

context-free

regular

Halting TMs,

a.k.a., "algorithms"

... that analyze CFLs

Announcements

- HW 8 in
 - Due Wed April 17 12pm noon
- HW 9 out
 - Due Wed April 24 12pm noon

4/17 Lecture Participation Question (in GradeScope)

 Which of the following rules are valid for a grammar in Chomsky Normal Form?

Last Time: Decider Turing Machines

- 2 classes of Turing Machines
 - Recognizers (all TMs): may loop forever
 - TM that loops on an input does not accept that input
 - Deciders (subset of TMs) (algorithms) always halt
 - Must accept or reject
- Decider definitions must include a termination argument:
 - Explains (informally) why every step in the TM halts
 - (Pay special attention to loops)

Last Time: Algorithms About Regular Langs

- $A_{\mathsf{DFA}} = \{ \langle B, w \rangle | \ B \text{ is a DFA that accepts input string } w \}$
 - Decider: Simulates DFA by implementing extended δ function
- $A_{\mathsf{NFA}} = \{ \langle B, w \rangle | \ B \text{ is an NFA that accepts input string } w \}$
 - **Decider**: Uses **NFA** \rightarrow **DFA** decider + A_{DFA} decider
- $A_{\mathsf{REX}} = \{ \langle R, w \rangle | R \text{ is a regular expression that generates string } w \}$
 - Decider: Uses RegExpr \rightarrow NFA decider + A_{NFA} decider
- $E_{\mathsf{DFA}} = \{ \langle A \rangle | A \text{ is a DFA and } L(A) = \emptyset \}$
 - **Decider**: Reachability algorithm Lang of the DFA
- $EQ_{\mathsf{DFA}} = \{ \langle A, B \rangle | A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}$

Remember:

TMs ~ programs

Creating TM ~ programming

Previous theorems ~ library

Decider: Uses complement and intersection closure construction + E_{DFA} decider

Next: Algorithms (Decider TMs) for CFLs?

What can we predict about CFGs or PDAs?

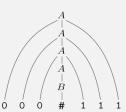
Thm: A_{CFG} is a decidable language

 $A_{\mathsf{CFG}} = \{ \langle G, w \rangle | G \text{ is a CFG that generates string } w \}$

- This is a very practically important problem ...
- ... equivalent to:
 - Algorithm to parse "program" w for a programming language with grammar G?
- A Decider for this problem could ...?
 - Try every possible derivation of G, and check if it's equal to w?
 - But this might never halt
 - E.g., what if there are rules like: $S \rightarrow 0S$ or $S \rightarrow S$
 - This TM would be a recognizer but not a decider

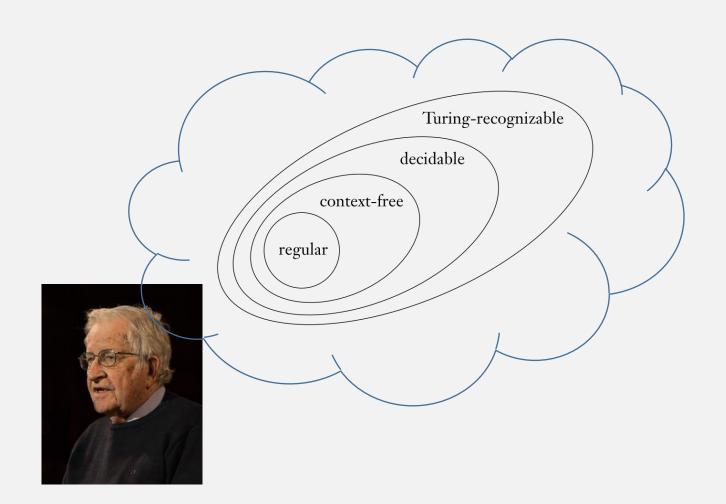
Idea: can the TM stop checking after some length?

• I.e., Is there upper bound on the number of derivation steps?



Chomsky Normal Form

Noam Chomsky



He came up with this <u>hierarchy</u> of languages

Chomsky Normal Form

A context-free grammar is in *Chomsky normal form* if every rule is of the form $A \to BC \qquad \text{2 rule shapes} \\ A \to a \qquad \text{Terminals only}$ where a is any terminal and A, B, and C are any variables—except that B and C may not be the start variable. In addition, we permit the rule $S \to \varepsilon$, where S is the start variable.

Chomsky Normal Form Example

Makes the string long enough

Convert variables to terminals

- $S \rightarrow AB$
- $B \rightarrow AB$
- $A \rightarrow a$
- $B \rightarrow \mathbf{b}$

- To generate string of length: 2
 - Use S rule: 1 time; Use A or B rules: 2 times
 - $S \Rightarrow AB \Rightarrow aB \Rightarrow ab$
 - Derivation total steps: 1 + 2 = 3
- To generate string of length: 3
 - Use S rule: 1 time; A rule: 1 time; A or B rules: 3 times
 - $S \Rightarrow AB \Rightarrow AAB \Rightarrow aAB \Rightarrow aaB \Rightarrow aab$
 - Derivation total steps: 1 + 1 + 3 = 5
- To generate string of length: 4
 - Use S rule: 1 time; A rule: 2 times; A or B rules: 4 times
 - $S \Rightarrow AB \Rightarrow AAB \Rightarrow AAAB \Rightarrow aAAB \Rightarrow aaAB \Rightarrow aaaB \Rightarrow aaab$
 - Derivation total steps: 3 + 4 = 7

A context-free grammar is in *Chomsky normal form* if every rule is of the form

$$A \rightarrow BC$$

 $A \rightarrow BC$ 2 rule shapes

where a is any terminal and A, B, and C are any variables—except that B and C may not be the start variable. In addition, we permit the rule $S \to \varepsilon$, where S is the start variable.

Chomsky Normal Form: Number of Steps

To generate a string of length *n*:

n-1 steps: to generate n variables

+ n steps: to turn each variable into a terminal Convert string to terminals

<u>Total</u>: *2n - 1* steps

(A *finite* number of steps!)

Makes the string long enough

Chomsky normal form

A o BC Use *n*-1 times

 $A \rightarrow a$ Use *n* times

Thm: A_{CFG} is a decidable language

 $A_{\mathsf{CFG}} = \{ \langle G, w \rangle | \ G \text{ is a CFG that generates string } w \}$

Proof: create the decider:

S = "On input $\langle G, w \rangle$, where G is a CFG and w is a string:

We first
need to
prove this is
true for all
CFGs!

- 1. Convert G to an equivalent grammar in Chomsky normal form.
- 2. List all derivations with 2n-1 steps, where n is the length of w; except if n=0, then instead list all derivations with one step.
- 3. If any of these derivations generate w, accept; if not, reject."

Step 1: Conversion to Chomsky Normal Form is an algorithm ...

Step 2:

Step 3:

Termination argument?

Thm: Every CFG has a Chomsky Normal Form

Proof: Create algorithm to convert any CFG into Chomsky Normal Form

Chomsky normal form

 $A \rightarrow a$

- 1. Add <u>new start variable</u> S_{θ} that does not appear on any RHS A o BC
 - I.e., add rule $S_0 \rightarrow S$, where S is old start var

$$S oup ASA \mid aB$$
 $A oup B \mid S$
 $B oup b \mid arepsilon$
 $S oup ASA \mid aB$
 $A oup B \mid S$
 $A oup B \mid S$
 $B oup b \mid arepsilon$

Thm: Every CFG has a Chomsky Normal Form

Chomsky normal form

- 1. Add new start variable S_0 that does not appear on any RHS $A \to BC$
 - I.e., add rule $S_0 \rightarrow S$, where S is old start var
- 2. Remove all "empty" rules of the form $A \rightarrow \varepsilon$
 - A must not be the start variable
 - Then for every rule with A on RHS, add new rule with A deleted
 - E.g., If $R \rightarrow uAv$ is a rule, add $R \rightarrow uv$
 - Must cover all combinations if A appears more than once in a RHS
 - E.g., if $R \rightarrow uAvAw$ is a rule, add 3 rules: $R \rightarrow uvAw$, $R \rightarrow uAvw$, $R \rightarrow uvAw$

$$S_0 o S$$
 $S o ASA \mid aB \mid \mathbf{a}$ $S o ASA \mid aB \mid \mathbf{a}$ $S o ASA \mid aB \mid \mathbf{a} \mid \mathbf{S}A \mid \mathbf{A}S \mid \mathbf{S}$ $S o ASA \mid \mathbf{a}B \mid \mathbf{a} \mid \mathbf{S}A \mid \mathbf{A}S \mid \mathbf{S}$ Then, add $S o \mathbf{B} \to \mathbf{B} \mid \mathbf{S} \mid \mathbf{E}$ Then add, to account for possibly empty $S o \mathbf{B} \to \mathbf{B}$ Then, remove

Thm: Every CFG has a Chomsky Normal Form

Chomsky normal form

- 1. Add new start variable S_0 that does not appear on any RHS $A \to BC$
 - I.e., add rule $S_0 \rightarrow S$, where S is old start var
- 2. Remove all "empty" rules of the form $A \rightarrow \epsilon$
 - A must not be the start variable
 - Then for every rule with A on RHS, add new rule with A deleted
 - E.g., If $R \rightarrow uAv$ is a rule, add $R \rightarrow uv$
 - Must cover all combinations if A appears more than once in a RHS
 - E.g., if $R \rightarrow uAvAw$ is a rule, add 3 rules: $R \rightarrow uvAw$, $R \rightarrow uAvw$, $R \rightarrow uvAw$
- 3. Remove all "unit" rules of the form $A \rightarrow B$
 - Then, for every rule $B \rightarrow u$, add rule $A \rightarrow u$

$$S_0 o S$$
 $S o ASA \mid aB \mid a \mid SA \mid AS \mid S$
 $A o B \mid S$
 $B o b$

Remove, no add (same variable)

$$S_0
ightarrow S_0 \mid ASA \mid aB \mid a \mid SA \mid AS$$

 $S
ightarrow ASA \mid aB \mid a \mid SA \mid AS$
 $A
ightarrow B \mid S$
 $B
ightarrow b$

Remove, then add S RHSs to S_0

$$S ext{ } S_0 o ASA \mid aB \mid a \mid SA \mid AS \ S o ASA \mid aB \mid a \mid SA \mid AS \ A o S \mid b \mid ASA \mid aB \mid a \mid SA \mid AS \ B o b$$

Remove, then add *S* RHSs to *A*

Termination argument of this algorithm?

Thm: Every CFG has a Chomsky Normal Form

Chomsky normal form

 $S_0 \rightarrow ASA \parallel aB \mid a \mid SA \mid AS$

 $S o ASA \mid \mathtt{a}B \mid \mathtt{a} \mid SA \mid AS$

 $A
ightarrow \mathbf{b} \, | \, ASA \, | \, \mathbf{a}B \, | \, \mathbf{a} \, | \, SA \, | \, AS$

- 1. Add new start variable S_0 that does not appear on any RHS $A \to BC$
 - I.e., add rule $S_0 \rightarrow S$, where S is old start var
- 2. Remove all "empty" rules of the form $A \rightarrow \epsilon$
 - A must not be the start variable
 - Then for every rule with A on RHS, add new rule with A deleted
 - E.g., If $R \rightarrow uAv$ is a rule, add $R \rightarrow uv$
 - Must cover all combinations if A appears more than once in a RHS
 - E.g., if $R \rightarrow uAvAw$ is a rule, add 3 rules: $R \rightarrow uvAw$, $R \rightarrow uAvw$, $R \rightarrow uvAw$
- 3. Remove all "unit" rules of the form $A \rightarrow B$
 - Then, for every rule $B \rightarrow u$, add rule $A \rightarrow u$
- 4. Split up rules with RHS longer than length 2
 - E.g., $A \rightarrow wxyz$ becomes $A \rightarrow wB$, $B \rightarrow xC$, $C \rightarrow yz$
- 5. Replace all terminals on RHS with new rule
 - E.g., for above, add $W \rightarrow w, X \rightarrow x, Y \rightarrow y, Z \rightarrow z$

$$S_0
ightarrow AA_1 \mid UB \mid$$
 a $\mid SA \mid AS$ $S
ightarrow AA_1 \mid UB \mid$ a $\mid SA \mid AS$ $A
ightarrow$ b $\mid AA_1 \mid UB \mid$ a $\mid SA \mid AS$ $A_1
ightarrow SA$ $U
ightarrow$ a $U
ightarrow$ a $U
ightarrow$ b

 $B \to b$

Thm: A_{CFG} is a decidable language

 $A_{\mathsf{CFG}} = \{ \langle G, w \rangle | \ G \text{ is a CFG that generates string } w \}$

Proof: create the decider:

S = "On input $\langle G, w \rangle$, where G is a CFG and w is a string:

We first need to prove this is true for all CFGs!

- 1. Convert G to an equivalent grammar in Chomsky normal form.
- 2. List all derivations with 2n-1 steps, where n is the length of w; except if n=0, then instead list all derivations with one step.
- 3. If any of these derivations generate w, accept; if not, reject."

Termination argument:

Step 1: any CFG has only a finite # rules

Step 2: 2n-1 = finite # of derivations to check

Step 3: checking finite number of derivations

Thm: E_{CFG} is a decidable language.

$$E_{\mathsf{CFG}} = \{ \langle G \rangle | G \text{ is a } \mathsf{CFG} \text{ and } L(G) = \emptyset \}$$

Recall:

$$E_{\mathsf{DFA}} = \{ \langle A \rangle | A \text{ is a } \mathsf{DFA} \text{ and } L(A) = \emptyset \}$$

T = "On input $\langle A \rangle$, where A is a DFA:

- **1.** Mark the start state of A.
- 2. Repeat until no new states get marked:
- 3. Mark any state that has a transition coming into it from any state that is already marked.
- **4.** If no accept state is marked, accept; otherwise, reject."

"Reachability" (of accept state from start state) algorithm

Can we compute "reachability" for a CFG?

Thm: E_{CFG} is a decidable language.

$$E_{\mathsf{CFG}} = \{ \langle G \rangle | G \text{ is a CFG and } L(G) = \emptyset \}$$

 $\underline{\text{Proof}}$: create **decider** that calculates reachability for grammar G

• Go backwards, start from terminals, to avoid getting stuck in looping rules

R = "On input $\langle G \rangle$, where G is a CFG:

- **1.** Mark all terminal symbols in *G*.
- 2. Repeat until no new variables get marked:
- 3. Mark any variable A where G has a rule $A \to U_1U_2 \cdots U_k$ and each symbol U_1, \ldots, U_k has already been marked.
- **4.** If the start variable is not marked, *accept*; otherwise, *reject*."

Loop marks 1 new variable on each iteration or stops: it eventually terminates because there are a finite # of variables

Termination argument?

Thm: EQ_{CFG} is a decidable language?

$$EQ_{\mathsf{CFG}} = \{ \langle G, H \rangle | \ G \ \text{and} \ H \ \text{are CFGs and} \ L(G) = L(H) \}$$

Recall:
$$EQ_{DFA} = \{\langle A, B \rangle | A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}$$

Used Symmetric Difference



$$L(C) = \emptyset \text{ iff } L(A) = L(B)$$

- where C = complement, union, intersection of machines A and B
- Can't do this for CFLs!
 - Intersection and complement are <u>not closed</u> for CFLs!!!

Intersection of CFLs is Not Closed!

Proof (by contradiction), Assume intersection is closed for CFLs

Then intersection of these CFLs should be a CFL:

$$A = \{ \mathtt{a}^m \mathtt{b}^n \mathtt{c}^n | \, m, n \geq 0 \}$$
 $B = \{ \mathtt{a}^n \mathtt{b}^n \mathtt{c}^m | \, m, n \geq 0 \}$

- But $A \cap B = \{a^n b^n c^n | n \ge 0\}$
- ... which is not a CFL! (So we have a contradiction)

Complement of a CFL is not Closed!

Assume CFLs closed under complement, then:

if
$$G_1$$
 and G_2 context-free

$$\overline{L(G_1)}$$
 and $\overline{L(G_2)}$ context-free From the assumption

$$L(G_1) \cup L(G_2)$$
 context-free Union of CFLs is closed

$$\overline{L(G_1)} \cup \overline{L(G_2)}$$
 context-free From the assumption

$$L(G_1) \cap L(G_2)$$
 context-free

DeMorgan's Law!

But intersection is not closed for CFLS (prev slide)

Thm: EQ_{CFG} is a decidable language?

$$EQ_{\mathsf{CFG}} = \{ \langle G, H \rangle | \ G \ \text{and} \ H \ \text{are CFGs and} \ L(G) = L(H) \}$$

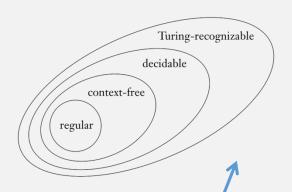
- There's no algorithm to decide whether two grammars are equivalent!
- It's not recognizable either! (Can't create any TM to do this!!!)
 - (details later)
- I.e., this is an impossible computation!

Summary Algorithms About CFLs

- $A_{\mathsf{CFG}} = \{ \langle G, w \rangle | G \text{ is a CFG that generates string } w \}$
 - Decider: Convert grammar to Chomsky Normal Form
 - Then check all possible derivations up to length 2|w| 1 steps
- $E_{\mathsf{CFG}} = \{ \langle G \rangle | G \text{ is a CFG and } L(G) = \emptyset \}$
 - Decider: Compute "reachability" of start variable from terminals
- $EQ_{\mathsf{CFG}} = \{\langle G, H \rangle | \ G \ \text{and} \ H \ \text{are CFGs and} \ L(G) = L(H) \}$
 - We couldn't prove that this is decidable!
 - (So you cant use this theorem when creating another decider)

The Limits of Turing Machines?

- TMs represent all possible "computations"
 - I.e., any (Python, Java, ...) program you write is a TM



• But some things are not computable? I.e., some langs are out hére?

To explore the limits of computation, we have been studying ...

... computation about other computation ...

• Thought: Is there a decider (algorithm) to determine whether a TM is an decider?

Hmmm, this doesn't feel right ...

Next time: Is A_{TM} decidable?

 $A_{\mathsf{TM}} = \{ \langle M, w \rangle | \ M \text{ is a TM and } M \text{ accepts } w \}$

