UMB CS420

Turing Machines (TMs)

Monday , April 1, 2024

SPHoWaNMONN)f

noon Mondide 12pm
out HW

12pra/doon due Mon
In6 HW

#/(/wa/wem/(t@

« HW 6 In
+due-Monr4/1+1R2pmnoen

* HW 7 out
« due Mon 4/8 12pm noon

CS 420: Where We've Been, Where We're Going

* PDAs: recognize context-free languages
A4 oa1* Memory: states + infinite stack (push/pop onl
A— B e Can't express: arbitrary dependency,
B =4 - eg, {ww|w € {0,1}*}
* DFAs / NFAs: recognize regular langs
« Memory : finite states

e Can't express: dependency
e.g, {0"1"|n > 0}

context-free

CS 420: Where We've Been, Where We're Going

» Turing Machines (TMs) g

- Memory : states + infinite tape, (arbitrary-read/write)
« Expresses any “computation”

* PDAs: recognize context-free languages < .
S Turing-recognizable
A oa1® Memory: states + infinite stack (push/pop only
A— B e Can't express: arbitrary dependency, decidable
b —# ww!| w _ *
e.g, {ww| w € {03.1} } e frod
* DFAs / NFAs: recognize regular langs el
« Memory : finite states regular subset of TMs

e Can't express: dependency
e.g, {0"1"|n > 0}

Start == t == h - e 2 n

Alan Turing

* First to formalize a model of computation
* |.e,, he invented many of the ideas in this course

* Also studied Artificial Intelligence
* The Turing Test

ChatGPT passes the Turing test

In 1950, Alan Turing proposed the Turing test as a way to measure a machine’s intelligence. The test pits a human against
a machine in a conversation. If the machine can fool the human into thinking it is also human, then it is said to have
passed the Test. In December 2022, ChatGPT, an artificial intelligence chatbot, became the second chatbot to pass the
Turing Test, according to Max Woolf, a data scientist at BuzzFeed

Google’s LaMDA Al in the summer of 2022, demonstrating that it is invalid. For many years, the
Turing test has been used as a standard for sophisticated artificial intelligence models.

6 Max Woolf & L
@minimaxir - Follow

congrats to OpenAl on winning the Turing Test

Finite Automata vs Turing Machines

 Turing Machines can read and write to arbitrary “tape” cells
« Tape initially contains input string

e Tape IS Infinite input | | Empty tape locations

 To the right -
5 head ababuuué...

States l

« Fach step: “head” can move left or right

« Turing Machine can accept / reject at any time

Call a language Turing-recognizable if some Turing machine
recognizes it.

Turing Machine Example

Example
™

input
- . . B)
Define: /1 accepts inputs in language B = {w#w| w € {0,1}*} /1.
. . —
M, = “On input string w: head 011000#011000u ...

1. Zig-zag across the tape to corresponding positions on either
side of the # symbol to check whether these positions contain
the same symbol. If they do not, or if no # is found, reject.
Cross off symbols as they are checked to keep track of which
symbols/correspond.

High-level: “Cross off” This is a high-level TM description

Low-level &: write "< char || ;g equivalent to (but more concise than)

our typical (low-level) tuple descriptions,
l.e., one step = maybe multiple § transitions

Analogy
“High-level”: Python
“Low-level”: assembly language

Turing Machine Example

M; accepts inputs in language B = {w#w| w € {0,1}*}

. . * j
M; = “On input string w: “Cross off” = write “x" char 011000#011000u ...

1. Zig-zag across the tape to corresponding positions on either
side of the # symbol to check whether these positions contain
the same symbol. If they do not, or if no # is found, reject.
Cross off symbols as they are checked to keep track of which
symbols correspond.

Y
x11000#011000uw ...

Turing Machine Example

M; accepts inputs in language B = {w#w| w € {0,1}*}

. . * j
M; = “On input string w: “Cross off” = write “x" char 011000#011000u ...

1. Zig-zag across the tape to corresponding positions on either ~

xI14000#011000uw ...

side of the # symbol to check whether these positions contain

the same symbol. If they do not, or if no # is found, reject. x11000#%x11000u ...

Cross off symbols as they are checked to keep track of which
symbols correspond.

Turing Machine Example

M; accepts inputs in language B = {w#w| w € {0,1}*}

. . oy
M, = “On input string w: Head “zags” back to start 011000#011000u ...
1.

Zig-zag across the tape to corresponding positions on either

side of the # symbol to check whether these positions contain —

the same symbol. If they do not, or if no # is found, reject. x11000#x11000u ...

Cross off symbols as they are checked to keep track of which —
symbols correspond.

Y
x11000#011000uw ...

x11000#x11000uw ...

Turing Machine Example

M; accepts inputs in language B = {w#w| w € {0,1}*}

. . oy
M, = “On input string w: Continue crossing off 011000#011000u ...

1. Zig-zag across the tape to corresponding positions on either

side of the # symbol to check whether these positions contain —

Y
x11000#011000uw ...

the same symbol. If they do not, or if no # is found, reject. x11000#x11000u ...

Cross off symbols as they are checked to keep track of which AY
symbols correspond.

x 11 000#x11000uw ...

T
xx1000#x11000uw ...

Turing Machine Example

M; accepts inputs in language B = {w#w| w € {0,1}*}

M = “On input string w:

1. Zig-zag across the tape to corresponding positions on either
side of the # symbol to check whether these positions contain
the same symbol. If they do not, or if no # is found, reject.
Cross off symbols as they are checked to keep track of which
symbols correspond.

2. When all symbols to the left of the # have been crossed off,
check for any remaining symbols to the right of the #. If any
symbols remain, reject; otherwise, accept.”

—
011000#0

B
x11000#0

xllO()O#_gc

—)¢(11000#X

@1000#}:

!

X X X XXX #X

Turing Machine Example

M; accepts inputs in language B = {w#w| w € {0,1}*}

M = “On input string w: jOllOOO#OllOOOu...
1. Zlg—zag across the tape to corresponding positions on elthfzr X—i L 000#011000u ..

side of the # symbol to check whether these positions contain —

the same symbol. If they do not, or if no # is found, reject. x11000#x11000u ...

Cross off symbols as they are checked to keep track of which —

symbols correspond.

x11000#x11000uw ...

}ﬂ{lOOO#XllOOOu...
! —
2. When all symbols to the left of the # have been crossed off, XXXXXX#XXXXXXU ...
check for any remaining symbols to the right of the #. If any accept

symbols remain, reject; otherwise, accept.”

Turing Machines: Formal Definition

This is a “low-level” TM
description

A Turing machine is a 7-tuple, (Q, %, I, 9, qo, Gaccept, Greject), Where
Q, 2, I are all finite sets and

1. @ is the set of states,

. 2 is the input alphabet not containing the blank symbol 1
. I is the tape alphabet, where u = T"and ¥ C T,

6: Q x I'—Q x I' x {LL.R} is the transition function,

go € (1€ | spi Write | move

. Qaccept € @ 15 the accept state, and

. Greject € @ 1s the reject state, where greject 7 Gaccept- . .
Is this machine

deterministic?
Or non-deterministic?

A Turing machine is a 7-tuple, (Q, X,I', 6, qo, Gaccept, Greject), Where
Q, X, T are all finite sets and

1.

SN I

Q@ is the set of states,

¥ is the input alphabet not containing the blank symbol v,
I" is the tape alphabet, where u € "'and X C T,

0: Q xI'—@Q x T x {L., R} is the transition function,

go € read es| write | move

Gaccepr € @ 15 the accept state, and

Grejece € @ 15 the reject state, where grejece # Gaceept-

B = {w#w| w € {0,1}*}

Formal Turing Machine Example

Read char (0 or 1), cross it off, move head R(ight)

o
011000#011000wu

A Turing machine is a 7-tuple, (Q, X,I', 6, qo, Gaccept, Greject), Where
Q, X, T are all finite sets and

1.

SN I

B = {w#w| w € {0,1}*}

Formal Turing Machine Example

Read char (0 e+1), cross it off, move head R(ight)

Transitions on
this side:
Crossed off a 0

@ is the set of states,

¥ is the input alphabet not containing the blank symbol v,
I" is the tape alphabet, where u € "'and X C T,

0: Q xI'—@Q x T x {L., R} is the transition function,

go € read es| write | move \
Gaccepr € @ 15 the accept state, and

Grejece € @ 15 the reject state, where grejece # Gaceept-

B = {w#w| w € {0,1}*}
Formal Turing Machine Example

011000#011000u

x11000#011000u ... a
-
x11000#%11000u ... [yovepiohe until#

A Turing machine is a 7-tuple, (Q, X,I', 6, qo, Gaccept, Greject), Where 0\ Cross Off ‘i})
Q, X, T are all finite sets and \ (matChmg) \,’/z
. F’{ 0

1. @ is the set of states,

2. ¥ is the input alphabet not containing the blank symbol v, de 0,1,x—L,

3. I' is the tape alphabet, where u € 'and ¥ C T,

4. 5: Q x '—Q x I x {L.R} is the transition function, #—1

5. 90 € read ksl write | move

6. Gaccepr € @ 1s the accept state, and \ x—R qr 0, 1—L

7. Greject € @ 1s the reject state, where grejece 7 Gaccept-

B = {w#w| w € {0,1}*}
Formal Turing Machine Example

011000#011000u

x11000#011000u ... a

x11000#x11000u
Ty

x11000#x11000u ... 0,1%R ;HR 0,1—>R

A Turing machine is a 7-tuple, (Q, X,I', 6, qo, Gaccept, Greject), Where
Q, X, T are all finite sets and

1. @ is the set of states,

2. ¥ is the input alphabet not containing the blank symbol v, “Zag" Left @. 0,1,x—L
3. I is the tape alphabet, where u € I'and 3 C T, to last x

4. 5: Q x '—Q x I x {L.R} is the transition function, #—1

5. qo € read | write | move

6. Gaccepr € @ 1s the accept state, and \ x—R qr 0, 1—L

7. Greject € @ 1s the reject state, where grejece 7 Gaccept-

B = {w#w| w € {0,1}*}
Formal Turing Machine Example

Read char (0 or 1), cross it off, move head R(ight)

011000#011000u

x11000#01100 0w

x11000#x11000u

?{11000#x11000u...

A Turing machine is a 7-tuple, (Q, X,I', 6, qo, Gaccept, Greject), Where
Q, X, T are all finite sets and
1. @ is the set of states,
¥ is the input alphabet not containing the blank symbol .,
I" is the tape alphabet, where u € "'and X C T,
0: Q xI'—@Q x T x {L., R} is the transition function,
go € read es| write | move
Gaccepr € @ 15 the accept state, and

SN I

Grejece € @ 15 the reject state, where grejece # Gaceept-

B = {w#w| w € {0,1}*}
Formal Turing Machine Example

Read char (8-ef 1), cross it off, move head R(ight)

011000#011000Lw
x11000#01100 0w —

B This side:
x11000#x11000u Crossed off a 1
X 11000#%x11000
x x e (6 Dx—R (43] > 01-R
X X¥1000#%x11000u ...

A Turing machine is a 7-tuple, (Q, X,I', 6, qo, Gaccept, Greject), Where
Q, X, T are all finite sets and
1. @ is the set of states,
¥ is the input alphabet not containing the blank symbol .,
I" is the tape alphabet, where u € "'and X C T,
0: Q xI'—@Q x T x {L., R} is the transition function,
go € read es| write | move
Gaccepr € @ 15 the accept state, and

SN I

Grejece € @ 15 the reject state, where grejece # Gaceept-

B = {w#w| w € {0,1}*}
Formal Turing Machine Example

1000#01100O0u

b o<
‘I—¥

= -

1000#0110000u ... a

1000#x11000u

leOO#XllOOOu... 0,1HR XHR 0,1—>R

e
|

sha
—_

1 000 # 11000 .. 5
s HX __u Accept If all
xxxxxx#xxxxxx&.. crossed out

accept x—R ‘@ x—R

A Turing machine is a 7-tuple, (Q, X,I', 6, qo, Gaccept, Greject), Where
Q, X, T are all finite sets and

1. @ is the set of states,

¥ is the input alphabet not containing the blank symbol .,
I" is the tape alphabet, where u € "'and X C T,

0: Q xI'—@Q x T x {L., R} is the transition function,

(transitions to) Reject
state not shown
(assume no write, and
head moves right)

go € read es| write | move \
Gaccepr € @ 15 the accept state, and

x—R) D o0,1—L

SN I

Grejece € @ 15 the reject state, where grejece # Gaceept-

TMs: High-level vs Low-level?

M; = “On input string w:

1. Zig-zag across the tape
side of the # symbol to
the same symbol. If tl
Cross off symbols as tk
symbols correspond.

2. When all symbols to t
check for any remainir
symbols remain, reject;

Turing Machine: High-level Description

» M accepts if inputisin language B = {w#w| w € {0,1}*}

M; = “On input string w:

1. Zig-zag across the tape to corresponding positions on either
side of the # symbol to check whether these positions contain
the same symbol. If they Aons oot s found, reject.
Cross off symbols as thes/ We Will (mostly) \q track of which

bol d. stick to high-level
RO TR descriptions of

2. When all symbols to Turing machines, _>n crossed off,
check for any remaining & like thisone At of the #. If any
symbols remain, reject; otherwise;—.ccept.”

TM High-level Description Tips

Analogy:
 High-level TM description ~ function definition in “high level” language, e.g. Python
« Low-level TM tuple ~ function definition in bytecode or assembly

TM high-level descriptions are not a “do whatever” card, some rules:
1. TMs and input strings must be named (like function definitions) M; = “On input string w:
2. Steps must be numbered

3. TMs can “call” or “simulate” other TMs (if they pass appropriate arguments!)
« e.g, step foraTM M can say: “call TM M, with argument string w, if M, accepts w then ..., else ...”

« Can split input into substrings and pass to different TMs M = “On input w
- - u S 1. Simulate B on input w.
4. FO“OW typlcal pr,ogra m,mlng SCOpl ng rUIes " . 2. If simulation ends in accept state,
« can assume functions we've already defined are in “global” scope, RE2NFA ...
5. Other variables must also be defined before use W7 — A0 s U8,), welire B 5 em N s i o s
« e.g,can define a TM inside another TM 1. Convert NFA B to an equivalent DFA C, using the procedur
’ . this conversion given in Theorem 1.39.
6. must be equivalent to a low-level formal tuple 2. Run TM M from Theorem 4.1 on input (C, s).

* high-level “step” represents a finite # of low-level & transitions § — “On input 1

5 = = w
* Soone ?tep CennOt run fo reve"r “ " 1. Construct the following TM M.
« E.g,can't say “try all numbers” as a “step M,y —

= “On input x:

Non-halting Turing Machines (TMs) <®

So: TM computation has
3 possible results:

A Turing Machine can run forever : ﬁ‘éj?gftt
 £.g, head can move back and forth in a loop - Loop forever

« We will work with two classes of Turing Machines:
« Arecognizer is a Turing Machine that may run forever (all possible TMs)
A decider is a Turing Machine that always halts.

Call a language Turing-recognizable it some Turing machine Call a language Turing-decidable or simply decidable if some

recognizes it. . : Turing machine decides it. . ,
(3 possible computation results) (2 possible computation results)

Formal Definition of an “Algorithm”

 An algorithm is equivalent to a Turing-decidable Language
(always halts)

Turing-recognizable

(3 possible
computation
results)

decidable

(2 possible
computation
context-free results)

Many functions we have defined
this semester are algorithms!
e.g., all our conversion functions
are deciders!!

- convertD2N

- RegEXpr2NFA

- convertD2P

Turing Machine Variations

Y
O(1]0 0| u
1. Multi-tape TMs | \/ ,
a|ada|a|u
Y
b|la|u
Deterministic Nondeterministic
computation computation
o . Q: start (.}f—\
2. Non-deterministic TMs (Y
L. : ![1.
L reject -(1
R

« accept or reject

* accept

We will prove that
these TM variations
are equivalent to
deterministic,
single-tape
machines

Reminder: Equivalence of Machines

« Two machines are equivalent when ...

. ... they recognize the same language

Theorem: Single-tape TM < Multi-tape TM

= If a single-tape TM recognizes a language,
then a multi-tape TM recognizes the language
 Single-tape TM is equivalent to ...
e ... multi-tape TM that only uses one of its tapes
e (could you write out the formal conversion?)

& If a multi-tape TM recognizes a language,
then a single-tape TM recognizes the language
« Convert: multi-tape TM - single-tape TM

Multi-tape TM =» Single-tape TM

Idea: Use delimiter (#) on single-tape to simulate multiple tapes
« Add “dotted” version of every char to simulate multiple heads

¥

O|11(0(1(O0|u]...
M !
dalalal|luUJ] ...
e
bla]|u
S + n ° °
#01010#_aaa#baiu

Theorem: Single-tape TM < Multi-tape TM

= If a single-tape TM recognizes a language,
then a multi-tape TM recognizes the language
 Single-tape TM is equivalent to ...
* ... multi-tape TM that only uses one of its tapes

< If a multi-tape TM recognizes a language,
then a single-tape TM recognizes the language
« Convert: multi-tape TM - single-tape TM

Nondeterministic TMs

THUS, FOR ANY NONDETERMINISTIC TURING
MACHINE M THAT RUNS IN SOME POLYNOMIAL
TIME p(n), WE CAN DEVISE AN ALGORITHM

THAT TAKES AN INPUT w OF LENGTH n AND
PRODUCES Ea,... THE RUNNING TIME IS Odpim)

ON A MULTITAPE DETERMINISTIC TURING
MACHINE AND ..,

WTF, MAN, I JUsST
WANTED TO LEARN
HOW TO PROGRAM

VIDEC GAMES,

Flashback: DEFAS VS NFAS

A finite automaton is a S-tuple (Q, X, 6, qo, F'), where

1. @ is a finite set called the szates,

2. Y is a finite set called the alphabet, -
Nondeterministic

3. 5: Q X Z—>Q iS the Wﬂnsz.tionﬁln(:tion, transition produces set of
4. qo € Q is the start state, and possible next states
5. F C Q is the set of accept states. A nondeterministic finite automaton
is a S-tuple (Q, %, 9, qo, F'), where
vs 1. Q is a finite set of states,

2. Y is a finite alphabet,

3.0: Q x X.—P(Q) is the transition function,
4. qo € @ is the start state, and

5. F C @ is the set of accept states.

Femember: TUNINE Machine Formal Definition

A Turing machine is a 7-tuple, (Q,X,I', 0, qo, Gaccept, Greject), Where
Q, X, I are all finite sets and

1. Q is the set of states,

. 2 1s the input alphabet not containing the blank symbol L,
. I is the tape alphabet, where u € 'and ¥ C T,

.0:Q xI'—Q xT' x {L, R} is the transition function,

. o € @ 1s the start state,

« Qaccept € @ 15 the accept state, and

N O\ B WIN

. Qreject € () 1s the reject state, where greject 7 Gaccept-

Non

term : . Co. .
Qe TUTiNG Machine Formal Definition

inistic

Nondeterministic

A Turing Machine is a 7'mplea (Q: E: Il 5: d0s Qaccepts qreject)a where

(2, X, I are all finite sets and

1. Q is the set of states,

2. ¥ is the input alphabet not containing the blank symbol L,
3. T is the tape alphabet, where u € "'and ¥ C T,

4. 5 QO xT=—Q< >R}
5. qo € @ 1s the start state,
6. Qaccepr € @ 1s the accept state, and

0: Q@ xI'—P(Q x T x {L,R})

7. Qreject € @ 1s the reject state, where greject 7 Gaccept-

Thm: Deterministic TM < Non-det. TM

= [f a deterministic TM recognizes a language,
then a non-deterministic TM recognizes the language
« Convert: Deterministic TM = Non-deterministic TM ..
e ... change Deterministic TM 6 fn output to a one-element set

‘ 5ntm (CII CI) - {Sdtm(QI CI)}
e (just like conversion of DFA to NFA --- HW 3, Problem 1)

* DONE!

< If a non-deterministic TM recognizes a language,
then a deterministic TM recognizes the language

e Convert: Non-deterministic TM = Deterministic TM ...
° Parard

Lwiew: NONdeterminism

Deterministic Nondeterministic
computation computation

o start .
Q star (N
({,\: 'T In nondeterministic

:

computation, every

L. : (1 step can branch into a
Q Y set of “states”
g reject (1

: : What is a “state”

.. '\ fora TM?
(

- accept or reject §: Q X F—)P(Q X ' % {L,}.R})

tastick PDA Configurations (1Ds)

e A configuration (or ID) is a “snapshot” of a PDA’s computation

3 components (g, w,Y) :
g = the current state
w = the remaining input string
y = the stack contents

A sequence of configurations represents a PDA computation

TM Configuration (ID) = 7?7

3) read/write head

1) states

control

—

b

a

b

L

2) Tape contents

A Turing machine is a 7-tuple, (Q, 2,1, 9, qo, Gaccepts Greject), Where
Q, X, T are all finite sets and

1.

S R o

Q is the set of states,

¥ is the input alphabet not containing the blank symbol .,
I" is the tape alphabet, where u € I'and ¥ C T,

0: Q@ x '—Q x I" x {L, R} is the transition function,

go € @ is the start state,

Gaccept € @ 1s the accept state, and

Greject € @ 1s the reject state, where greject 7 accept-

TM Configuration = State + Head + Tape

States

O =
—
—
O
o
-
++
o
=
SN
o
o
o
C

- —
S x11000#011000u ...<] Configafter1step
configuration

x11000#x11000uw ... Conﬁgafterzsteps
x11000#x11000uw ...

xx1000#x1 1000w ...
oy

X X X X XXH#EXXXXX XU ...
accept

TM Configuration = State + Head + Tape

q7
101151111uuu3...
10119701111
Textual
representation 1st char after state is
of “configuration” current head position

(use this in HW)

TM Computation, Formally

M = (Q, E; F; 57 q05 Qaccept QTejGCt)

Next
Single-step "¢ config Extended
(Right) aqiaB F axgsf * Base Case
i 010 € O write IF Ifor any 1D [

(5((]1,&) — (q2=X7R)
axel apel”

read « Recursive Case
(Left) abqraf = agabxs I ¥ Jif there exists some ID K
if 3(q1,a) = (g2, %, L) such that I - K and K F J
Edge cases: giaB b .goxfB itsaa) = (@xL)
Head stays at leftmost cell (L move, when already at leftmost cell)

aqi F acgy i@)= (@R . |
Add blank symbol to config (R move, when at rightmost filled cell)

Nondeterminism in TMs

Deterministic Nondeterministic
computation computation

e Start
¢ 1011q7o111),\
1011¢701111

. : { l

® 1011¢;01111

For TMs, each J
node is a reject o)'
configuration

: R

* accept or reject * accept

b k£ Ak Ak— £k

Nondeterministic TM = Deterministic |1stway

Nondeterministic

» Simulate NTM with Det. TM: S
* Det. TM keeps multiple configs on single tape (1

* Like how single-tape TM simulates multi-tape
R

* Then run all computations, concurrently
 |.e, 1step on one config, 1 step on the next, ...

1011¢,01111 #1011g,01111

« Accept If any accepting config is found .
p y accepting config ceiect | \
) , , keeps all configs *
« Why must we step configs concurrently: at each step on 1

Because any one path can go on forever! IME EIPE * accept

mtertude: RUNNING TMS INSIde other TMs

Remember: If TMs are like function definitions, then they can be called like functions ...

“loop” means input

Exercise:
string not accepted

* Given: TMs M, and M,
 Create: TM M that accepts if either M, or M, accept

WMZ M
Possible solution #1: reject accept

M = on input x,
1. Call M, with arg x; accept x if M, accepts -
2. Call M, with arg x; accept x if M, accepts

Note: This solution would be ok if we
knew M, and M, were deciders
(which halt on all inputs)

mtertude: RUNNING TMS INSIde other TMs

Exercise:
* Given: TMs M, and M,
« Create: TM M that accepts if either M, or M, accept

.. With concurrency!

Possible solution #1: reject accept accept
M = on input X, accept reject accept
1. Call M, with arg x; accept x If M, accepts accept loops accept
2. Call M, with arg x; accept x if M, accepts loops accept loops
Possible solution #2: ___
M = on Input x, reject accept accept
1. Call M, and M,, each with x, concurrently, i.e, accept reject accept ZI
a) Run M, with x for 1 step; accept if M, accepts accept loops accept
b) Run M, with x for 1 step; accept if M, accepts loops accept accept ZI

c) Repeat

Nondeterministic TM = Deterministic |2 way

(Sipser)
Nondeterministic
 Simulate NTM with Det. TM: computation
 Number the nodes at each step 1,
* Check all tree paths (in breadth-first order) [l
. 1 L0 2N
* 1-1 1(2]3 4

accept

Nondeterministic TM = Deterministic

Nondeterministic
« Simulate NTM with Det. TM: computation
 Number the nodes at each step 1
* Check all tree paths (in breadth-first order) [\

3 [V WA

* 1-1 12 3

¢ 1-2 : {’ ‘}
reject '/ \'

2"d way
(Sipser)

* accept

Nondeterministic TM = Deterministic |2 way

(Sipser)
Nondeterministic
« Simulate NTM with Det. TM: computation
 Number the nodes at each step 15
* Check all tree paths (in breadth-first order) (\ l
e 1 x 2 —\
v Vv O\
* 1-1 11£]3 4

g Y
reject '/ \'

accept

Nondeterministic TM = Deterministic |2 way

(Sipser)
Always has input, Use 3 tapes
never changes
R’
0|/0[1]|0|u| ... Inputtape
“Work tape” when checking each
D v path (re-copy input here each time)

x [x|#|0|1|x|u| ... simulation tape
Tracks which node we
v are on, e.g, 1-1-2, etc.

1(2|13(3|2|3|1[2|1]|1|3|u|... addresstape

Nondeterministic TM <& Deterministic TM

= If a deterministic TM recognizes a language,
then a nondeterministic TM recognizes the language
« Convert Deterministic TM = Non-deterministic TM

< If a nondeterministic TM recognizes a language,
then a deterministic TM recognizes the language
« Convert Nondeterministic TM = Deterministic TM

Conclusion: These are All Equivalent TMs!

 Single-tape Turing Machine
« Multi-tape Turing Machine

* Non-deterministic Turing Machine

