions! ©

 All finite languages are regular!
e (can easily construct DFA/NFA/Regular Expression recognizing them)

Langs With Strings With Repeatable Parts

Pumping lemma If A is a regular language, then there is a number p (the
pumping length) where if s is any string in A of length at least p, then s may be
divided into three pieces, s = zyz, satistying the following conditions:

e N
1. for each 2 > (), ;;;yig [A, “pumped” string still in language y;"' .

2. |y| > 0, and repeatable (“pumpable”) part ’ =

3. |zy| < p. (= repeatable state in DFA!) S

: LN
Strings that have a repeatable part can be split into 3 parts:

« x = part before any repeating DFAs have finite states,
. y = repeated (or “pumpable”) part so for l°”fo‘:'eogtgahte(r'ﬁeu’slte:'eg;zaip) Nputs,
. 7= part after any repeating

e.g, “long enough length” = p = # states +1 (The Pigeonhole Principle)

The Pigeonhole Principle

If # birds > # holes,
then there must be > 1
bird in some hole

The Pumping Lemma, a Closer Look

Pumping lemma If A is a regular language, then there is a number p (the
pumping length) where if s is any string in A of length at least p, then s may be
divided into three pieces, s = zyz, satistying the following conditions:

1. foreachi > 0, 2y s-€ A,

2. |yl > 0, and . 1 e h
y' ’ So a substring that can repeat once, y:"
3. ﬂjy‘ < p. can also be repeated any number of times
This is the only way for | ':‘
In essence, the Pumpin UL EIEIEE S T i
. pIng have repeating patterns
lemma iIs a theorem about \ Y,
: : (Kleene star)
repeating patterns in regular
languages “long enough length” = p = # states +1
(some state must repeat)

l-othss exercise; INTINITE LANguUages

Split the string “010” into three parts xyz,
e.g.

x=7, y="Nn z=7N
so that repeating y part any number of
times results in a new string still in 4

Now do “0110”:
x=7, y=7, z=7

Example: infinite language A = {“00”,“010”,“0110”, “01110”", ...}

The Pumping Lemma: Infinite Languages

Pumping lemma If A is a regular language, then there is a number p (the
pumping length) where if s is any string in A of length at least p, then s may be
divided into three pieces, s = zyz, satistying the following conditions:

1. for each i > 0, xy'z € A,

2. |ly| > 0, and “oumpable” part of string £.g, "010" € 4, so pumping

lemma says it's splittable
3. |$y\ < p. Note: “pumpable” part cannot be empty Into three parts xyz, e.g.
x=0, y=1, z=0

Example: infinite language A = {“00”,“010”,“0110”,“01110”" ...}

e |t's regular bc it has regular expression 0170

..and "pumping” (repeating) middle y part

Pum.pir)g. lemma summary: creates a string that is still in the language
“All infinite regular languages must - repeat once (i = 1): “010”,
have a star in its regular expression”! - repeat twice (i = 2): “0110”,

- repeat three times (i = 3): “01110”

Summary: The Pumping Lemma ...

. ... states properties that are true for all regular languages
. ... specifically, properties about “long enough” strings in reg. langs
 In general, it describes repeating patterns in reg. langs

IMPORTANT:
* The Pumping lemma cannot prove that a language is regular!
« But ... we can use it to prove that a language is not regular

Pumping lemma summary: ... by showing that the repeating
“All infinite regular languages must pattern is not expressible with a
have a star in its regular expression”! star regular expression!

[TV — ... then the language is not regular

Pumping lemma If A is a regular language, then there is a number p (the
pumping length) where if s is any string in A of length at least p, then s may be
divided into three pieces, s = zyz, satistying the following conditions:

1. for each i > 0, zy'z € A,

2. |y| > 0, and Equivalent (contrapositive):
3. |zy| < p. If any of these are not true ...

Contrapositive:
“If X then Y” is equivalent to “If not Y then not X"

Kinds of Mathematical Proof

« Deductive Proof
 Logically infer conclusion from known definitions and assumptions

 Proof by induction
« Use to prove properties of recursive definitions or functions

* Proof by contradiction (===

* Proving the contrapositive

How To Do Proof By Contradiction

3 easy steps:
1. Assume: the opposite of the statement to prove

2. Show: the assumption leads to a contradiction

3. Conclude: the original statement must be true

Pumping Lemma: Non-Regularity Example

This repetition pattern cannot be expressed with a star regular expression?

Let B be the language {0"1"|n > 0}. We use the pumping lemma to prove that
B 1s not regular. The proof is by contradiction.

Pumping lemma summary: ... by showing that the repeating

“All infinite regular languages must pattern is not expressible with a
have a star in its regular expression”! star regular expression!

Pumping lemma If A is a regular language, then there is a number p (the

V\/a nt tO D rove: On 111 iS I'IOt d regu la r l.a ngU age pumping length) where if s is any string in A of length at least p, then s may be

divided into three pieces, s = zyz, satisfying the following conditions:

1. for each i > 0, zy'z € A,
2. |y| >0, and
3. |zy| <p.

Reminder: Pumping lemma says:

1t . . _— all strings 071" > length p are
Proof (by contradiction): | Nowwe must find a contradiction ... splittable into xyz where y is pumpable

° Assume: Onln is ad regu lar language So find string > length p that is not

- G s satisfy the pumping lemma splittable into xyz where y is pumpable
 |.e, all strings > length p are pumpable

« Counterexample = 0717

We must show that there is no
possible way to split this
string to satisfy the conditions
of the pumping lemmal!

... then not true byumping 1 i ;
i . umping lemma ~ If A is a regular language, then there is a number p (the
Wa nt tO D rove. On 1” IS I'IOt d regu la r l.a ngU age pumping length) where if s is any string in A of length at least p, then s may be

divided into three pieces, s = xyz, satisfying the following conditions:

1. for each i > 0, zy'z € A,
2. |y| >0, and

POSSl b le S p l|t y = ad ll 0s S i< Contrapositive: If not true ...

Reminder: Pumping lemma says:

PI'OOf <by Contrad iCtiO n>: splittzllilsetgmisxﬁ);lv}:felreer}/git: gua:r:f)able
« Assume: 0"1"1s a regular language So find string = length p that s not
- . . splittable into xyz where y is pumpable
* S0 It must satisfy the pumping lemma
* le, all strings > length p are pumpable p 0s p 1s BUT ... pumping
e Counterexample = 0717 lemma requires

only one pumpable

OO\ O’ll | splitting
elall 0s | So the proof is not
——"‘-§_~§§§—‘~“““--___9 done!

X Yy Z

. . _ Is there another way
 Pumping y: produces a string with more 0s than 1s to split into xyz ?

e ... not in the language 071" !

* S0 0r1Pis not pumpable? (according to pumping lemma)
So 0m1" is a not regular language? (contrapositive)

* This is a contradiction of the assumption?

Want to prove: 071" is not a regular language

Possible Split: y = all 1s

Proof (by contradiction):
 Assume: 071" is a regular language

« So It must satisfy the pumping lemma
* |.e, all strings > length p are pumpable p 0s p 1s

« Counterexample = 0717
00..011..1

* Choose xyz split so y contains: |

lall 1s — Is there another way
to split into xyz ?

—
X y Zz

* |s this string pumpable (repeating y produces string still in 0717)?
* No!
« By the same reasoning as in the previous slide

Want to prove: 071" is not a regular language

Possible Split: y= 0s and 1s

Proof (by contradiction):
 Assume: 071" is a regular language

« So It must satisfy the pumping lemma
* |.e, all strings > length p are pumpable p 0s p 1s

« Counterexample = 0,17
» Choose xyz split so y contains: 00 " 01]; .1

| both 0s and 1s \ |
X Z

y

Did we examine
every possible
splitting?

Yes! QED

* No!
« Pumped string will have equal 0s and 1s ...

* |s this string pumpable (repeating y produces string still in 0717)?

But maybe we
did’t have to ...

« But they will be in the wrong order: so there is still a contradiction!

The Pumping Lemma: Condition 3

Pumping lemma If A is a regular language, then there is a number p (the
pumping length) where if s is any string in A of length at least p, then s may be
divided into three pieces, s = zyz, satistfying the following conditions:

1. for each i > 0, xy'z € A,

2. |y| > 0, and

3. lzy| < p. p0s

The repeating party ... \OO (),11 1

must be in the first p characters! Y

y must be in here!

The Pumping Lemma: Pumping Down

Pumping lemma If A is a regular language, then there is a number p (the
pumping length) where if s is any string in A of length at least p, then s may be
divided into three pieces, s = zyz, satistfying the following conditions:

1. for each i > 0, 2y'z € A,

2. |y| > 0, and

3. |zy| < p.

Repeating part y must be non-empty ...
but can be repeated zero times!

Example: L = {01 |i>]}

Want to prove: L = {01/ | i >} is not a regular language
Pumping Down

Proof (by contradiction):
 Assume: L is a regular language
* S0 It must satisfy the pumping lemma
l.e., all strings > length p are pumpable p+1 0s p 1s

e Counterexample = 0P*11°
00..011...1

_Y_l

C .

« Choose xyz split so y contains:
e all 0s
« (Only possibility, by condition 3)
X Yy

Z
 Repeat y zero times (pump down): produces string with # 0s < # 1s

« ... not in the language {0’V | i >}
« S0 {0V | i>j}does not satisfy the pumping lemma

e So Itis a not regular language
« This is a contradiction of the assumption!

Newt 7ine /a/(c/ rest af the Semester /

« If a language is not regular, then what is it?

* There are many more classes of languages!

Turing-recognizable

decidable

context-free

Submit in-class work 3/6

On gradescope

