UMB CS 420 Pushdown Automata (PDAs)

Wednesday, March 20, 2024

Announcements

- HW 5 out
 - Due Mon 3/25 12pm noon

Context-Free Grammar (CFG)

Grammar $G_1 = (V, \Sigma, R, S)$

terminals (analogous to DFA's alphabet)

A context-free grammar is a 4-tuple (V, Σ, R, S) where

- 1. V is a finite set called the variables,
- 2. Σ is a finite set, disjoint from V, called the *terminals*,
- 3. R is a finite set of *rules*, with each rule being a variable and a string of variables and terminals, and
- **4.** $S \in V$ is the start variable.

$$>V=$$

$$\Sigma = \{0,$$

$$S = 1$$

Generating Strings with a CFG

Grammar $G_1 = (V, \Sigma, R, S)$

$$A \rightarrow 0A1$$
 $A \rightarrow B$
 $B \rightarrow \#$

Strings in CFG's language = all possible **generated** / **derived** strings

$$L(G_1)$$
 is $\{0^n \# 1^n | n \ge 0\}$

A CFG generates a string, by repeatedly applying substitution rules:

$$A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 000A111 \Rightarrow 000B111 \Rightarrow 000#111$$

This sequence of steps is called a **derivation**

Derivations: Formally

Let
$$G = (V, \Sigma, R, S)$$

Single-step

$$\alpha A\beta \Rightarrow \alpha \gamma \beta$$

Where:

$$A \in V \leftarrow Variable$$

$$A \in V \leftarrow R \leftarrow Rule$$

A *context-free grammar* is a 4-tuple (V, Σ, R, S) , where

- 1. V is a finite set called the *variables*,
- **2.** Σ is a finite set, disjoint from V, called the *terminals*,
- **3.** *R* is a finite set of *rules*, with each rule being a variable and a string of variables and terminals, and
- **4.** $S \in V$ is the start variable.

Derivations: Formally

Let $G = (V, \Sigma, R, S)$ Single-step

$$\alpha A\beta \underset{G}{\Rightarrow} \alpha \gamma \beta$$

Where:

A *context-free grammar* is a 4-tuple (V, Σ, R, S) , where

- 1. V is a finite set called the *variables*,
- **2.** Σ is a finite set, disjoint from V, called the *terminals*,
- 3. R is a finite set of *rules*, with each rule being a variable and a string of variables and terminals, and
- **4.** $S \in V$ is the start variable.

Multi-step (recursively defined)

Base case: $\alpha \stackrel{*}{\Rightarrow} \alpha$ (0 steps)

Recursive case:

(> 0 steps)

Formal Definition of a CFL

A *context-free grammar* is a 4-tuple (V, Σ, R, S) , where

- 1. V is a finite set called the *variables*,
- **2.** Σ is a finite set, disjoint from V, called the *terminals*,
- **3.** *R* is a finite set of *rules*, with each rule being a variable and a string of variables and terminals, and
- **4.** $S \in V$ is the start variable.

$$G = (V, \Sigma, R, S)$$

"... all possible sequences of terminal symbols (i.e., strings) ..."
"... that can be generated with rules of grammar
$$G$$
"
with rules of grammar G is ..."
$$L(G) = \left\{ w \in \Sigma^* \mid S \overset{*}{\Rightarrow} w \right\}$$

If a **CFG** <u>generates</u> all <u>strings</u> in a <u>language</u> *L*, then *L* is a <u>context-free language</u> (CFL)

Designing Grammars: Basics

- 1. Think about what you want to "link" together
- E.g., $0^n 1^n$
 - $A \rightarrow 0A1$
 - # 0s and # 1s are "linked"
- E.g., **XML**
 - ELEMENT → <TAG>CONTENT</TAG>
 - Start and end tags are "linked"
- 2. Start with small grammars and then combine
 - just like with FSMs, and programming!

Example: Creating CFG

alphabet Σ is $\{0,1\}$

 $\{w | w \text{ starts and ends with the same symbol}\}$

Not in the language: 10, 01, 110 ϵ ?

2) Create CFG:

Needed Rules:

$$S \rightarrow 0M0 \mid 1M1 \mid 0 \mid 1$$
 "start/end symbol are "linked" (ie, same); middle can be anything"

$$M \to MT \mid \epsilon$$
 "middle: all possible terminals, repeated (ie, all possible strings)"

$$T \rightarrow 0 \mid 1$$
 "all possible terminals"

3) Check CFG: generates examples in the language; does not generate examples not in language

Regular Languages	Context-Free Languages (CFLs)
Regular Expression	Context-Free Grammar (CFG)
<u>describes</u> a Regular Lang	<u>describes</u> a CFL

Regular Languages	Context-Free Languages (CFLs)
Regular Expression	Context-Free Grammar (CFG)
<u>describes</u> a Regular Lang	<u>describes</u> a CFL
Finite State Automaton (FSM)	???
<u>recognizes</u> a Regular Lang	<u>recognizes</u> a CFL

	Regular Languages	Context-Free Languages (CFLs)	
thm	Regular Expression	Context-Free Grammar (CFG)	dof
	<u>describes</u> a Regular Lang	<u>describes</u> a CFL	def
def	Finite State Automaton (FSM)	Push-down Automata (PDA)	thm
	<u>recognizes</u> a Regular Lang	<u>recognizes</u> a CFL	

	Regular Languages	Context-Free Languages (CFLs)	
thm	Regular Expression	Context-Free Grammar (CFG)	dof
	<u>describes</u> a Regular Lang	<u>describes</u> a CFL	def
def	Finite State Automaton (FSM)	Push-down Automata (PDA)	thm
	<u>recognizes</u> a Regular Lang	<u>recognizes</u> a CFL	
	Proved:	Proved:	
	Regular Lang ⇔Regular Expr	CFL ⇔ PDA	

Pushdown Automata (PDA)

PDA = NFA + a stack

What is a Stack?

- A <u>restricted</u> kind of (infinite!) memory
- Access to top element only
- 2 Operations only: push, pop

Pushdown Automata (PDA)

- PDA = NFA + a stack
 - Infinite memory
 - read/write top location only
 - Push/pop

An Example PDA

A **PDA transition** has **3 parts:**

- Read
- Pop
- Push

Formal Definition of PDA

A **pushdown automaton** is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$, where Q, Σ, Γ , and F are all finite sets, and

- **1.** Q is the set of states,
- **2.** Σ is the input alphabet,
- 3. Γ is the stack alphabet,

Stack alphabet has special stack symbols, e.g., \$

- **4.** $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \longrightarrow \mathcal{P}(Q \times \Gamma_{\varepsilon})$ is the transition function,
- 5. $q_0 \in C$ Input 1 Pop art state, and Push
- **6.** $F \subseteq Q$ is the set of accept states.

Non-deterministic!
Result of a step is **set** of (STATE, STACK CHAR) pairs

$$Q = \{q_1, q_2, q_3, q_4\},\$$

PDA Format [0, \$] efinition Fxample Stack alphabet has special stack symbol \$

$$F = \{q_1, q_4\},\$$

A **pushdown automaton** is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$, where Q, Σ , Γ , and F are all finite sets, and

1. Q is the set of states,

Input

- 2. Σ is the input alphabet, Pop Push
- 3. Γ is the stack alphabet,
- **4.** $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \longrightarrow \mathcal{P}(Q \times \Gamma_{\varepsilon})$ is the transition function,
- **5.** $q_0 \in Q$ is the start state, and
- **6.** $F \subseteq Q$ is the set of accept states.

$$Q = \{q_1, q_2, q_3, q_4\},$$

 $\Sigma = \{0,1\},$
 $\Gamma = \{0,\$\},$
 $F = \{q_1, q_4\},$ and

$$Q = \{q_1, q_2, q_3, q_4\},$$
 $\Sigma = \{0,1\},$
 $\Gamma = \{0,\$\},$
 $F = \{q_1, q_4\},$ and

$$Q = \{q_1, q_2, q_3, q_4\},$$

 $\Sigma = \{0,1\},$
 $\Gamma = \{0,\$\},$
 $F = \{q_1, q_4\},$ and

$$Q = \{q_1, q_2, q_3, q_4\},$$

 $\Sigma = \{0,1\},$
 $\Gamma = \{0,\$\},$
 $F = \{q_1, q_4\},$ and

$$Q = \{q_1, q_2, q_3, q_4\},$$

 $\Sigma = \{0,1\},$
 $\Gamma = \{0,\$\},$
 $F = \{q_1, q_4\},$ and

<u>In-class exercise</u>:

Fill in the blanks

$$Q =$$

$$\Sigma =$$

$$\Gamma =$$

$$F =$$

<u>In-class exercise</u>:

Fill in the blanks

arepsilon,\$ightarrowarepsilon

$$Q = \{q_1, q_2, q_3, q_4\},\$$

$$\Sigma = \{0,1\},$$

$$\Gamma = \{0,1,\$\},$$

$$F = \{q_4\}$$

 δ is given by the following table, wherein blank entries signify \emptyset .

PDA M_3 recognizing the language $\{ww^{\mathcal{R}}|w\in\{0,1\}^*\}$

DFA Computation Rules

Informally

Given

- A DFA (~ a "Program")
- and Input = string of chars, e.g. "1101"

A **DFA** <u>computation</u> (~ "Program run"):

- Start in start state
- Repeat:
 - Read 1 char from Input, and
 - Change state according to transition rules

Result of computation:

- Accept if last state is Accept state
- **Reject** otherwise

Formally (i.e., mathematically)

- $M = (Q, \Sigma, \delta, q_0, F)$
- $w = w_1 w_2 \cdots w_n$

A **DFA computation** is a **sequence of states:**

• specified by $\hat{\delta}(q_0, w)$ where:

- *M* accepts w if $\hat{\delta}(q_0, w) \in F$
- *M* rejects otherwise

DFA Multi-step Transition Function

$$\hat{\delta}: Q \times \Sigma^* \to Q$$

- <u>Domain</u> (inputs):
 - state $q \in Q$
 - string $w = w_1 w_2 \cdots w_n$ where $w_i \in \Sigma$
- Range (output):
 - state $q \in Q$

A **DFA computation** is a **sequence of states:**

(Defined recursively)

Base case
$$\hat{\delta}(q,arepsilon)=q$$

Recursive Case
$$\hat{\delta}(q,w'w_n)=\delta(\hat{\delta}(q,w'),w_n)$$
 where $w'=w_1\cdots w_{n-1}$

PDA Computation?

- PDA = NFA + a stack
 - Infinite memory
 - Push/pop top location only

A **DFA computation** is a **sequence of states** ...

A PDA computation is a <u>not</u> just a <u>sequence of states</u> ...

... because the stack contents can change too!

PDA Configurations (IDs)

• A configuration (or ID) is a "snapshot" of a PDA's computation

A sequence of configurations represents a PDA computation

PDA Computation, Formally

$$P = (Q, \Sigma, \Gamma, \delta, q_0, F)$$

Single-step

A **configuration** (q, w, γ) has three components q = the current state w = the remaining input string γ = the stack contents

Multi-step

• Base Case

0 steps

$$I \stackrel{*}{\vdash} I$$
 for any ID I

• Recursive Case

> 0 steps

$$I \stackrel{*}{\vdash} J$$
 if there exists some ID K such that $I \vdash K$ and $K \stackrel{*}{\vdash} J$

Single step Recursive "call"

This specifies the **sequence of configurations** for a **PDA** computation

Input Read Pop Push $q_1 \xrightarrow{\varepsilon, \varepsilon \to \$} q_2 \xrightarrow{0, \varepsilon \to 0} q_2 \xrightarrow{1, 0 \to \varepsilon} q_3$

1,0ightarrowarepsilon

Remaining Input

Stack

State

PDA Running Input String Example

Flashback: Computation and Languages

The language of a machine is the set of all strings that it accepts

• E.g., A DFA M accepts w if $\hat{\delta}(q_0,w) \in F$

• Language of $M = L(M) = \{ w \mid M \text{ accepts } w \}$

Language of a PDA

$$P = (Q, \Sigma, \Gamma, \delta, q_0, F)$$

A **configuration** (q, w, γ) has three components

q =the current state

w = the remaining input string

 γ = the stack contents

PDAs and CFLs?

- PDA = NFA + a stack
 - Infinite memory
 - Push/pop top location only
- Want to prove: PDAs represent CFLs!

- We know: a CFL, by definition, is a language that is generated by a CFG
- Need to show: PDA ⇔ CFG
- Then, to prove that a language is a CFL, we can either:
 - Create a CFG, or
 - Create a PDA

A lang is a CFL iff some PDA recognizes it

- ⇒ If a language is a CFL, then a PDA recognizes it
 - We know: A CFL has a CFG describing it (definition of CFL)
 - To prove this part: show the CFG has an equivalent PDA
- ← If a PDA recognizes a language, then it's a CFL

Shorthand: Multi-Symbol Read Transition

Shorthand: Multi-Stack Push Transition

Note the <u>reverse</u> order of pushes

CFG→PDA (sketch)

- Construct PDA from CFG such that:
 - PDA accepts input only if CFG generates it
- PDA:
 - simulates generating a string with CFG rules
 - by (nondeterministically) trying all rules to find the right ones

CFG→PDA (sketch)

- Construct PDA from CFG such that:
 - PDA accepts input only if CFG generates it
- PDA:
 - simulates generating a string with CFG rules
 - by (nondeterministically) trying all rules to find the right ones

 $S \Rightarrow \mathbf{a} T \mathbf{b}$ (using rule $S \rightarrow \mathbf{a} T \mathbf{b}$)

 \Rightarrow **a**T**ab** (using rule $T \rightarrow T$ **a**)

 \Rightarrow **aab** (using rule $T \rightarrow \varepsilon$)

 $q_{\rm accept}$

Example Derivation using CFG:

 $q_{\rm loop}$

 $q_{\rm accept}$

A lang is a CFL iff some PDA recognizes it

- $| \checkmark | \Rightarrow | \text{If a language is a CFL, then a PDA recognizes it} |$
 - Convert CFG→PDA

- ← If a PDA recognizes a language, then it's a CFL
 - To prove this part: show PDA has an equivalent CFG

PDA→CFG: Prelims

Before converting PDA to CFG, modify it so:

- 1. It has a single accept state, q_{accept} .
- 2. It empties its stack before accepting.
- **3.** Each transition either pushes a symbol onto the stack (a *push* move) or pops one off the stack (a *pop* move), but it does not do both at the same time.

Important:

This doesn't change the language recognized by the PDA

PDA P -> CFG G: Variables

$$P = (Q, \Sigma, \Gamma, \delta, q_0, \{q_{\text{accept}}\})$$
 variables of G are $\{A_{pq} | p, q \in Q\}$

- Want: if P goes from state p to q reading input x, then some A_{pq} generates x
- So: For every pair of states p, q in P, add variable A_{pq} to G
- Then: connect the variables together by,
 - Add rules: $A_{pq} \rightarrow A_{pr}A_{rq}$, for each state r
 - These rules allow grammar to simulate every possible transition
 - (We haven't added input read/generated terminals yet)

The Key IDEA

• To add terminals: pair up stack pushes and pops (essence of a CFL)

PDA P -> CFG G: Generating Strings

$$P = (Q, \Sigma, \Gamma, \delta, q_0, \{q_{\text{accept}}\})$$
 variables of G are $\{A_{pq} | p, q \in Q\}$

• The key: pair up stack pushes and pops (essence of a CFL)

if $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε) ,

put the rule $A_{pq} \rightarrow aA_{rs}b$ in G

PDA P -> CFG G: Generating Strings

$$P = (Q, \Sigma, \Gamma, \delta, q_0, \{q_{\text{accept}}\})$$
 variables of G are $\{A_{pq} | p, q \in Q\}$

• The key: pair up stack pushes and pops (essence of a CFL)

if $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε) ,

put the rule $A_{pq} \rightarrow aA_{rs}b$ in G

PDA P -> CFG G: Generating Strings

$$P = (Q, \Sigma, \Gamma, \delta, q_0, \{q_{\text{accept}}\})$$
 variables of G are $\{A_{pq} | p, q \in Q\}$

• The key: pair up stack pushes and pops (essence of a CFL)

if $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε) ,

put the rule $A_{pq} \rightarrow a A_{rs} b$ in G

A language is a CFL \Leftrightarrow A PDA recognizes it

- $| \longrightarrow |$ If a language is a CFL, then a PDA recognizes it
 - Convert CFG→PDA

- ✓ ← If a PDA recognizes a language, then it's a CFL
 - Convert PDA→CFG

Submit in-class work 3/20

On Gradescope