UMB CS 420

Pushdown Automata (PDAs)

Wednesday, March 20, 2024

?I 10™ ANNUA EF
aEIpOSIUM ON

. (e

")
: ,th.qr

GRAMMAR!

%)g

%/{/{0&(/{06/%@/{56’

* HW 5 out
* Due Mon 3/25 12pm noon

" IOMANOPL
SYMPOSIUM oN
FORMAL LANGUAGES

N (e

;E 4

GRAMMAR!

Last [ine;

Context-Free Grammar (CFG)
Grammar G, =(V, %, R, S)

terminals
Top variable is:
Start variable A S 0A1 R is this set of rules (var-string pairs):
A B Substitution rules

Variables |
(a.ka. non-terminals) =5 — # (aka., productions)

terminals (analogous to DFA’s alphabet)
A context-free grammar is a 4-tuple (V, X, R, S) where

1. V is a finite set called the variables, V =
2. ¥ is a finite set, disjoint from V/, called the terminals,

3. R is a finite set of 7ules;with each rule being a variable and a
string of variables and terminals, and S —

4. S € V is the start variable.

Last [ine;

Generating Strings with a CFG

Grammar G, =(V, %, R, S)

A — 0A1

Strings in CFG's language
A— B = all possible generated / derived strings
B — #

L(Gy) 1s {0"#1"|n > 0}

A CFG generates a string, by repeatedly applying substitution rules:

Example:

A= 0A1 = 00A11 = 000A111 = 0008111 = 000#111

This sequence of steps is called a derivation

A context-free grammar is a 4-tuple (V, X, R, S), where
/d@ t 7/—/” e, 1. V is a finite set called the variables,

2. ¥ is a finite set, disjoint from V, called the terminals,

3. R is a finite set of rules, with each rule being a variable and a

D e rlvatl O n S F O rm a l ly " string of variables and terminals, and

4. S € V is the start variable.

Let G = (V.X, R, S)
Single-step

aApB = oaﬂ@

G

Where:

sequence of
terminals or variables

Variable

Rule

Last [ine;

Derivations: Formally

Let G = (V.X, R, S)
Single-step

a AL = ayf
G
Where:
7 * sequence of
vy, P) & (V U Z) terminals or variables
A cV Variable

A—)’}“’ER Rule

A context-free grammar is a 4-tuple (V, X, R, S), where

1. V is a finite set called the variables,

2. ¥ is a finite set, disjoint from V, called the terminals,

3. R is a finite set of rules, with each rule being a variable and a
string of variables and terminals, and

4. S € V is the start variable.

Multi-step (recursively defined)
Base case:

*
o= « (0 steps)
G

Recursive case: (> 0 steps)

Single step

X
o=
G'Y

N\

here: « = (3 and
Where Gﬁ Bzwy

(smaller)
Recursive “call”

A context-free grammar is a 4-tuple (V, X, R, S), where
/d@ t 7/—/” e, 1. V is a finite set called the variables,

2. ¥ is a finite set, disjoint from V, called the terminals,

. . . 3. R is a finite set of rules, with each rule being a variable and a
O r I I I a e | n | t | O n O a string of variables and terminals, and

4. S € V is the start variable.

G=(V,X,R,S)

“...all possible sequences of “... that can be generated
terminal symbols (i.e., strings) ...” with rules of grammar G”

“the language of a L(G) — {w c Z* ‘ S :*> ’LU}

grammar G is ..." I

If a CFG generates all strings in a language L,
then L is a context-free language (CFL)

Last [ine;

Designing Grammars : Basics

1. Think about what you want to “link” together

N
- E.g, 01"
e A2 041

e #0s and # 1s are “linked”

* E.g, XML —
« ELEMENT = <TAG>CONTENT</TAG>
« Start and end tags are “linked”

2. Start with small grammars and then combine
e just like with FSMs, and programming!

Example: Creating CFG

alphabet > 1s {0,1}

{w| w starts and ends with the same symbol}

1) come up with examples: In the language: 010, 101, 11011 1,0? &
Not in the language: 10, 01, 110 e’

2) Create CFG:
Needed Rules:

S—>0MO|1M1|0|1 -start/endsymbolare “linked (ie, same); middle can be anything”

M- MT | E “middle: all possible terminals, repeated (ie, all possible strings)”

T—-0]|1

“all possible terminals”

3) Check CFG: generates examples in the language; does not generate examples not in language

Regular Language vs CFL Comparison

Regular Languages Context-Free Languages (CFLs)
Regular Expression Context-Free Grammar (CFG)
describes a Regular Lang describes a CFL

Regular Language vs CFL Comparison

Regular Languages Context-Free Languages (CFLs)

Regular Expression Context-Free Grammar (CFG)
describes a Regular Lang describes a CFL
Finite State Automaton (FSM) 27?7

recognizes a Regular Lang recognizes a CFL

Regular Language vs CFL Comparison

Regular Languages

thm

Regular Expression

describes a Regular Lang

Finite State Automaton (FSM)

def

recognizes a Regular Lang

Context-Free Languages (CFLs)
Context-Free Grammar (CFG)

describes a CFL

Push-down Automata (PDA)
recognizes a CFL

def

thm

Regular Language vs CFL Comparison

Regular Languages

thm Regular Expression
describes a Regular Lang
Finite State Automaton (FSM)
def .
° recognizes a Regular Lang
Proved:

Regular Lang <>Regular Expr

Context-Free Languages (CFLs)
Context-Free Grammar (CFG)

Push-down Automata (PDA)

Proved:

describes a CFL

recognizes a CFL

CFL < PDA

def

thm

Pushdown Automata (PDA)

PDA = NFA + a stack

NFA-like
states

J

stack

%N%ﬂ«—'
W
pJ

Input

What I1s a Stack?

e A restricted kind of (infinite!) memory
» Access to top element only
» 2 Operations only: push, pop

o \ Last In - First Out /

Push / Pop

Data Element

Data Element

Data Element

Stack Stack

Pushdown Automata (PDA)

 PDA = NFA + a stack NFA-like —
« Infinite memory SN input
* read/write top location only
 Push/pop

stack

%N%N‘—I
W)
o
-
o

{0™1"| n > 0}

An Example PDA

A PDA transition No No

has 3 parts: ﬁlepauqc(no) Pop Push Read 0 || Pop | | Push 0

- Read

- Pop 0,€—0 (and repeat)

- Push E,e—$
(22

$ = special symbol,
indicates empty stack Pop 0

Read 1 1,0—>€ No Push

1,0— & (and repeat)
-(
E,3—¢€

This machine can only pop $ (and
accept) when stack is empty,
l.e., when #0s=# 1s

Formal Definition of PDA

A pushdown automaton is a 6-tuple (Q, 3,1, 9, qo, I'), where Q, %,
I, and F are all finite sets, and

1. @ is the set of states,
2. ¥ is the input alphabet,
3. F iS the StﬂCk alphabet, Stack alphabet has special stack symbols, e.g., $

4. 6: Q x Y. x I.—P(Q x I.) 1s the transition function,

5' 4o & (Input D Pop ATt state, al‘ld Push
6. F' C (is the set of accept states.

Non-deterministic!
Result of a step is set of (STATE, STACK CHAR) pairs

Q=1{q1,92,q3,94},

PDA Formlzé:[{ﬁ]éfini’rinn Fyamnlo

{0,%}, Stack alphabet has special stack symbol $

F = {QI7 qfl}a

Input | Pop | Push
0,€—0 A pushdown automaton is a 6-tuple (Q, X, T, 6, qo, F'), where Q, ¥,

€,€ 239 >((2 ', and F are all finite sets, and

1. @ is the set of states,

1,03€ Input z Y. is the input alphabet, Pop —_—

I is the stack alphabet,
1,0—¢€ 4. 5: Q X X x T P(Q x T¢) is the transition function,
e $¢c q3 Z qo € Q is the start state, and

. F' C Q is the set of accept states.

Q ={q1,92,93,9},
% ={0,1},
['={0,$},

F = {q1, 4}, and

§ 1s given by the following table, wherein blank entries signify (0.

Input: 0 1 € i Input
Stack: [0 | $ € 0 $(e|0 $ € I Pop
q1 {(q23 $)} Push
g2 {(q2,0)} {(gs3,€)}
Input | Pop | Push g3 {(Q?n 8)} {(q4a E)}
44

A pushdown automaton is a 6-tuple (Q, X, T, 6, qo, F'), where Q, ¥,
', and F are all finite sets, and

@k
" e, 5—c

1. Q is the set of states,
Input | 2+ X _15 the input alphabet, Pop bush
3. T is the stack alphabet,
4. 0: Q X X x T=P(Q x I.) is the transition function,
5. qo € @ is the start state, and
6

. F' C Q is the set of accept states.

Q ={q1,92,93,9},
% ={0,1},
['={0,$},

F = {q1, 4}, and

§ 1s given by the following table, wherein blank entries signify (0.

Input: 0 1 € i Input
Stack: [0 | $ € 0 $(e|0 $ € I Pop
qd1 {(q23 $)} Push
g2 {(q2,0)} {(gs3,€)}
Input | Pop | Push g3 {(Q?n 8)} {(q4a E)}
44

A pushdown automaton is a 6-tuple (Q, X, T, 6, qo, F'), where Q, ¥,
', and F are all finite sets, and

€,6—%
‘ £,$—¢€

1. Q is the set of states,
Input | 2+ X _15 the input alphabet, Pop bush
3. T is the stack alphabet,
4. 0: Q X X x T=P(Q x I.) is the transition function,
5. qo € @ is the start state, and
6

. F' C Q is the set of accept states.

Q={q1,92,93,q},

2 = {0,1},
I = {0, $},

F = {Ql QL}J and

§ 1s given by the following table, wherein blank entries signify (0.

Input | Pop | Push

€, e—>$

Input: 0 1 € | Input
Stack: g 0 $(e|0 $ € I Pop
di1 {(q23 $)} Push
G2 {(q2,0)} {(gs3,€)}
q3 {(Q3=€)} {(q4a€)}
da

,E—0

@

1,05€

1,0—¢€

"\

€,$—€

A pushdown automaton is a 6-tuple (Q, X, T, 6, qo, F'), where Q, ¥,
', and F are all finite sets, and

1. Q is the set of states,
Input | 2+ X _15 the input alphabet, Pop bush
3. T is the stack alphabet,
4. 0: Q X X x T=P(Q x I.) is the transition function,
5. qo € @ is the start state, and
6

. F' C Q is the set of accept states.

Q ={q1,92,93,9},
% ={0,1},
['={0,$},

F = {q1, 4}, and

§ 1s given by the following table, wherein blank entries signify (0.

Input: 0 1 € i Input
Stack: [0 | $ € 0 $(e|0 $ € I Pop
di1 {(q23 $)} Push
G2 {(a2,0)} {(gs,€)}
Input | Pop | Push q3 {(Q?n 8)} {(q4a E)}
44

A pushdown automaton is a 6-tuple (Q, X, T, 6, qo, F'), where Q, ¥,
', and F are all finite sets, and

€,6—%
‘ £,$—¢€

1. Q is the set of states,
Input | 2+ X _15 the input alphabet, Pop bush
3. T is the stack alphabet,
4. 0: Q X X x T=P(Q x I.) is the transition function,
5. qo € @ is the start state, and
6

. F' C Q is the set of accept states.

Q ={q1,92,93,9},
Y ={0,1},
['={0,$},

F = {q1.qa}, and

§ 1s given by the following table, wherein blank entries signify (0.

Input: 0 1 € i Input
Stack: [0 | $ € 0 $(e|0 $ € I Pop
qd1 {(q23 $)} Push
g2 {(q2,0)} {(gs3,€)}
Input | Pop | Push g3 {(Q?n 8)} {(q4a E)}
44

0,e—0 A pushdown automaton is a 6-tuple (Q, X, T, 6, qo, F'), where Q, ¥,
€,€ 239 > ', and F are all finite sets, and

1. Q is the set of states,
;
E,$—¢€

1,03€ Input z Y. is the input alphabet, Pop —_—

I is the stack alphabet,
1,0—¢€ 4. §: Q X X x T=P(Q x I.) is the transition function,
5. qo € @ is the start state, and
6

. F' C Q is the set of accept states.

In-class exercise:
Fillin the blanks @ *=

§ 1s given by the following table, wherein blank entries signify (0.

Input: 0 1 € | Input
Stack: | 0 | $ € 0 $[(e]|0 $ = I Pop
| State/
PDA M5 recognizing the language {ww”™ |w € {0,1}*} Push
Input | Pop | Push
A pushdown automaton is a 6-tuple (Q, X, T, 6, qo, F'), where Q, ¥,
—»@ E,E—$ (o (1):2:;(13 ', and F are all finite sets, and
1. @ is the set of states,
E , €_> 8 |nput 2. Z iS the lnput alphabet, POp PUSh
3. I is the stack alphabet,

. 0:Q X Y. x T P(Q x I.) is the transition function,

0,0—¢€ 4 .
RN q3 1.1€ 5. qo € Q is the start state, and
’ 6

. F' C Q is the set of accept states.

In-class exercise:

Q=1{q1,92,q3,94},

Fill in the blanks *=10:1},
I ={0,1,$},

FZ{C_M}

§ 1s given by the following table, wherein blank entries signify (0.

Input: 0 1 € i Input
Stack: | 0 [$ 3 0 | 1 [$]e]O 3 g <} pop
. / {(Q2’ $)} State/
92 {(Q%O)} {(g2,1)} {(g3,€)} | Push
Input | Pop | Push q3 {(gs,€)} {(933 6)} {(94, 5)}
da

_}@ £,€8

PDA M3 recognizing the language {ww™|w € {0,1}*}

Flashback

DFA Computation Rules

Informally Formally (i.e, mathematically)
Given
« A DFA (~ a “Program”) - M = (Q,%,9,q,F)
« and Input = string of chars, eg “1101" c W = WiW3 -+ Wy
A DFA computation (~ “Program run”): A DFA computation is a
o Start in start state sequence of states:
« Repeat: . .
. Read 1 char from Input, and - specified by 6(qo,w) where:

« Change state according to transition rules

Result of computation: 2
» Accept if last state is Accept state * Maccepts w if 0(qo, w) € F
« Reject otherwise * M rejects otherwise

Flashback

d: Q X ¥—Q is the transition function

DFA Multi-step Transition Function
0:Q XY = Q

« Domain (inputs):

. state ¢ € ()

* string w = wWiwW2 -+ Wy where w; € X

- Range (output):
. state ¢ € ()

A DFA computation is a
sequence of states:

(Defined recursively)

A

Base case 5((]7 g) = q

Recursive Case

ey e

0(q, w'wn) = 6(0(q, w'), wn)

where w’ = wy -+ - w,_1

PDA Computation?

* PDA = NFA + a stack

e Infinite memory
« Push/pop top location only

J

States

input

stack

%N%N‘—I
W)
o
-
o

A DFA computation is a
sequence of states ...

A PDA computation is a not just a
sequence of states ...

... because the stack contents
can change too!

PDA Configurations (IDs)

e A configuration (or ID) is a “snapshot” of a PDA’s computation

3 components (g, w,y) : R B e e o % s
g = the current state Y
w = the remaining input string i
y = the stack contents y | stack
Z

A sequence of configurations represents a PDA computation

PDA Computation,

Single-step

Before / After configurations

(qlaa’waX/G) = (Q’Q,’w,ﬁl‘/@)

Less 1
Read Input | | Pop || char Push

if 0(q1, a, X) contains (qo,)

q1,q2 € Q)
acEY weY

Xel pBael”

A configuration (g, w, y) has three components
q = the current state
w = the remaining input string
y = the stack contents

Formally
P = (Q,Z?FjéquﬁF)

Multi-step
 Base Case 0 steps

IF IforanyID I

e Recursive Case >0 steps

X

I = Jif there exists some ID K
such that I F K and K F J

Single step | | Recursive “call”

This specifies the sequence of
configurations for a PDA computation

PDA Running Input String Example

State || Remaining Input || Stack

(ql, 0011, 5)

Input Read | Pop | Push

PDA Running Input String Example

Input Read | Pop | Push

0,€—0
€,€_>$ /\\.-—-_.’

1,0-€&

@)= (o

1,0—¢€

State || Remaining Input || Stack

(q1,0011,¢) F (g2,0011, $)
- (g2,011,09)

Read 0, push 0

PDA Running Input String Example

Input Read | Pop | Push

0,€—0
€,€_>$ /\\.-—-_.’

1,0-€&

@)= (o

1,0—¢€

(ql, 0011, 5)

State || Remaining Input || Stack

- (gq2,0011, %)
— (g2,011, 09)

= (g2, 11, 00%)

Read 0, push 0

PDA Running Input String Example

State || Remaining Input || Stack

(q1,0011,¢) F (go,0011, $)
- (2,011, 0%)
— (g2,11,009)
Input Read | Pop | Push . L ((]37 1, O$) Read 1, pop 0
_) €,€8% 0 ’
Loose

1,0¢€
" e 5oe \ B

PDA Running Input String Example

State || Remaining Input || Stack

(q1,0011,¢) F (g2,0011, $)
— (g2,011,0%)

- (g2, 11,009%)
Input Read | Pop | Push . N (q?” 1, O$)
_, €.€729% (g a (QB757$) Read 1, pop 0
1,0>€

1,0—¢€

PDA Running Input String Example

State || Remaining Input || Stack

(q1,0011,¢) I (g2,0011, $)
- (g2,011, 03)
- (g2, 11, 00%)

Input Read | Pop | Push (C]?n 1 O$)
) - (

- (

_) €,€28% qs,)

4, €, 8) pop empty
* e, 5—e

stack symbol

thshback: COMputation and Languages

« The language of a machine is the set of all strings that it accepts
» E.g., A DFA M accepts w if 0(qy,w) € F

* Language of M= L(M)={w | M accepts w}

Language of a PDA

P (Q?Z?F?(S?qojp)

Startin
start state

Stack
initially
empty

Computation ends
when input is
completely read

~

L(P) = {w] (g0, w,€) F* (¢,¢,a)} where g€ F

AN
7

A configuration (g, w, y) has three components
q = the current state
w = the remaining input string
y = the stack contents

Machine accepts if final /

state is accept state

PDAs and CFLs?

Input | Pop | Push

* Infinite memory
« Push/pop top location only

Want to prove: PDAs represent CFLs! 4
£,5 e

We know: a CFL, by definition, is a language that is generated by a CFG

Need to show: PDA < CFG

Then, to prove that a language is a CFL, we can either:
* Create a CFG, or
* Create a PDA

PDA = NFA + a stack —» S N q2

0,€—0

1,0>€

1,0—¢€
q3

A lang Is a CFL iff some PDA recognizes it

= If a language Is a CFL, then a PDA recognizes it
« We know: A CFL has a CFG describing it (definition of CFL)
« To prove this part: show the CFG has an equivalent PDA

< |f a PDA recognizes a language, then it's a CFL

Shorthand: Multi-Symbol Read Transition

Shorthand: Multi-Stack Push Transition

o o a,s—z Push 1

€,€%y Push 1

° Pop | Push 3 @

Read input a,s—>TrYyz —>

EE—T Push 1

Note the reverse order of pushes

CFG>PDA (sketch)

 Construct PDA from CFG such that:
« PDA accepts input only if CFG generates it

 PDA:

« simulates generating a string with CFG rules
* by (nondeterministically) trying all rules to find the right ones

e, A—w forrule A—w

a,a—€ for terminal a

CFG>PDA (sketch)

 Construct PDA from CFG such that:
« PDA accepts input only if CFG generates it

 PDA:

« simulates generating a string with CFG rules
* by (nondeterministically) trying all rules to find the right ones

push start variable onto stack

If: stack top is variable 4, pop and ...

... push rule’s right-sides (nondeterministically)
e, A—w" forrule A=w

a,a—¢ for terminal a

If: stack top is terminal a, pop and ...

... read matching input

Example CFG>PDA

S —alb|b
T — Tale

If: stack top is variable S, pop S and ...

e,5—b)O€,€—>T)O gy |
g, [—a ’O e, e—1T l

... push rule right-sides (in rev order)

g, e—9%
push start variable
onto stack

e,S—b
g, l—e
a,a—€

Fxample CFG>PDA

S — alb|b
T — Tale

e,S5—b)O€,€—>T)O £,€—a
g, [—a)O 2 e l

e, l—e
a,a—e€

o

Example CFG>PDA

S — alb|b
T — Tale

e,5—b)Os,e—ﬂ")o g,e—a
g, [—a ’O e, e—1T l

g,S5—b
e, T—e
a,a—¢€ If: stack top is terminal, pop and

b,b—e read matching input

Example CFG>PDA

S — alb|b
T — Tale

e,5—b

Example Derivation using CFG:

S=aTb (using rule S— aTb)
= aTab (using rule T - Ta)
= aab, (usingrule T- ¢)

Machine is doing reverse of grammar:
- start with the string,
- Find rules that generate string

€:€—>T g,E—ya
)O | PDA Example

‘L Qstart aab
T1o0p aab S$

T1o0p aab aTb$ S-alb
G100p ab Tb$

T1o0p ab Tab$ T-Ta
Q1o0p ab ab$ T— ¢
1o00p b b$

100p $

qaccept

Example CFG>PDA

S — alb|b
T — Tale

Example Derivation using CFG:

S=aTb (usingrule S— aTb)
= aTab (using rule T— Ta)
= aab (usingrule T- ¢)

If: stack top is variable S, pop S
and push rule right-sides (in rev order)

e,5—b)O€,€—>T)O g,e—a _|

e, [—a ’O g,e—1
l Qstart

1o00p
1o00p
£, S—b Q100p
e, T—e Qioop
a,a—&€ 1o00p
b s b—¢ 1o00p
100p

qaccept

aab
aab
aab
ab
ab
ab
b

PDA Example

5$

aTb$ S-aTb
Tb$

Tab$ T- Ta
ab$ To¢
b$

$

Example CFG>PDA

Example Derivation using CFG:

S=aTb (using rule S— aTb)
= aTab (using rule T - Ta)
= aab (usingrule T- ¢)

S — alb|b
T — Tale

e,S5—b
e, T—e
a,a—e€
b,b—e

If: stack top is terminal, pop
and read matching input

Astart
qloop
QIoop
CIloop
QIoop
qloop
qloop
QIoop

qaccept

e,5—b)O€,€—>T)O g,e—a |
g, [—a ’O e, e—1T l

aab
aab
aab
ab
ab
ab
b

PDA Example

5$

aTb$ S-aTb
Tb$

Tab$ T- Ta
ab$ To¢
b$

$

Example CFG>PDA

S — alb|b

T — Ta €

Example Derivation using CFG:

S=aTb (using rule S— aTb)
= aTab (using rule T - Ta)
= aab (usingrule T- ¢)

e, [—a ,~ €,e—T

o/ _l Qotart

1o00p

1o00p

£, S—b Q100p
e, T—e Qioop
a,a—&€ 1o00p
b s b—¢ 1o00p
100p

qaccept

e,5—b)O€,€—>T)O g,e—a |

aab
aab
aab
ab
ab
ab
b

PDA Example

5$

aTb$ S-aTb
Tb$

Tab$ T- Ta
ab$ To¢
b$

$

A lang Is a CFL iff some PDA recognizes it

= |f a language is a CFL, then a PDA recognizes it
* Convert CFG>PDA

& |f a PDA recognizes a language, then it's a CFL
« To prove this part: show PDA has an equivalent CFG

PDA->CFG: Prelims

Before converting PDA to CFG, modify it so:

1. It has a single accept state, gaccept-
2. It empties its stack before accepting.

3. Each transition either pushes a symbol onto the stack (a push move) or pops
one off the stack (a pop move), but it does not do both at the same time.

Important:
This doesn’t change the language recognized by the PDA

PDA P -> CFG G : Variables
P =(Q,%,T,8,q0, {quccep:}) Variablesof G are {Ay| p,q € Q}

- Want: if P goes from state p to q reading input x, then some 4, generates x

%

o: For every pair of states p, g in P, add variable 4, to G

« Then: connect the variables together by,

* Add rules: A,, > A,,A,, for each state r
* These rules allow grammar to simulate every possible transition
 (We haven't added input read/generated terminals yet)

The Key IDEA
« To add terminals: pair up stack pushes and pops (essence of a CFL)

PDA P -> CFG G : Generating Strings

P=(Q,%,T,6,q0,{Gccepr}) Vvariablesof G are {A,;| p,q € Q}

e The key: pair up stack pushes and pops (essence of a CFL)

if 6(pSa,€) contains (r,u) and (s, b, u) contains (g, €),

put the rule A,, =" aA,sbin G

PDA P -> CFG G : Generating Strings

P=(Q,%,T,6,q0,{Gccepr}) Vvariablesof G are {A,y| p,q € Q}

e The key: pair up stack pushes and pops (essence of a CFL)

if 6(p, a,€) contains (r,u) and §(s, b, u) contains (q, €),

put the rule A4,,«=aA,sbin G

PDA P -> CFG G : Generating Strings

P=(Q,%,T,6,q0,{Gccepr}) Vvariablesof G are {A,y| p,q € Q}

e The key: pair up stack pushes and pops (essence of a CFL)

if 6(p, a, €) contains (r, v) and §(s, b, u) contains (g, €),

put the rule A,, — aA,4xbin G

A language I1s a CFL <> A PDA recognizes it

= If a language Is a CFL, then a PDA recognizes it
* Convert CFG>PDA

< |If a PDA recognizes a language, then it's a CFL
* Convert PDA>CFG

Submit in-class work 3/20

On Gradescope

