UMB CS 420

Mapping Reducibility
Wednesday, April 29, 2024

%/{/{0«/{0@#{@/{&?

« HW 10 out
e Due Wed 5/112pm noon

Also:

e 5/1: HW 11 out

« 5/8: HW 11 in, HW 12 out

« 5/8: last lecture

* 5/15: HW 12 in (no exceptions)

Lecture participation question 4/29 (in gsradescope)
« Mapping reducibility is a relation between two ...?

Arm = {(M,w)| M isa TM and M accepts w} known

Flasttack: “Reduced” 3

HALT+v = {(M,w)| M is a TM and M halts on input w} | unknown

Thm: HALT 1\ is undecidable
Proof, by contradiction:

e Assume: HALTtm has decider R; use it to create Aty decider:

Essentially, we

S = “On input (M, w), an encoding of a TM M and a string w: |
convert /1))/)

el of . Run TM R on input (M, w). (Use R to) First: check if M will loop on w
an Ay, string ... 2. If R rejects, reject. Then: run M on w, knowing it won’t loop!

o 3. If cepts, simulate M on w until it halts.
decidability of a If M has accepted, accept; if M has rejected, reject.”

HALTyy, string A potential problem: could the .
e« Contradicti conversion itself go into an infinite loop? | No decider!

Let's formalize this conversion, i.e., mapping reducibilty

(lashback: ANpa is a decidable language

Anra = {(B,w)| B is an NFA that accepts input string w }

Decider for AI\IFA g

N = “On input (B, w), where B is an NFA and w is a string:
1. Convert NFA B to an equivalent DFA (', using the procedure

NFA-DFA —
2 Rur ?M V on it ToRT We said this NFA>DFA
- Run TM M on input (€, w). | algorithm is a decider TM,
3. If M accepts, accept; otherwise, reject.” but it doesn’t accept/reject?

More generally, our analogy has been:
“programs ~ TMs”,
but programs do more than accept/reject?

Defintior: COMputable Functions

A function f: ¥*——3* is a computable function if some Turing
machine M, on every input w, halts with just f(w) on its tape.

« A computable function is represented with a TM that,
instead of accept/reject, “outputs” its final tape contents

« Example 1: All arithmetic operations

« Example 2: Converting between machines, like DFA>NFA
« E.g, adding states, changing transitions, wrapping TM in TM, etc.

Defintior: MAppPINg Reducibility

notation

Language A is mapping reducible to language B, written A <., B,
if there is a computable function f: ¥* — ¥* where for every w,
weEA

“if and only if”
The function f is called the reduction from Ato B. flw) €B

“forward” direction (=): if we Athen flw) €B

we A<= f(w) € B.

f
//—--_\
* * 2?79
“reverse” direction (<): if lw) € Bthen we'A® °
A function f: X*—3* is a computable function if some Turing
machine M, on every input w, halts with just f(w) on its tape.

thstback: EQUIValence of Contrapositive

“If X then Y” Is equivalent to ... ?

1. “If Ythen X" (converse)
2. “If not X then not Y” (inverse)

3. “If not Y then not X" (contrapositive)

thstback: EQUIValence of Contrapositive

“If X then Y”|is equivalent to ... ?

x “If Ythen X" (converse)
 No!

X “If not X then not Y” (inverse)
e No!

v |“If not Y then not X”|(contrapositive)
* Yes!

Defintior: MAppPINg Reducibility

Language A is mapping reducible to language B, written A <, B,
if there is a computable function f: ¥* — ¥* where for every w,

w € A<+ f(w) € B. “if and only if”

The function f is called the reduction from A to B.

“forward” direction (=): if we Athen flw) €B

Reverse direction just as important:
“don’t convert non-4s into Bs”

“reverse” direction («): if fiw) e Bthen we A

Equivalent (contrapositive): if w & A then filw) & B Easier to prove

Proving Mapping Reducibility: 2 Steps

Step 1:
Show there is computable

Language A is mapping reducible to language B, written A <., B, N f... by creatinga TM

if there is a computable function f: ¥* — ¥* where for every w,
Step 2:
we A<= f(w) € B. “if and only if” | Prove the iff is true for

that computable fn TM
The function f is called the reduction from A to B. =

Step 2a: “forward” direction (=): if w € Athen filw) €B

e.g.
Arm = {{M,w)| M isa TM and M acce

Step 2b: “reverse” direction (&): if flw) € Bthen we A

A function f: X*—3* is a computable function if some Turing
machine M, on every input w, halts with just f(w) on its tape.

Step 2b. alternate (contrapositive): if w & A then flw) ¢ B

Thm: Avm1s mapping reducible to HALTtwm

Arm = {(M,w)| M isa TM and M accepts w}

¥
To show: Atm <, HALT1m HALTtv = {(M,w)| M is a TM and M halts on input w}
Step 1: create computable fn £ <M, w> > <M’, w> where:
Step 2: show (M, w) € Aty ifand only if (M4 w) € HALT 1\ .
The following machine F' computes a reduction f.
F = “On input (M, w): ./f—L—\\.
1. j(\j/;)lnitl"%; t?;:pﬁllxo.wing machine M~% Converts M to M’
: 1. Run M on z.
Step 2! 2. If M accepts, accept.
M accepts w 3. If M I'ejeCtS, enter a IOOp.” Language A is mabbing reducible to language B, written A <., B,

if there i a computable function f: ¥*—3*, where for every w,

ifandonly it 2. Qutput (M’,w).” | M’is like M, except it
M’ halts onw ‘

we A+ f(w) € B.

d lways loo pS Wh en it The function f is called the reduction from A to B.
Outp ut new M’ doesn’t acce pt A function f: ¥*— ¥* is a computable function if some Turing

machine M, on every input w, halts with just f(w) on its tape.

vVl = If M accepts w, then M’ halts on w
« M’ accepts (and thus halts) if M accepts

Step 2:
M accepts w

If and only If 2. Output

Construct the following machine M’.

MI

= “On input x:
1. Run M on z°

w):

The following machine F' computes a reduction f.

F = “On mput (M
1.

P TN
W@
S
/_—_—_————\

If M accepts this string

\

2. If M accepts, accept.< |
3. If M rejects, enter a loop.

Ml

w)

Then M’ accepts it

(and halts)

b/

M’ halts on w

Make an Examples Table!

< If M’ halts on w, then M accepts w

M | < (Alternatively) If M doesn’t accept w, then M’ doesn’t halt on w (contrapositive)

« Two possibilities for “doesn’t accept”:

1. M loops: M’ loops and doesn’t halt |

2. M rejects: M’ loops and doesn’t halt |

The following machine F' computes a reduction f.

F = “On input (M, w):
1. Construct the following machine M’.
M'" = “On input z:

| L Run M ona If M loops, then M’ loops
Step 2: 2. If M accepts, accept.
M accepts w 3. If M rejects, enter a loop.”}
ifand only If 2. Output (M', w).” If M rejects, then M’ loops!
M’ halts onw

Now we know what mapping reducibility is, and how to
prove it for two languages; but what is it used for?

N

Make an Examples Table!

Uses of Mapping Reducibility

« To prove Decidability

« To prove Undecidability

Thm: If A <., B and B is decidable, then A is decidable.

Has a decider Must create decider

PROOF We let M be the decider for B and f be the reduction from A to B.
We describe a decider NV for A as follows.

N = “On input w:
1. Compute f(w):

decides/ 2. Run M on input f(w) and output whatever M outputs.”
We know decides

Why is it true that:

this is true

be of the iff If M accepts f(w) then N should accept w ??

(specifically i.e., flw) in B guarantees that w in A???

the reverse | . | |

direction) Language A is mapping reducible to language B, written A <., B,

if there is a computable function f: ¥* — 3%, where for every w,

we A<= f(w) € B,

The function f is called the reduction from A to B.

Corollary:If A <,, B and A is undecidable, then B is undecidable.

* Proof by contradiction.

« Assume B Is decidable.

* Then 4 is decidable (by the previous thm).

« Contradiction: we already said 4 is undecidable

If A <,, B and B is decidable, then A is decidable.

Summary: ShOWING Mapping Reducibility

Step 1:
Show there is computable
. . ‘ . fn f... by creating a TM
Language A is mapping reducible to language B, written A <, B,

if there is a computable function f: ¥* — ¥* where for every w,
Step 2:
w e A< f(w) € B. “if and only if” | Prove the iff is true

The function f is called the reduction from A to B.

Step 2a: “forward” direction (=): if w € Athen filw) €B

f
.//_“\.

Step 2b: “reverse” direction (<): if fiw) € Bthen we A

A function f: X*—3* is a computable function if some Turing
machine M, on every input w, halts with just f(w) on its tape.

Step 2b. alternate (contrapositive): if w & A then flw) ¢ B

Summary: UsSINg Mapping Reducibility

To prove decidability ...

« If A <,, B and B is decidable, then A is decidable.

\

Unknown UndeCIdablllty Proof
Known (ft) Technique #4:
L Want to prove Mapping Reducibility
To prove undecidability ... \ + this theorem

« If A <, B and A is undecidable, then B is undecidable.

Be careful with the direction of the reduction,
l.e. what is known and what is unknown!

Alternate Froof- The Halting Problem

HALT+m 1s undecidable

« If A<, B and A is undecidable, then B is undecidable.

Must be known

o ATM <im HALTtm Undecidability Proof

Technique #4:
Mapping Reducibility
+ this theorem

e Since Ay IS undecidable,
» ... and we showed mapping reducibility from Ay, to HALTy,

« then HALT, I1s undecidable n

Flashback: EQ+y 1s undecidable

EQ+y = {(My, My)| My and My are TMs and L(M;) = L(M,)}

Proof by contradiction:

 Assume EQq.y has decider R; use it to create Erym decider:
={(M)| MisaTMand L(M) = (0}

S = “On input (M), where M is a TM:
1. Run R on input (M, M;), where M; is a TM that rejects all
inputs.
2. If R accepts, accept; if R rejects, reject.”

Alternate Froof: EQ\ is undecidable

EQ+y = {{(My, Ms)| My and M5 are TMs and L(M;) = L(M>)}

Show mapping reducibility: Ery <m EQtm
Step 1: create computable fn £ <M> > <M, M,>, computed by S

S = “On input (M), where M is a TM:
1. Construct: (M, M), where M; is a TM that rejects all
inputs.
2. output: (M, M)

Step 2: show iff requirements of mapping reducibility (hw exercise?)

Undecidability Proof Technique #4:
And use theorem ... Mapping Reducibility + theorem ¢

If A <,, B and A is undecidable, then B is undecidable.

Flashback, E+m 1s undecidable

Erm = {(M)| M isaTM and L(M) = 0}
Proof, by contradiction:

« Assume FEtm has decider R; use it to create Aty decider:

S = “On input (M, w), an encoding of a TM M and a string w:

1. Use the description of M and w to construct the TM M,
M, = “On input z:
) 1. Ifx # w, reject.
2. Run Ron mput <M1> 2. Ifz = w, run M on input w and accept if M does.”
3. If R accepts, reject; if R rejects, accept.” '
DS, TEJCCh: g £ 1 If M accepts w,

. _ then M, accepts w,
» So this only reduces Aty to By, meaning M, is not in Ey,

Abternate /D/Wf' Frwm 1s undecidable

Erm = {(M)| M isaTM and L(M) = 0}
Show mapping reducibility??: Atm <m E1m

Step 1: create computable fn i <M, w> 2> <M”>, computed by S
S —

“On input (M, w), an encoding of a TM M and a string w:

1. Use the description of M and w to construct the TM M,
M; = “On input z:

1. Ifx # w, reject.
2. Output: <J\/fl> 2. Ifz = w, run M on input w and accept it M does.”
3. It Raccepts; reject; it R rejects; accept.” |
1 If M acceptsw,
. — then M, accepts w
» So this only reduces Aty to T A

meaning M, is not in E;,!
* It's good enough! Still proves Etw is undecidable Sten 2 <how if

* |f ... undecidable langs are closed under complement | requirements of

mapping reducibility
(hw exercise?)

Language Complement

Complement (NEG from hw3) of a language 4, written A ...
... IS the set of all strings not in set 4

Example:
Em={(M)|MisaTM and L(M) =@ }

Emn={(M)|MisaTMand L(M) # @ }

U {w | wis a string that is not a TM description }

Undecidable Langs Closed under Complement

Proof by contradiction

 Assume some lang L is undecidable and L is decidable ...
« Then L has a decider

Contradiction!

. ... then we can create decider for L from decider for L ...
 Because decidable languages are closed under complement (hw?)!

Mest Tine: TUTING UNrecognizable?

Is there anything out here?

Atwm

' Turing-recognizable

decidable

context-free

Where do these
undecidable languages go?

FErvm = {{M)| MisaTMand L(M) =0}
EQcrc = {(G,H)| G and H are CFGs and L(G) = L(H)}
EQ+y = {(My, My)| My and M, are TMs and L(M;) = L(M>)}

Class Participation Question 4/29

On gradescope

