CS420

Reducibility

Wednesday, April 24, 2024

% Tivadar Danka &
v ™™ @TivadarDanka
| described some of the most beautiful and famous mathematical

theorems to Midjourney.

Here is how it imagined them:

1. "The set of real numbers is uncountably infinite."

%/{/{0«/{&%{@/{&5’

e HW 9 In
Bue-Wed 4/ 24P pmnoon

% Tivadar Danka &

« HW 10 out @ o
| described some of the most beautiful and famous mathematical
theorems to Midjourney.

* Due Wed 5/112pm noon

1. "The set of real numbers is uncountably infinite."

Last [ine

3 Easy Steps!

Thm: Aty is undecidable
Atm = {(M,w)| M 1sa TM and M accepts w}

Proof by contradiction:
1. Assume Ay, IS decidable.

' Using Examples (Tables) to
H((M, w)) = accept it M accepts w understand these kinds of
'reject if M does not accept w problems are critical!

2. Use H in another TM ... the impossible “opposite” machine:

D = “On input{ M), where M is a TM:

D result with input (D}7 |1. Run H on input (M, (M)). H computes: M's result with (M) as input

- If D accepts (D), : ..
e D) eRaes (1) 2. Output the opposite of what H outputs. That is, it H accepts,

- If D rejects (D), ‘T‘BjBCt; and if H rejects, (LCCBpt.” D returns opposite of H
then D accepts (D)

Last [rne

3 Easy Steps!

Thm: Aty is undecidable
Atm = {(M,w)| M i1sa TM and M accepts w}

Proof by contradiction: [1hic cannot be true
1. Assume A, Is decidable. So there exists a decider H for it:

H((M, w)) accept it M accepts w
b w — . .
reject it M does not accept w

2. Use H in another TM ... the impossible “opposite” machine:

t (M), where M 1s a TM:
1. Run H onin).

2. Output the opposite of what
reject; and if H rejects, accept.”

3. So D does not exist! Contradiction! So the assumption is false.

That is, it H accepts,

Fasier Undecidability Proofs

« We proved Arw = {(M,w)| M isaTMand M accepts w} undecidable ...

e ... by contradiction:

« Use hypothetical A;, decider to create an impossible decider “D”!

reduce “D problem” to Ay,

 Step # 1: coming up with “D” --- hard!
« Need to invent diagonalization

Known undecidable lang!

*/Step # 2: reduce “D” problem to wa --- easier!

M, | accept re

My | acce

M; | reject reje
My | accept accept rejec

D

reject reject accept

« From now on: undecidability proofs only need step # 2!

« And we now have two “impossible” problems to choose from

The Halting Problem

HALTvwm = {{(M,w)| M isa TM and M halts on input w}
Thm: HALT;, is undecidable

Proof, by contradiction:

* Assume: HALTry has decider R; use it to create decider for Ay

Examples Table(s) are critical for these kinds of problems!\\
Let (M, w) be a string “Example Table for R
- MissomeTMand [string I EETMon W T
- wis some string (M, w) (halt and) Accept Accept Yes

(M, w) (halt and) Reject Accept Yes
(M, w) Loop Reject No

The Halting Problem

HALT vy = {(M,w)| M isa TM and M halts on input w}
Thm: HALT;, 1s undecidable

Proof, by contradiction: reduce (from known undecidable) Ay, to HALT,

« Assume: HALT; has decider R;
Atm = {(M,w)| M/is a TM and M accepts w}

o contradiction

 But A, Is undecidable and has no decider!

The Halting Problem

HALT vy = {(M,w)| M isa TM and M halts on input w}
Thm: HALT;, 1s undecidable

Proof, by contradiction: [using our hypothetical HALT,, decider R

» Assume: HALT;, has decider R; use It to create decider for A}y,

Atm = {(M,w)| M is a TM and M accepts w}

S = “On input (M, w),an encoding of a TM M and a string w:

1. Run TM R on input (M, w).

2. If R rejects, reject. If R rejects (M,w), M loops on input w, so S rejects
3. It R accepts, simulate M on w until it halts.<— This step always halts
4.

It M has accepted, accept; if M has rejected, reject.”
Examples Table?? Termination argument:

Step 1: Ris a decider so always halts
Step 3: M always halts because R said so

-|-h e H a ltl n g P rO b le m These mu‘st match (like before)

HALTmi = {(M,w)| M is a TM/and\M halts on input w}

Let (M, w) be a strlng
where:

M is some TM and (M, w) Accept Accept Accept Yes Example
w is some string (M, w) Reject Accept Reject No Table for A;y,
JIESSSISIL (M, w) Loop Reject Reject No \r decider S
Arm={ (M, Jw)| M is a TM and M accepts w}
S = “On input (M, w), an encoding ot a and a string w:
1. Run TM R on input (M, uf Now these must [

(sometimes) match Because we are using R
2. If R rejects, reject. e

3. If R accepts, simulate M on w until it halts.
4. If M has accepted, accept; if M has rejected, reject.”

Examples Table??

Undecidability Proof Technique #1:
Reduce from known undecidable

The Haltin g Problem language (by creating its decider)
HALT vy = {(M,w)| M isa TM and M halts on input w}

Thm: HALT;, 1s undecidable
Proof, by contradiction:
» Assume: HALT;, has decider R; use It to create decider for A}y,

input (M, w), an encoding of a TM M and a string w:
1. Run input (M, w). Now we have three known
2 If .) undecidable langs, i.e,

. It R rejects, reject. e Aipessler
3. If R accepts, simulate M on w until3 s. | deciders, to choose from
4. If M has accepted, accept; if M has rejected, reject:

« But Ay, Is undecidable (has no deciden! 1.€., this decider does not exist!
« SO HALT, 1s also undecidable!

The Halting Problem .. as statements / Justifications

(Proof by contradiction)

Statements

1. HALT;, Is decidable

2. HALT;y, has decider R

3. Construct decider S
using R (“see below”)

4, Decider S decides A4y,

5. Ay s undecidable
(i.e, it has no decider)

6. HALT;, I1s undecidable

HALT vy = {(M,w)| M isa TM and M halts on input w}

Justifications
1. Opposite of statement to prove

2. Definition of decidable langs

3. Definition of TMs and deciders
(incl termination argument)

4. See Examples Table

Theorem from last lecture
(Sipser Theorem 4.11)

6. Contradiction of Stmts #4 & #5

ntertide: Reducing from HALT,,

A practical thought experiment ...
... about compiler optimizations

Your compiler changes your program!

If TRUE then A else B mm) A

1+2+3 m 6

Compiler Optimizations

Optmization - docs

o

o

(o]

O

O

€]

[e]

-00

= No optmization, faster compilation time,
better for debugging builds.

-02
-03

= Higher level of optmization. Slower compile-
time, better for production builds.

-OFast

= Enables higher level of optmization than (-
03). It enables lots of flags as can be seen
src (-ffloat-store, -ffsast-math, -ffinite-
math-only, -03 ..)

-finline-functions
-m64
-funroll-loops
-fvectorize

-fprofile-generate

Types of optimization [edit]

Techniques used in optimization can be broken up among various scopes which can affect anything from a single statement to the entire
program. Generally speaking, locally scoped techniques are easier to implement than global ones but result in smaller gains. Some
examples of scopes include:

Peephole optimizations
These are usually performed late in the compilation process after machine code has been generated. This form of optimization
examines a few adjacent instructions (like "looking through a peephole” at the code) to see whether they can be replaced by a single
instruction or a shorter sequence of instructions.[2) For instance, a multiplication of a value by 2 might be more efficiently executed by
left-shifting the value or by adding the value to itself (this example is also an instance of strength reduction).

Local optimizations
These only consider information local to a basic block.l*! Since basic blocks have no control flow, these optimizations need very little
analysis, saving time and reducing storage requirements, but this also means that no information is preserved across jumps.

Global optimizations
These are also called "intraprocedural methods” and act on whole functions.[*! This gives them more information to work with, but
often makes expensive computations necessary. Worst case assumptions have to be made when function calls occur or global
variables are accessed because little information about them is available.

Loop optimizations
These act on the statements which make up a loop, such as a for loop, for example loop-invariant code motion. Loop optimizations
can have a significant impact because many programs spend a large percentage of their time inside loops.[*]

Prescient store optimizations
These allow store operations to occur earlier than would otherwise be permitted in the context of threads and locks. The process
needs some way of knowing ahead of time what value will be stored by the assignment that it should have followed. The purpose of
this relaxation is to allow compiler optimization to perform certain kinds of code rearrangement that preserve the semantics of
properly synchronized programs.[%!

Interprocedural, whole-program or link-time optimization
These analyze all of a program's source code. The greater quantity of information extracted means that optimizations can be more
effective compared to when they only have access to local information, i.e. within a single function. This kind of optimization can also
allow new techniques to be performed. For instance, function inlining, where a call to a function is replaced by a copy of the function
body.

Machine code optimization and object code optimizer
These analyze the executable task image of the program after all of an executable machine code has been linked. Some of the
techniques that can be applied in a more limited scope, such as macro compression which saves space by collapsing common
sequences of instructions, are more effective when the entire executable task image is available for analysis.©]

The Optimal Optimizing Compiler

“Full Employment” Theorem
Thm: The Optimal (C++) Optimizing Compiler does not exist
Proof, by contradiction:
Assume: OPT is the Perfect Optimizing Compiler
Use it to create HALT;,, decider (accepts <Mw> if M halts with w, else rejects):

S =0n input <M, w>, where Mis C++ program and w is string:
In computer science and mathematics, a full employment theorem is a term used, often humorously, to

— — e O
i |f OPT(IW) —_—— .FO I' (? 9) refer to a theorem which states that no algorithm can optimally perform a particular task done by some class

* of professionals. The hame arises because such a theorem ensures that there is endless scope to keep
a) Then Reject

b) E lS e ACCG pt For example, the full employment theorem for compiler writers states that there is no such thing as a
_provably perfect size-optimizing compiler, as such a proof for the compiler would have to detect non-

discovering new techniques to improve the way at least some specific task is done.

terminating computations and reduce them to a one-instruction infinite loop. Thus, the existence of a provabl
perfect size-optimizing compiler would imply a solution to the halting problem, which cannot exist. This also
implies that there may always be a better compiler since the proof that one has the best compiler cannot
exist. Therefore, compiler writers will always be able to speculate that they have something to improve.

Sumary: The Limits of Algorithms

* Apra = {(B,w)| B is a DFA that accepts input string w } Decidable
« Acre = {(G,w)| G is a CFG that generates string w } Decidable
e Atm = {(M,w)| M isa TM and M accepts w} lasnigj;z;s Undecidable
o HALTT\v = {(M,w)| M isa TM and M halts on input w} Undecidable

It's straightforward to use
hypothetical HALT;, decider to
create Ay decider

next

Sumary: The Limits of Algorithms

* Apra = {(B,w)| B is a DFA that accepts input string w }
« Acre = {(G,w)| G is a CFG that generates string w }
e Atm = {(M,w)| M isa TM and M accepts w}

o« HALTtMm = {(M,w)| M is a TM and M halts on input w}

Epra = {(A)| Aisa DFA and L(A) = 0}

Not as
similar

Ecrg = {{(G)| Gisa CFG and L(G) = 0} languages

o Frm = {(M) MisaTMand L(M) = ()}

How can we use a
hypothetical E; decider to
create Ay or HALT;,, decider?

Decidable
Decidable
Undecidable
Undecidable
Decidable
Decidable
Undecidable

Examples Table(s) are critical here!

Undecidability Proof Technique #2

Reducibility: Moditying the TM

Frm = {(M)| M isaTM and L(M

) =0}

Thm: E;y, 1s undecidable
Proof, by contradiction:

» Assume E7y has decider R; use 1t to create decider for Ay
S = “On input (M, w), an encoding of a TM M and a string w:

. Now these must match
. RllIl R on IHPUt <M> (sometimes), but ...?

. If R accepts, reject (because itfmeans
+ if R rejects, then 222 ((M)

These must match (like before) M

(M) doebn'tlaccept anything)

butlis it w???)
h ETe

Let (M, w) be a string __
where: (M, w) Accept Accept Yes Table for Ay
- Missome TM and . . decider S
- wissome String (M, W) RejeCt ReJeCt No
(M, w) Loop Reject No

Undecidability Proof Technique #2

Reducibility: Moditying the TM

Erm = {(M)| M isaTM and L(M) = 0}

Thm: E;y, 1s undecidable
Proof, by contradiction:
» Assume E;, has decider R; use It to create decider for Ay
S = “On input (M, w), an encoding of a TM M and a string w:
. Run R on input (M)

. It R accepts, reject (because it means (M) doesn’t accept anvthing)

+ if R rejects, then 222 ((M) accepts something, but is it w??7 L0y depends

on M and w!
. If M accepts w,
e I[dea: Wrap (M) in a new TM that can only (maybe) accept w. Lim,) = {w}
M; = “On input x: else L) =

1. Ifx # w, reject. Input not w, always reject
Input is w, maybe accept 2. If 2z = w, run M on input w and accept if M does.”| M; accepts w if M does

Examples Table(s) are critical here!

Undecidability Proof Technique #2

Reducibility: Modifying the TM

Frv = {{(M)| MisaTM and L(M) = 0}

Thm: E;y, 1s undecidable

Proof, by contradictioyow oppositest =

« Assume Eqy, has decider Rj use 1tto create decider for Ay
S = “On input (M, w), an pncodingyof a TM M and a string w:

| Stringx Monw IR BRI ATANRT | Example

w Accept Reject Accept Yes (lang = {w}) Table for M,
w Reject Accept Reject No (lang = {}) L(M,) depends
not w - — Reject No on M and w!

If M accepts w,

e [dea: Wrap (M) in a new TM that can only (maybe) accept wi Lim,) = w)
M; = “On input else L(M,) = {}

1. Ifz # w, reject.
2. If z = w, run M on input w and accept if M does.”

Undecidability Proof Technique #2

Reducibility: Moditying the TM

Erm = {(M)| M isaTM and L(M) = 0}

Thm: E7) Is undecidable
Proof, by contradiction:

» Assume E;, has decider R; use It to create decider for Ay

First, construct M,

S =“On inoyt (M, w), an encoding of a TM M and a string w:

. Run v on mnput <‘Z'M\‘1 Note: M, is only used as arg to R; it's never run (avoiding loop)!

. If R accepts, reject (because it means (M) doesn't accept

w)

- if R rejects, thenlaccept] ((M) accepts

w

A

 Idea: Wrap (M) in a new TM that can only (maybe) accept w.

M; = “On input x:
1. Ifz # w, reject.
2. Ifx = w, run M on input w and accept if M does.”

L(M,) depends
on M andw!

If M accepts w,
L(M,) = {w}
else L(M) ={}

Reducibility: Moditying the TM

Erv={ (M) MisaTMand L(M) =
Thm: E;y, is undecidable ™ = (M) MisaTMand L(M) = 0}

Proof, by co ntradiction: This decider for Ay, cannot exist!
« Assume E;y has decider R; use 1t to create decider for Ay

S =*“Oainnut (M, w), an encoding of a TM M and a string w:

First, construct M,
. Run i on input (M7
. If R accepts, reject (because it means 'taccept [w___

- if R rejects, thenlaccept ((M) accepts w —

A

e Idea: Wrap (M) in a new TM that can only (maybe) accept w:

M; = “On input z:
1. If x # w, reject.

2. Ifz = w, run M on input w and accept if M does.”

next

Sumary: The LImits of Algorithms

Apra = {(B,w)| B is a DFA that accepts input string w }
Acre = {(G,w)| G is a CFG that generates string w}
Atm = {(M,w)| M is a TM and M accepts w}

Epra = {(A)| Aisa DFA and L(A) = 0}

Ecrc = {(G)| Gis aCFG and L(G) = 0}

needs

Erm = {(M)| MisaTMand L(M) = 0} ¢

EQpea = {(A, B)| Aand B are DFAsand L(A) = L(B)}

EQcrc = {(G, H)| G and H are CFGs and L(G) = L(H)}

EQ+y = {(My, My)| My and My are TMs and L(M;) = L(M>,)}

Decidable
Decidable
Undecidable
Decidable
Decidable
Undecidable
Decidable
Undecidable
Undecidable

Undecidability Proof Technique #3

Reduce to something else: EQ+y is undecidable

EQ+y = {(My, My)| My and M, are TMs and L(M;) = L(M>)}

Proof, by contradiction:
Erwm

« Assume: EQ;) has decider R; use It to create decider foNL,;M:
Erp = {1) MisaTMand L(M) = 0}

S = “On input (M), where M is a TM:
1. Run R'on input (M, M;), where M; is a TM that rejects all
inputs.
2. If R accepts, accept; it R rejects, reject.”

Reduce to something else: EQy is undecidable
EQ+v = {(My, M3)| My and M are TMs and L(M;) = L(Ms)}
Proof, by contradiction:

« Assume: EQ;y has decider R; use it to create decider for Ey:
={(M)| MisaTMand L(M) = (0}

ut (M), where M is a TM:
1. Run Roni M), where M; is a TM that rejects all

inputs.
2. If R accepts, accept; it R rejects, reject.”

 But E7 IS undecidable!

Sumary: Undecidability Proof Techniques

e Proof Technique #1: Atvm = {{(M,w)| M isa TM and M accepts w }
« Use hypothetical decider to implement impossible A4, deciderﬁ Reduce

« Example Proof: HALTtw = {(M,w)| M is a TM and M halts on input w}

* Proof Technique #2:

2= Use hypothetical decider to implement impossible A, decider
Can also . . . ™
« But first modify the input M

combine
these Reduce

techniques | « Example Proof: FEry = {(M)| M isa TM and L(M) = 0}

\

* Proof Technique #3:
* Use hypothetical decider to implement non-4,, impossible decider

« Example Proof: EQ y = {(M;, M>)| M, and M, are TMs and L(M,) = L(M>)}

Sumary: DecCidability and Undecidability

Apra = {(B,w)| B is a DFA that accepts input string w }
Acec = {(G,w)| G is a CFG that generates string w}
Atm = {(M,w)| M is a TM and M accepts w}

Epra = {(A)| Aisa DFA and L(A) = 0}

Ecrc = {(G)| Gis aCFG and L(G) = 0}

Erv = {(M)| MisaTM and L(M) = ()}
EQpea = {(A, B)| Aand B are DFAsand L(A) = L(B)}
EQcrc = {(G, H)| G and H are CFGs and L(G) = L(H)}

EQ+y = {(My, My)| My and My are TMs and L(M;) = L(M>,)}

Decidable
Decidable
Undecidable
Decidable
Decidable
Undecidable
Decidable
Undecidable
Undecidable

Also Undecidable ...

next | * REGULAR;y = {<M>| M isaTM and L(M) is a regular language}

Undecidability Proof Technique #2:

Thm:REGULAR~, is undecidable Modify Input TM M

REGULARtm = {(M)| M isaTM and L(M) is a regular language}

Proof, by contradiction:
« Assume: REGULAR-, has decider R; use it to create decider for A

S = “On input (M, w), an encoding of a TM M and a string w:
o| First, construct M, (??)

e Run R on mput (M

2

o If R accepts, accept; if R rejects, reject
\ A\

Want: L(M,) =
« regular, If M accepts w
« nonregular, if M does not accept w

Thm:REGULARTy\ is undecidable (continued)

REGULARtm = {(M)| M isaTM and L(M) is a regular language}

M3 = “On input z:
1. If x has the form 01", accept.
2. If x does not have this form, run M on input wjand

Always accept strings 071"
L(M,) = nonregular, so far

accept 1t M accepts w.” If M accepts w,

accept everything else,

if M does not accept w, M, accepts all strings (regular lang) || so L(M,) = 2* = regular

All strings

Qnin

/

Want: L(M,) =

* nonregu

 regular, If M accepts WE/

ar, if M does not accept w

if M accepts w, M, accepts this nonregular lang

Seems like no algorithm can compute

- anything about
AI.SO U N d eCl d d b le the language of a Turing Machine,
l.e., about the runtime behavior of programs ...
* REGULAR, = {<M>| MisaTM and L(M) is a regular language}
 CONTEXTFREE), = {<M>|MisaTMand L(M) is a CFL}

* DECIDABLE, = {<M> | M is a TM and L(M) is a decidable language}

* FINITE;,, = {<M>| MisaTM and L(M) is a finite language}

An Algorithm About Program Behavior?

main()

{
printf ("hello, world\n");
+

Write a program that,
given another program as its argument,
returns TRUE if that argument prints
“Hello, World!”

4

TRUE

Fermat’s Last Theorem
(unknown for ~350 years,
solved in 19905s)

in()
Taln /

If ™ +y" = 2", for any integer n > 2

printf("hello, world\n");

Write a program that,

ther program as its argument,
RUE if that argument prints
‘Hello, World!”

4

Y& X ds

Seems like no algorithm can compute

- anything about
AI.SO U N d eCl d d b le the language of a Turing Machine,
l.e., about the runtime behavior of programs ...
* REGULAR, = {<M>| MisaTM and L(M) is a regular language}
 CONTEXTFREE), = {<M>|MisaTMand L(M) is a CFL}
* DECIDABLE, = {<M> | M is a TM and L(M) is a decidable language}
* FINITE;,, = {<M>| MisaTM and L(M) is a finite language}

Rice's Theorem
*|ANYTHING-, = {<M>| MisaTM and “... anything ...” about L(M)}

Rice’s Theorem: ANYTHING,, 1S Undecidable

ANYTHINGy, = {<M>| MisaTM and ... anything ... about L(M)}

« “... Anything ...”, more precisely:
For any M,, M,,
* It L(M;) = L(M,)
» then M, € ANYTHING,,, © M, € ANYTHING;,

* Also, “... Anything ..."must be “non-trivial”:
« ANYTHING), '={}
« ANYTHING), '=set of all TMs

Rice’s Theorem: ANYTHING,, 1S Undecidable

ANYTHINGy, = {<M>| MisaTM and ... anything ... about L(M)}

Proof by contradiction

« Assume some language satisfying ANYTHING-,, has a decider R.
 Since ANYTHING-, is non-trivial, then there exists M,,, € ANYTHING,,
« Where R accepts M,

 Use R to create decider for Ay
On input <M, w>:

These two cases

= i . must be different,
* Create M]_ng{v OI\I:I Tfergic e If M accepts w: M,, = Myyy | (so R can distinguish
S At () 1 , If M doesn’t accept w: M,, accepts nothing || when M accepts w)
- If M rejects w: reject x -
- If M accepts w: Wait! What if the TM that accepts

Run M,,,on x and accept if it accepts, else reject nothing is in ANYTHING;,,!

* RunRon M,

« If it accepts, then M, = M,,,, SO M accepts w, so accept Proof still works! Just use the

e Else reject complement of ANYTHING;,, instead!
|

Rice’'s Theorem Implication

{<M> | Mis a TM that installs malware} Undecidable!
by Rice’'s Theorem

(n)
1f the number n 1s a prime
var factor; // if

RANSOMWAREATTACK /\

YOUR FILES HAVE BEEN ENCRYPTED

