UMB CS 420

Decidability for CFLs

Wednesday, April 17, 2024

Turing-recognizable

decidable

context-free

Halting TMs,
a.k.a., “algorithms”

... that analyze CFLs

%/{/{0«/{0@%@/{5&’

« HW 8 In

+ Due-Wed-Apri-i7-12pm-noen
* HW 9 out

« Due Wed April 24 12pm noon

4/17 Lecture Participation Question (in GradeScope)

« Which of the following rules are valid for a
grammar in Chomsky Normal Form?

last Tine: DeCider Turing Machines

« 2 classes of Turing Machines

 Recognizers (all TMs): may loop forever
« TM that loops on an input does not accept that input

- Deciders (subset of TMs) (algorithms) always halt
« Must accept or reject

 Decider definitions must include a termination argument:
* Explains (informally) why every step in the TM halts
* (Pay special attention to loops)

last Tire: AlgOrithms About Regular Langs

. Apra = {(B,w)| B is a DFA that accepts input string w }
 Decider: Simulates DFA by implementing extended & function

« Anpa = {(B,w)| B is an NFA thataccepts input string w }

 Decider: Uses NFA->DFA decider + A,, decider

o Arex = {(R,w)| R is a regular expression that generates string w }

 Decider: Uses RegExpr->NFA decider + Ay, decider

° EDFA = {<A>| A is a DFA and L(A — @}
- Decider: Reachability algorithm™| Lang of the DFA

e« FQpea = {(A,B)| Aand B are DFAs and L(A) = L(B)}

Remember:
TMs ~ programs
Creating TM ~ programming
Previous theorems ~ library

%" - Decider: Uses complement and intersection closure construction + E., decider

Mext: Algorithms (Decider TMs) for CFLS?

« What can we predict about CFGs or PDAs?

Thm: Acrg is a decidable language

Acrc = {{G,w)| G is a CFG that generates string w}

 This Is a very practically important problem ...

* ... €quivalent to:
* Algorithm to parse “program” w for a programming language with grammar G?

A Decider for this problem could ... ?

« But this might never halt
« E.g,what if there are rules like:S—>0SorS— S
« This TM would be a recognizer but not a decider

|[dea: can the TM stop checking after some length?

* |l.e, Isthere upper bound on the number of derivation steps?

Chomsky Normal Form

Noam Chomsky

Turing-recognizable

decidable He came up with

this hierarchy of
languages

context-free

Chomsky Normal Form

A context-free grammar is in Chomsky normal form if every rule is
of the form A (non-start) Variables only

A — 507 2 rule shapes

A—as

Terminals only
where a is any terminal and A, B, and C are any variables—except

that B and C' may not be the start variable. |In addition, we permit

the rule S — &, where S is the start variable|

Chomsky Normal Form Example

Makes the string long enough Convert variables to terminals
e S—>AB « To generate string of length: 2
e B— AB « Use Srule: 1time; Use A or B rules: 2 times

e« S>AB=>aB=>ab
« Derivation total steps: 1 + 2 =|3

*B-b * To generate string of length: 3
e Use Srule: 1time; A rule: 1time; A or B rules: 3 times
e S=> AB = AAB = aAB = aaB = aab
« Derivation total steps: 1+ 1+ 3 =[5

« To generate string of length: 4
A context-free grammar is in Chomsky normal form if every rule is) Use S rUle: 1 time ;A rule: 2 timeS; 4 Oof b rUleS: 4 times
of the form * S AB= AAB = AAAB = aAAB = aaAB = aaaB = aaab
M 4 .o 2ruleshapes | « Derjvation total steps: 3 + 4 =|7

where a is any terminal and A, B, and C are any variables—except
that B and C' may not be the start variable. [n addition, we permit
the rule S — &, where S is the start variable.

4> a

Chomsky Normal Form: Number of Steps

To generate a string of length n:
n - 1 steps: to generate n variables Makes the string long enough
+ n steps: to turn each variable into a terminal Convert string to terminals
Total: 2n - 1 steps

(A finite number of steps!) Chomsky normal form

A — B(C' | Use n-1 times
A — a Use n times

Thm: Acrg is a decidable language

Acrc = {(G,w)| G is a CFG that generates string w }
Proof: create the decider:

S = “On input (G, w), where G is a CFG and w is a string:

We first 1. Convert G to an equivalent grammar in Chomsky normal form.
need to 2. Listall derivations with 2n — 1 steps, where n is the length of w;
prove this is except if n = 0, then instead list all derivations with one step.
true for all
CFGs!

Step 1: Conversion to Chomsky Normal Form is an algorithm ...
Step 2:

Step 3: . .
P Termination argument?

Thm: Every CFG has a Chomsky Normal Form

Chomsky normal form

Proof: Create algorithm to convert any CFG into Chomsky Normal Form

1. Add new start variable S, that does not appear on any RHS A — BC
* l.e, add rule S, > S, where S'is old start var A—a

SQ—>S
jjgﬁ‘g’aB j> S — ASA|aB
A— B|S

B —ble B ble

Thm: Every CFG has a Chomsky Normal Form

Chomsky normal form
1. Add new start variable S, that does not appear on any RHS A — BC

* l.e, add rule S, > S, where Sis old start var A—a
2. Remove all “empty” rules of the form A > ¢
« A must not be the start variable
« Then for every rule with 4 on RHS, add new rule with A deleted
« Eg,IfR> udvisarule,add R > uv
« Must cover all combinations if A appears more than once in a RHS
« Eg,if R> udvAwis a rule, add 3 rules: R 2 uvAw, R 2 uAvw, R 2 uvw
So — S So — S
S — ASA|aB|a S — ASA|aB|a|SA|AS|S
A— B|S|e A— B|S
B — b Then, add B — b Then add, to account for possibly empty A

First, remove Then, remove

Thm: Every CFG has a Chomsky Normal Form

Chomsky normal form
1. Add new start variable S, that does not appear on any RHS A — BC

* l.e,add rule S,> S, where Sis old start var A—a
2. Remove all “empty” rules of the form A > ¢
« A must not be the start variable
« Then for every rule with A on RHS, add new rule with A deleted
« Eg, IfR> udvisarule,add R > uv
« Must cover all combinations if A appears more than once in a RHS
« Eg,if R> uAvAw is a rule, add 3 rules: R 2 uvAw, R 2 udvw, R 2 uvw
3. Remove all “unit” rules of the form A >B
* Then, for every rule B> u,add rule A > u
S — ASA|aB|a|SA| AS S — ASY |aB|a|SA| AS S — ASA|aB|a|SA|AS
A B|S A— S.b|ASA|aB|a|SA|AS
A= B|S _— \
B —b B — b
B — Db Remove, no add

(same variable) Remove, then add S RHSs to S, Remove, then add S RHSs to 4

Termination argument of this algorithm?

Thm: Every CFG has a Chomsky Normal Form

1.

2.

3.

4,

* l.e,add rule S, > S, where S'is old start var

Remove all “empty” rules of the form A4 2> ¢
* A must not be the start variable

« Then for every rule with A on RHS, add new rule with A deleted

« Eg, IfR> udvisarule,add R > uv

Remove all “unit” rules of the form A 2B
* Then, for every rule B> u, add rule A 2> u

Split up rules with RHS longer than length 2
« Eg,A > wxyzbecomesA > wB, B> xC,C~>yz

Replace all terminals on RHS with new rule
« Eg, forabove,add W>w,X2>x, Y2y, Z>z

Chomsky normal form

Add new start variable S, that does not appear on any RHS A — BC
A—a

Sy — ASA||aB|a|SA| AS

B — b
« Must cover all combinations if A appears more than once in a RHS

« Eg,if R> uAvAw is a rule, add 3 rules: R 2 uvAw, R 2 udvw, R 2 uvw

S —- ASA|aB|a|SA|AS
A—Db|ASA|aB|a|SA|AS

!

S[) — AAl ’

S — AA, |UB |a| SA| AS
A—b|AA; |UB|a|SA|AS

Al—)*SA
U — a
B — Db

UB

la| SA|AS

Thm: Acrg is a decidable language
Acre = {(G, w)| G is a CFG that generates string w }
Proof: create the decider:

S = “On input (G, w), where G is a CFG and w is a string:

We first 1. Convert G to an equivalent grammar in Chomsky normal form.
need to 2. Listall derivations with 2n — 1 steps, where n is the length of w;
prove this is except if n = 0, then instead list all derivations with one step.
true for all 3. Ifany of these derivations generate w, accept; if not, reject.”
CFGs!

Termination argument:

Step 1: any CFG has only a finite # rules

Step 2: 2n-1 =finite # of derivations to check
Step 3: checking finite number of derivations

Thm: FEckg is a decidable language

Ecre = {(G)| Gis a CFG and L(G)

Recall:
EDFA — {<A>‘ A iS d DFA and L(A) — @}

T = “On input (A), where A is a DFA:
1. Mark the start state of A.
2. Repeat until no new states get marked:
3. /' Mark any state that has a transition coming into it from any
state that is already marked.
4. If no accept state is marked, accept; otherwise, reject.”

“Reachability” (of accept state from start state) algorithm

Can we compute “reachability” for a CFG?

0}

Thm: FEckg is a decidable language
Ecrg = {(G)| GisaCFGand L(G) = 0}

Proof: create decider that calculates reachability for grammar G
* Go backwards, start from terminals, to avoid getting stuck in looping rules

9 , _ Loop marks 1 new variable on each iteration
R = “On mput <G>, where G 1s a CFG: or stops: it eventually terminates because
1. Mark all terminal Symbols inG there are a finite # of variables
2. | Repeatfuntil no new variables get marked:
3. Mark any variable A where G hasarule A — U,Us - - - U, and

each symbol Uy, . .., Uy has already been marked.

Termination argument?

Thm: EQcrg Is a decidable language? g
EQcrc = {(G, H)| G and H are CFGs and L(G) = L(H)}

Recall: FQpra = {(A,B)| Aand B are DFAs and L(A) = L(B)}
* Used Symmetric Difference

@ L(C) = 0 iff L(A) = L(B)

« where € = complement, union, intersection of machines 4 and B

« Can't do this for CFLs!
* Intersection and complement are not closed for CFLs!!!

Intersection of CFLs Is Not Closed!

Proof (by contradiction), Assume intersection is closed for CFLs
e Then intersection of these CFLs should be a CFL:

A={a"p"c"|m,n > 0}

B ={a"b"c™|m,n > 0}
« ButAnB={a"b"c"|n >0}

e ...which is not a CFL! (So we have a contradiction)

Complement of a CFL I1s not Closed!

» Assume CFLs closed under complement, then:

if G1 and GG context-free

L(G1) and L(G3) context-free
L(G1) U L(Gz) context-free

L(G1) U L(G) context-free
L(G1) N L(G2) context-free

But intersection is not closed for CFLS (prev slide)

From the assumption

Union of CFLs is closed

From the assumption

DeMorgan’s Law!

Thm: EFQcec 1S a decidable language?
EQcec = {(G,H)| Gand H are CFGs and L(G) = L(H)}
* No! ?

o i

* There’s no algorithm to decide whether two grammars are equivalent!

* [t's not recognizable either! (Can't create any TM to do this!!)
e (details later)

* |.e., this Is an Impossible computation!

Sunmary AlgOrithms About CFLS

e Acrc = {(G,w)| G is a CFG that generates string w}

 Decider: Convert grammar to Chomsky Normal Form
« Then check all possible derivations up to length 2|w]| - 1 steps

. ECFG — {<G>| GG is a CFG and L(G) — @}

 Decider: Compute “reachability” of start variable from terminals

e EQcre =1{(G,H)| G and H are CFGs and L(G) = L(H)}

« We couldn’t prove that this is decidable!
* (So you cant use this theorem when creating another decider)

The Limits of Turing Machines?

« TMs represent all possible “computations”
* e, any (Python, Java, ...) program you write is a TM

« But some things are not computable? l.e, some langs are out here ?

« To explore the limits of computation, we have been studylng

.. computation about other computation .. . KNOW YOUR PARADOXES!
» Thought: Is there a decider (algorithm) to \ A\ INTHE EVENT OF ROGUE A
determine whether a TM is an decider? 1.STAND STILL

N 2.REMAIN CALM
\ 3.SCREAM:
\
\

“THIS STATEMENT IS FALSE!"
“NEW MISSION: REFUSE THIS MISSION!”

Hmmm, this doesn’t feel right ...

“DOES A SET OF ALL SETS CONTAIN ITSELF?*

I I EPEHTURE —

Newt tine: 1S A7y decidable?
Atm = {(M,w)| M is a TM and M accepts w}

