UMass Boston Computer Science

CS450 High Level Languages (section 2)
Compound Data Definitions

Monday, September 23, 2024



Logistios

« HW 2 In
due-Mon-923-Rpm-{reon)EST

* Files should not start big-bang loop automatically!

* HW 3 out
e due: Mon 9/30 12pm noon EST
* Add key handler



STYLE notes: Overcommenting

“Redundant comments are just places
“The proper use of comments is to to collect lies and misinformation.”
compensate for our failure to express ourself - Robert C. Martin, Clean Code: A

1 . Handbook of Agile Software Craftsmanshi
in code. Note that I used the word failure. I OLAS! W ip

meant it. Comments are always failures.”
— Robert C. Martin, Clean Code: A Handbook of
Agile Software Craftsmanship

“Don’t Use a Comment When You Can

Use a Function or a Variable”
— Robert C. Martin, Clean Code: A
Handbook of Agile Software Craftsmanship

(not a great variable name)

« Use comments to explain code if needed, BUT ...
« ..the best code needs no comments (not (string? str))

* Redundant comments makes code harder to read A Terrble comment
e More comments # “better” 3 Checks iJ_r str is a string . |
. ((not (string? str)) "error: str is not a string”)

- (Also, don't submit commented-out code!)

5


https://www.goodreads.com/work/quotes/3779106
https://www.goodreads.com/work/quotes/3779106
https://www.goodreads.com/work/quotes/3779106
https://www.goodreads.com/work/quotes/3779106
https://www.goodreads.com/work/quotes/3779106
https://www.goodreads.com/work/quotes/3779106
https://www.goodreads.com/work/quotes/3779106

“ inds of Data Definitions

/ine
 Basic data
« E.g, numbers, strings, etc
* Intervals

» Data that Is from a range of values, e.g,, [0, 100)

* Enumerations
« Data that is one of a list of possible values, e.g, “green”, “red”, “yellow”

* [temizations
« Data value that can be from a list of possible other data definitions
e E.g, either a string or number (Generalizes enumerations)



ltemization Caveats

55 A MaybeInt is one of:
(define NaN "Not a Number")

53 or, Integer
;5 Interp: represents a number with a possible error case

NaN is a property of the global object. In other words, it is a variable in global scope.

In modern browsers, Naih is a hon-configurable, non-writable property. Even when this is not the
case, avoid overriding It.
References JavaScript Reference Standard built-in objects NaN

There are five different types of operations that return Nan: /Vl mdn web docs_

Failed number conversion (e.g. explicit ones like parseInt("blabla"), Number{undefined) , Or

Implicit ones like (Math. abs (undefined) ) NaN and its behaviors are not invented by JavaScript. Its semantics in floating point arithmeti

Math operation where the result is not a real number (e.g. Math.sqrt(-1) ) (including that nan 1== nan) are specified by |[EEE 754 (7. nan's behaviors include:

Indeterminate form (e.g. @ * Infinity, 1 ** Infinity, Infinity / Infinity, Infinity - Infinity)

« If nan is involved in a mathematical operation (but not bitwise operations), the result is u

A method or expression whose operand is or gets coerced to Nah (e.g. 7 ** NaN, 7 * "blabla"]  ajso nan. (See counter-example below.)

— this means NaN is contagious » When wnan Is one of the operands of any relational comparison (>, <, »>=, <=}, the resul
Other cases where an invalid value is to be represented as a number (e.g. an invalid Date new always false.

Date("blabla™).getTime() , "".charCodeAt(1) ) * NaN compares unequal (via ==, l=, ===, and !==) to any other value — including to ano

NaN value.



‘tem IZatIOﬂ Caveats OR modify the data def!

More common cases should go first!

55 A MaybeInt is one of:

(define NaN "Not a Number™) ;; better predicate for MaybelInt
55 or, Integer (define (MaybeInt? x)
;5 Interp: represents a number with a possible error case (or (integer? x)

(define (NaN? x) (and (string? x) (NaN? x)))

(string=? x "Not a Number"))

;5 WRONG predicate for MaybelInt ;; OK predicate for Maybelnt
#; (define (MaybeInt? x) > (MaybeInt? 1) (define (MaybeInt? x)
or (NaN? X © © string=?: contract violation (or (and (string? x) (NaN? x))
integer? x e>.(pected: string? (integer'P X))
given: 1 )
; WRONG TEMPLATE for MaybeInt ; OK TEMPLATE for MaybelInt ;; better TEMPLATE
#;(define (maybeint-fn x (define (maybeint-fn x) (define (maybeint-fn x)
cond (cond (cond
NaN? X) .... [ (string? x) ....] [ (integer? x) ....]
integer? x) .... [ (integer? x) ....])) [else ....])

Inside the function, we only need to distinguish between valid input cases |°




Last

-~ Falling Ball Example

) world b= B [
55 A WorldState is a Non-negative Integer —i
;3 Interp: Represents the y Coordinate of the center of a
5 ball in a "big-bang animation. l

€= What if the ball can also move side-to-side? m)

the x and y coordinates ;5 ... and another Integer???

We need a way to create compound data
l.e., a new data definition that combines
values from other data defs

10

WorldState would need two pieces of data: | ;; A Worldstate is an Integer ...



“ inds of Data Definitions

[ ine
» Basic data
« E.g, numbers, strings, etc
* Intervals

 Data that Is from a range of values, e.g., [0, 100)

 Enumerations
« Data that is one of a list of possible values, e.g, “green”, “red”, “yellow”

e Itemizations
 Data value that can be from a list of possible other data definitions
- E.g, either a string or number (Generalizes enumerations)

== « Compound Data

today ¢ Data that is a combination of values from other data definitions

11



Falling Ball Example

;5 A WorldState is a (make-world [x : Int] [y :
;3 Where

a struct definition
enables creating a
new kind of
compound data

;3 - X 1s ball center x coordinate in animation
55 -y 1s ball center y coordinate
~(struct world [x y])

Int]):

12



Parts of a struct definition

field-names

Name Ny

(struct world [x y])

(Implicitly) defines:

Same as name .

* A constructor function world |field-names
- Creates instances of the struct name [ Z/////\\\\

» Accessor functions world-x, world-y
* Get an Instance’s field value name? |

* A predicate world?

» Returns true for struct instances



Falling Ball Example

53 A WorldState is a (make-world [x : Int] [y : Int]):

;3 where

a struct definition
enables creating a
new kind of
compound data

;3 - X 1s ball center x coordinate in animation
55 -y 1s ball center y coordinate
~(struct world [x y])

nstructor

(define INIT-WORLDSTATE (make-world © 0))

Instances of the struct are
values of that kind of data

14



Last

.y Function Design Recipe

1. Name
2. Signature - types of the function input(s) and output

3. Description - explain (in English prose) the function behavior

4. Examples - show (using rackunit) the function behavior

5. Code - implement the rest of the function (arithmetic)

6. Tests - check (using rackunit) the function behavior



Last

.y Function Design Recipe

5. Template - sketch out the function structure (using input’s Data Definition)




Template for Compound data

A function that consumes compound data must

« extract the individual pieces, using accessors
« combine them, with arithmetic

;3 A WorldState is a

(struct world [x y])

;3 where

;3 X: Integer - represents x coordinate of ball in animation
;5 yV: Integer - represents y coordinate of ball

;3 TEMPLATE for world-fn: WorldState -> ???
(define (world-fn w)

eeo. (world-x w) ....

eeo. (world-y w) ....)

17



In-class exercise: more big-bang practice

 Create a big-bang program with a “ball”
« Design WorldState so it can move in both x and y directions

« Add mouse handler that sets ball location to mouse location
e (No on-tick fn needed) -

Submitting

1.  File: in-class-09-23-<Lastname>-<Firstname>.rkt
2. Join the in-class team: cs450f24/teams/in-class
3. Commit to repo: cs450f24/in-class-09-23

« (May need to merge/pull + rebase if someone pushes before you)


https://github.com/orgs/cs450f24/teams/in-class
https://github.com/orgs/cs450f24/teams/in-class
https://github.com/orgs/cs450f24/teams/in-class

