UMB CS420

Polynomial Time (P)
Monday, May 6, 2024

)
n)
)=
)

%/{/{0«/{0@#(@/{13’

* HW 11
« Due Wed 5/8 12pm noon

* HW 12

* Release Wed 5/8 12pm noon
 Due Wed 5/15 12pm noon (no late days, no exceptions)

Q1 The time complexity class P represents what kind of

problems ? O(i) = O(yeah)
[[15:|0;:allthata I O(IOQH) - O(ﬂice)
Quiz Preview oP) O(n) = O(K)

O(n?) = O(my)

O(2”"n) = O(no)
O(O(mg)
O

last Tine: TIMe Complexity

Running Time or Time Complexity is a
property of decider TMs (algorithms)

Let M be a deterministic Turing machine that halts on all in-
puts. The running time or time complexity of M is the function
f: N— N, where f(n) is the, maximum number|of steps that M
uses;on any input of length n. If f(n) is the running time ot M,
we say that M runs in time f(n) and that\M is an f(n) time Tur-
ing machine. Customarily we use n to represent the length of the
input.

. : Worst case
Depends on size of input

last Tire: TIMe Complexity Classes

Big-0 = asymptotic upper bound,
l.e., “only care about large n*

Let tx\ N —R™ be a function. Define the time complexity class,
TIME(t(n)), to be the collection of all languages that are decid-
able by an'O(t(n)) time Turing machine.

Remember:
- TMs: have a time complexity (i.e.,, a running time),
- languages: are in a time complexity class

The time complexity class of a language is determined A language can have multiple
by the time complexity (running time) of its deciding TM deciding TMs, so could be in
multiple time complexity classes

The Polynomial Time Complexity Class (P)

P is the class of languages that are decidable in polynomial time on
a deterministic single-tape 'Turing machine. In other words,

P = | TIME(n").
k

 Corresponds to “realistically” solvable problems:
* Problems inP
« = “solvable” or “tractable”

* Problems outside P
« =“unsolvable” or “intractable”

GREAT NEWS, EVERYONE/
(T TURNS QUT THE PROBLEM
WE SPENT QUR CAREERS
WORKING ON CAN'T
BE SOL\VED/

‘Unsolvable” Problems

- Unsolvable problems (those outside P):
« usually only have “brute force” solutions

Brute-force attack

e e, “try all possible inputs”

In cryptography, a brute-force attack consists of an attacker submitting many passwords or passphrases with the hope of

{3 ” M
® u n SO lva b le a p p ll eS O n ly to la rge n eventually guessing a combination correctly. The attacker systematically checks all possible passwords and passphrases until

the correct one is found. Alternatively, the attacker can attempt to guess the key which is typically created from the password
using a key derivation function. This is known as an exhaustive key search.

Amount of Time : — : —
In this class, we're interested in questions like:

“abcdefg” 7 characters @ .29 milliseconds

“abcdefgh” 8 characters @ 5 hours

“abcdefghi” 9 characters [Ex) 5 days . T .
R e B How to prove something is “unsolvable” (not in P)?

“abedefghij” 10 characters 4 months

today —-How to prove something is “solvable” (in P)?

“abcdefghijk” 11 characters 1 decade

“abcdefghijkl” 12 characters 2 centuries

3 Problems in P

* A Graph Problem:
PATH = {(G, s,t)| G is a directed graph that has a directed path from s to ¢}

* ANumber Problem:
RELPRIME = {{x,y)| = and y are relatively prime}

A CFL Problem:

Every context-free language is a member of P

« To prove that a language Is “solvable”, i.e, In P ...
e ... construct a polynomial time algorithm deciding the language

- (These may also have nonpolynomial, i.e., brute force, algorithms)
 Check all possible ... paths/numbers/strings ...

Interlude: Graphs (see Sipser Chapter 0)

edges

(undirected) w_ nodes / vertices

We assume we have some string encoding of a graph
(i.e., <G>), when they are args to TMs, e.g.:

({1,2,3,4,5}, {(1,2), (2,3), (3,4), (4,5), (5,1)})

(but we usually don't care about the actual details)

- Edge defined by two nodes (order doesn’'t matter)

« Formally, a graph = a pair (} E)
 Where V = a set of nodes, E = a set of edges

Interlude: Weighted Graphs

Edge weights

Interlude: Subgraphs

Graph H

Subgraph G

shown darker

Interlude: Paths and other Graph Things

 Path
« A sequence of nodes connected by edges

* Cycle

* A path that starts/ends at the same node

« Connected graph
« Every two nodes has a path

* Tree
« A connected graph with no cycles

Interlude: Directed Graphs

Possible string encoding given to TMs:

({1,2,3,4,5,6}, {(1,2),(1,5), (2,1), (2,4), (5,4), (5,6), (6,1), (6,3)})
* Directed graph = (V, E)
« IV =set of nodes, E = set of edges

* An edge is a pair of nodes (u,v), order now matters | Each pair of nodes
e u="“from” node, v = “to” node Included twice

» “degree” of a node: number of edges connected to the node
« Nodes in a directed graph have both indegree and outdegree

Interlude: Graph Encodings

({1,2,3,4,5}, {(1,2), (2,3), (3,4), (4,5), (5,1)})

* For graph algorithms, “length of input” n usually = # of vertices
 (Not number of chars in the encoding)

« So given graph G=(V, E), n=|V]

« Max edges?
* =0(|V]?) =0(n?)

« So if a set of graphs (call it lang L) is decided by a TM where

* # steps of the TM = polynomial in the # of vertices
Or polynomial in the # of edges

eThenLisin P

3 Problems in P

* A Graph Problem:
PATH = {(G, s,t)| G is a directed graph that has a directed path from s to ¢}

* ANumber Problem:
RELPRIME = {{x,y)| = and y are relatively prime}

A CFL Problem:

Every context-free language is a member of P

P is the class of languages that are decidable in polynomial time on
a deterministic single-tape Turing machine. In other words,

P = TIME(n*).

A Graph Theorem: PATH € P

PATH = {(G, s,t)| G is a directed graph that has a directed path from s to ¢}

(A path is a sequence of
nodes connected by edges)

« To prove that a language isin P ...

.. we must construct a polynomial time algorithm deciding the lang

» A non-polynomial (i.e., "brute force”) algorithm:
» check all possible combination of all vertices,
« see if any connectstot
 |f n=#vertices, then # paths ~ n"or n! (worse than 29(m)

A Graph Theorem: PATH € P

PATH = {(G, s,t)| G is a directed graph that has a directed path from s to ¢}

PROOF A polynomial time algorithm M for PATH operates as follows.

M = “On input (G, s, t), where G is a directed graph with nodes s and ¢:
1. Place a mark on node s.
2. Repeat the following until no additional nodes are marked:

3. Scan all the edges of G. If an edge (a, b) is found going from
a marked node a to an unmarked node b, mark node b.

4. Iftis marked, accept. Otherwise, reject.”

of steps (worst case) (n = # nodes):
> Line 1: 1 step

A Graph Theorem: PATH € P

PATH = {(G, s,t)| G is a directed graph that has a directed path from s to ¢}

PROOF A polynomial time algorithm M for PATH operates as follows.

M = “On input (G, s, t), where G is a directed graph with nodes s and t:
1. Place a mark on node s.
2. Repeat the following until no additional nodes are marked:

3. Scan all the edges of G. If an edge (a, b) is found going from
a marked node a to an unmarked node b, mark node b.

4. Iftis marked, accept. Otherwise, reject.”

of steps (worst case) (n = # nodes):
e Line 1: 1 step

e Lines 2-3 (loop):
> Steps/iteration (line 3): max # steps = max # edges = 0(n?)

A Graph Theorem: PATH € P

PATH = {(G, s,t)| G is a directed graph that has a directed path from s to ¢}

PROOF A polynomial time algorithm M for PATH operates as follows.

M = “On input (G, s, t), where G is a directed graph with nodes s and t:
1. Place a mark on node s.
2. Repeat the following until no additional nodes are marked:

3. Scan all the edges of G. If an edge (a, b) is found going from
a marked node a to an unmarked node b, mark node b.

4. Iftis marked, accept. Otherwise, reject.”

of steps (worst case) (n = # nodes):
e Line 1: 1 step

e Lines 2-3 (loop):
- Steps/iteration (line 3): max # steps = max # edges = 0(n?)
> #t iterations (line 2): loop runs at most n times

A Graph Theorem: PATH € P

PATH = {(G, s,t)| G is a directed graph that has a directed path from s to ¢}

PROOF A polynomial time algorithm M for PATH operates as follows.

M = “On input (G, s, t), where G is a directed graph with nodes s and t:
1. Place a mark on node s.
2. Repeat the following until no additional nodes are marked:

3. Scan all the edges of G. If an edge (a, b) is found going from
a marked node a to an unmarked node b, mark node b. (Breadth-first search)
4. Iftis marked, accept. Otherwise, reject.”

of steps (worst case) (n = # nodes):
e Line 1: 1 step

e Lines 2-3 (loop):
- Steps/iteration (line 3): max # steps = max # edges = 0(n?)
- f#iterations (line 2): loop runs at most n times
> Total: O(n3)

A Graph Theorem: PATH € P

PATH = {(G, s,t)| G is a directed graph that has a directed path from s to ¢}

PROOF A polynomial time algorithm M for PATH operates as follows.

M = “On input (G, s, t), where G is a directed graph with nodes s and t:
1. Place a mark on node s.
2. Repeat the following until no additional nodes are marked:

3. Scan all the edges of G. If an edge (a, b) is found going from
a marked node a to an unmarked node b, mark node b.

4. Iftis marked, accept. Otherwise, reject.”

of steps (worst case) (n = # nodes):
e Line 1: 1 step

e Lines 2-3 (loop):

- Steps/iteration (line 3): max # steps = max # edges = 0(n?)
- f#iterations (line 2): loop runs at most n times
« Total: O(n3)

> Line 4: 1 step

P is the class of languages that are decidable in polynomial time on
a deterministic single-tape Turing machine. In other words,

A Graph Theorem: PATH € P

P = | TIME(n*).
k

PATH = {(G, s,t)| G is a directed graph that has a directed path from s to ¢}

PROOF A polynomial time algorithm M for PATH operates as follows.

M = “On input (G, s, t), where G is a directed graph with nodes s and t:
1. Place a mark on node s.
2. Repeat the following until no additional nodes are marked:

3. Scan all the edges of G. If an edge (a, b) is found going from
a marked node a to an unmarked node b, mark node b.

4. Iftis marked, accept. Otherwise, reject.”

of steps (worst case) (n = # nodes):
e Line 1:/1 step

e Lines 2-3 (loop):

- Steps/iteration (line 3): max # steps = max # edges = 0(n?)
- f#iterations (line 2): loop runs at most n times
« Total: O(n3)

* Line 4:1 step
»Total =1+ 1+ 0(n3)H0(n3)

PATH € TIME(n3)

O(n3)

3 Problems in P

v] + A Graph Problem:
PATH = {(G, s,t)| G is a directed graph that has a directed path from s to ¢}

* ANumber Problem:
RELPRIME = {{x,y)| = and y are relatively prime}

A CFL Problem:

Every context-free language is a member of P

A Number Theorem: RELPRIME c P

RELPRIME = {{x,y)| = and y are relatively prime}

« Two numbers are relatively prime: if their gcd = 1
« gcd(x,y) = largest number that divides both x and y

- E.g,gcd(8,12)= 7?

- Brute force (exponential) algorithm deciding RELPRIME:
» Try all of numbers (up to x or y), see if it can divide both numbers
Q: Why is this exponential?
HINT: What is a typical “representation” of numbers?
A: binary numbers
(if x = 27, then trying x numbers is exponential in n, the number of digits)

A gcd algorithm that runs in polynomial time:
 Euclid’s algorithm

A GCD Algorithm for: RELPRIME < P

RELPRIME = {{x,y)| = and y are relatively prime}

Modulo
(i.e., remainder) The Euclidean algorithm E'is as follows. 0(")
15 mod 8 = E =¥On input (x, y), where x and y are natural numbers in binary:
17 mod 8 = 1.~ Repeat until y = 0:
2 Assign x < x mod y. Each number is
cuts x (at least) in half 3. Exchange z and y. cut in half every
every loop, requires: 4. Output z.” other iteration

logx loops

Total run time (assume x> y): 2log x = 2log2" 4 0(n),
where n = number of binary digits in (ie length of) x

3 Problems in P

v] « A Graph Problem:
PATH = {(G, s,t)| G is a directed graph that has a directed path from s to ¢}

v] < ANumber Problem:
RELPRIME = {{x,y)| = and y are relatively prime}

A CFL Problem:

Every context-free language is a member of P

[F-THEN Statement to Prove:

IF a language L Is a CFL,
THENLiSInP

Feview: A Decider for Any CFL

Given any CFL L, with CFG G, the following decider M, decides L:

M, is a decider,

M¢g = “On input w: bc Sis a decider
1. Ruzl'TM S on input (G, w). - | T m———
2. Itihis machine accepts, accept; if it rejects, reject.” allw e L, for
any CFL L

Sis a decider for: Acrc = {(G, w)| G is a CFG that generates string w} (with CFL G)

S = “On input (G, w), where G is a CFG and w is a string: Therefore,
1. Convert G to an equivalent grammar in Chomsky normal form.| | every CFL is
2. Listall derivations with 2n — 1 steps, where n is the length of w; | | decidable
except if n = 0, then instead list all derivations with one step. :
L : e But, Is every
3. Ifany of these derivations generate w, accept; if not, reject. CEL decidable

in poly time?

A Decider for Any CFL: Running Time

Given any CFL L, with CFG G, the following decider M, decides L:

Mg = “On mnput w:
1. RunTM S on input (G, w).
2. If this machine accepts, accept; if it rejects, reject.”

j - %Al Sis a decider for: Acrc = {(G,w)| G is a CFG that generates string w}
_>
L —# S = “On input (G, w), where G is a CFG and w is a string:
p"'gs";,g'i‘:};gi;{e;g?; 1. Convert G to an equivalent grammar in Chomsky normal form.
1DILTI edacn
derivation step? 2. Listall derivations with 2n — 1 steps, where n is the length of w;
except if n = 0, then instead list all derivations with one step.
A= 0A1 = L . ., e
3. Ifany of these derivations generate w, accept; if not, reject.
Worst case:
2n-1 _ : : . S
|R|"" steps = 0(2") This algorithm runs in exponential time

(R = set of rules)

A CFL Theorem: Every context-free language is a member of P

* Given a CFL, we must construct a decider for it ...

e ... that runs in polynomial time

Dynamic Programming

« Keep track of partial solutions, and re-use them
e Start with smallest and build up

* For CFG problem, instead of re-generating entire string ...
« ... keep track of substrings generated by each variable

S = “On input (G, w), where G is a CFG and w is a string:
1. Convert G to an equivalent grammar in Chomsky normal form.

2. Listall derivations with 2n — 1 steps, where n is the length of w;
except if n = 0, thien instead list all derivations with one step.

3. If any of these derivations generate w, accept; if not, reject.”

This duplicates a lot of work because many strings
might have the same beginning derivation steps

CFL Dynamic Programming Example

e Chomsky Grammar G:
« S> AB|BC
« A>BA]Ja
- B>CC|b
« C>AB|a
« Example string: baaba

 Store every partial string and their generating variables in a table
Substring end char

Substring
start char

O T v v o

CFL Dynamic Programming Example

e Chomsky Grammar G:
« S> AB|BC
« A>BA]Ja
- B>CC|b
« C>AB|a
« Example string: baaba

 Store every partial string and their generating variables in a table
Substring end char

b vars generating °'b" vars for “ba” vars for “baa”
d

Substring vars for “a” vars for “aa” vars for “aab”

start char

b}

ox

CFL Dynamic Programming Example

e Chomsky Grammar G: Algo:
. S> AB|BC - For each single char c and var A:
+ ADBA|a - If A->cisarule,add Ato table
« B>CC|b
« C>AB]|a

« Example string: baaba

 Store every partial string and their generating variables in a table
Substring end char

b vars generating °'b" vars for “ba” vars for “baa”
d

Substring vars for “a” vars for “aa” vars for “aab”

start char

b}

ox

CFL Dynamic Programming Example

e Chomsky Grammar G: Algo:
. S> AB|BC - For each single char c and var A:
+ ADBA|a - If A->cisarule,add Ato table
« B>CC|b
« C>AB]|a

« Example string: baaba

 Store every partial string and their generating variables in a table
Substring end char

b
Substring | a AC

start char

b}

AC

ox
o)

CFL Dynamic Programming Example

e Chomsky Grammar G:

« S> AB|BC
« A>BA]Ja
« B2>CC|b
« C>AB|a

« Example string: baaba

« Store every partial string and their ge

Substring
start char

Algo:
- For each single char c and var A:

- IfA->cisarule,add A to table
- For each substring s (len > 1):
- For each split of substring s into x,y:
- For each rule of shape A - BC:
- Use table to check if B

generates x and C generatesy

wwmuv

Substring end char

b
a

(@ b

AC

AC

AC

CFL Dynamic Programming Example

« Chomsky Grammar G: Algo:
. S> AB|BC - For each single char c and var A:
- ASBA|a - If A>cisarule, add A to table
BSCClb - For each substring s:
| - For each split of substring s into x,y:
* C>ABJa - For each rule of shape A > BC:
» Example string: baaba — biitspgffl\)'r},ipTl?_rthfj&i;:lr; B
Oor supstrin a , splutinto a:
. I I I « Forrule S>> AB
Store every partial string and their gémereerd® B erate b and B generate “a"
Substring end char - NO
For rule S > BC

* YES

b « ForruleA->BA
- « Does B generate “b” and A generate “a”*
Substring | a AC . YES
Start Char 3 AC o For rule B> CC
! Does C generate “b” and C generate “a”?
b NO
For rule C> AB
a « Does A generate “b” and B generate “a”*

NO

CFL Dynamic Programming Example

e Chomsky Grammar G: Algo:
. S> AB|BC - For each single char c and var A:

« A>BA|a - If A>cisarule,add Ato table

- For each substring s:
P B2l - For each split of substring s into x,y:
*C>ABJa - For each rule of shape A = BC:

o Examp[e String: baaba - _lisp 1ahie 10 check IT K

. . . For substring “ba”, split into “b” and “a”™
* Store every partial string and their géeroerg * Formules=>as

Substring end char - NO

«— Forrule S = BC
. YES

b B S,A € For rule A> BA
d

AC . YES
AC e Forrule B> CC

Substring
start char

b}

NO
For rule C > AB

ox

Does A generate “b” and B generate “a”?

Does B generate “b” and A generate “a”?

Does C generate “b” and C generate “a”?

a « Does A generate “b” and B generate “a”*

NO

CFL Dynamic Programming Example

o Chomsky Grammar G: Algo. For each: char,var...
. [F . | - _For each single char c and var A:
or each: :
. | - char - If A>cisarule, add A to table
- var - For each substring For each: substring, split, rule ...
= - For each split of substring s into xy:
* C2>AB|a - For each rule of shape A = BC:
= creEl - Use table to check if B
- substrin . : . enerates x and C generates
- rule Substring end char
b If Sis here, accept ——>S,AC
Substring | a A,C B B S,A,C
start char | 3 AC S,C B
b B S,A

a AC

A CFG Theorem: Every context-free language is a member of P

|D = “On input w = wy - - - Wy
For each: |1. Forw =¢,if S — eisarule, accept; else, reject. [w = € case]

- char 2.>Fori=1ton: O(n)chars | [examine each substring of length 1]
~ el 3. For each variable A:| #vars = constant = 0(1)
‘ 4. Test whether A — b is a rule, where b = w);. 0(1) * O(n) = O(n)
5. If so, place A in table(i.i).
For each: 6.~ For | = 2 to n:| O(n) diff lengths |[[is the length of the substring]
-substring —— 7 >For i = 1 ton — [+ 1:| O(n) strings of each length substring]
- split of substring-|_, . . - :
“rule 8. Letj=17+4+1—1. [7 is the end position of the substring]
0. Fork =itoj— 1:| O(n) ways to split a string into two pieces
10. For each rule A — BC(C: #vars = constant = 0(1)
11. If table(i, k) contains B and table(k + 1, j) contains

C, put A in table(i, 7). N N N _ 3
12. If S'isin table(1,n), accept; else, mwg(l) O(n) * O(n) IO(H) O(n?)

Total:|0(n3)
(This is also known as the Earley parsing algorithm)

Summary: 3 Problems in P

v] + A Graph Problem:
PATH = {(G, s,t)| G is a directed graph that has a directed path from s to ¢}

v] < ANumber Problem:
RELPRIME = {{x,y)| = and y are relatively prime}

v] « A CFL Problem:

Every context-free language is a member of P

Lecture participation question 5/6

On gradescope

