UMass Boston Computer Science

CS450 High Level Languages (section2)

Recursive Data Definitions

Monday, September 30, 2024

WHAT ARE YOU WORKING ON?

TRYING TO FiX THE PROBLEMS T
CREATED WHEN T TRIED T FiX
THE PROBLEMS I CREATED \JHEN
LTRIEDTO Fix THE PROBLEMS

% T CREATED LJHEN...

/

L

Logistios
« HW 3 In
b Men-936-Ppm-treerEST

* HW 4 out
« due: Mon 10/7 12pm (noon) EST

(What's wrong with this recursion?)

* No class: Monday 10/14 LIS RO

TRYING TO FiX THE PROBLEMS T

» Indigenous Peoples Day e PROGLEVIS T CREATED L1

LTRIEDTO FiX THE PROBLEMS
I CREATED LJHEN....

/

No base case!

Last

-~ Bou ncing Ball

Make It bounce?

(struct world [x y xvel yvel])

(define (next-world w)
(match-define (world x y xvel yvel) w)

(world (+ x xvel) (+ y yvel) xvel yvel)))

Make It bounce?

(struct world [x y xvel yvel])

=] & s

LEFT-EDGE? |

(define (next-world w)
(match-define (world x y xvel yvel) w)
(define new-xvel
(if (>= x RIGHT-E (- xvel) xvel))

(world (+ x xvel) (+ y yvel) new-xvel yvel)))

35d3-1HDTH

Make It bounce?

(struct world [x y xvel yvel])

=] & s

LEFT-EDGE -

(define (next-world w)
(match-define (world x y xvel yvel) w)
(define new-xvel
(if (or (>= x RIGHT-EDGE)
(<= x LEFT-EDGE)) (- xvel) xvel)
(world (+ x xvel) (+ y yvel) new-xvel yvel)))

35d3-1HDTH

Make It bounce?

(struct world [x y xvel yvel])

(define (next-world w)
(match-define (world x y xvel yvel) w)
(define new-xvel

Should this be xvel | (if (or (>= x RIGHT-EDGE)
or new-xvel??? (<= x LEFT-EDGE)) (- xvel) xvel)

(world (+ x new-xvel) (+ y yvel) new-xvel yvel)))

Make It bounce?

(struct world [x y xvel yvel])

If you're no longer
following the template,
then the Data Definitions

need updating!

(define (next-world w)
(match-define (world x |

Keep hacking and
hope that it
WOorks???

(define new-xvel
(if (or (>= x RIGHT-ED

(define new-yvel???

(<= x LEFT-EDGE

C)\

DON'T
PROGRAM
LIKE THIS!!

This is undisciplined programming and is much

slower and error-prone than thinking first!

(A€ (Ar (n— v ROTTOM_EDCE

Program Design Recipe |..is iterative!

1. Data Design
2. Function Design

Function Design Recipe |..is iterative!

Name
Signature - types of the function input(s) and output

Description - explain (in English prose) the function behavior

4. Examples - show (using rackunit) the function behavior

Inition)

Template - sketch out the function structure (using input’s Data

6. Code - implement the rest of the function (arithmetic)

Tests - check (using rackunit) the function behavior

Make It bounce?

(struct world [x y xvel yvel])

If you're no longer
following the template,
then the Data Definitions
need updating!

DON'T

(define (next-world w) PROGRAM
(match-define (world x y xvel yvel) w) LIKE THIS"I

(define new-xvel
(if (or (>= x RIGHT-EDGE)
(<= x LEFT-EDGE)) (- xvel) xvel)
(define new-yvel??? 11
(A€ (Ar (n— v ROTTOM_EDCE

M¢

;: A Coordinate is a Real Seems like we want some Intervals

;5 Represents x or y position on big-bang canvas

;3 A WorldState is a L Fjiix
(struct world [x y xvel yvel]) a A
;5 Where: 0 —
;3 X: Coordinate - represents x coordinate of ball center E §
;5 Y: Coordinate - represents y coordinate of ball center o

;5 xvel: Velocity - in x direction
;5 yvel: Velocity - in y direction

12

Adding Intervals

=R

=
£
)

;3 A WorldState is a

L X~

(struct world [x y xvel yvel]) a A
;5 Where: 0 | =
;3 X: XCoordinate - represents x coordinate of centejﬁ/ §
T

of ball ce

;5 y: Coordinate - represents y coordi

;5 xvel: Velocity - in x directi
;5 yvel: Velocity - in IFection

55 An XCoordiang/is/é/Féal‘ngber/fﬁ,one of these intervals:

;s (LEFT-EDGE, RIGHT-EDGE) : image fully within scene
;5 (-infinity, LEFT-EDGE] : (at least) part of image out of scene, to the left
;5 [RIGHT-EDGE, +infinity) : (at least) part of imageout of scene, to the right

;5 Interp: The coordinate is the x coordinate of |image center;

;5 the intervals represent whether the image is fully within WAIT! Is this correct?

13

Adding Intervals

IMG

LEFT-EDGE

35d3-1HDTH

IMG-WIDTH

;5 An XCoordinate is a real number in one of these intervals:

;5 (LEFT-EDGE + IMG-WIDTH/2, RIGHT-EDGE - IMG-WIDTH/2) : image fully within scene
;3 (-inf, LEFT-EDGE + IMG-WIDTH/2] : (part of) image out of scene, to the left
;3 [RIGHT-EDGE - IMG-WIDTH/2, +inf) : (part of) image out of scene, to the right

;5 TEMPLATE???

14

Adding Intervals

IMG

LEFT-EDGE
35d3-1HDTH

Now the shape of the function matches
the shape of the data definition!

IMG-WIDTH

;5 An XCoordinate is a real number in one of these intervals:

;35 (LEFT-EDGE + IMG-WIDTH/2, RIGHT-EDGE - IMG-WIDTH/2) : image fully within scene
;3 (-inf, LEFT-EDGE + IMG-WIDTH/2] : (part of) image out of scene, to the left
;5 [RIGHT-EDGE - IMG-WIDTH/2, +inf) : (part of) image out of scene, to the right

;; TEMPLATE
(define (x-fn x)
(cond [(< (/ IMG-WIDTH 2) x (- RIGHT-EDGE (/ IMG-WIDTH 2)))]
[(<= x (/ IMG-WIDTH 2))]
[(>= x (- RIGHT-EDGE (/ IMG-WIDTH 2)))])) "

Adding Intervals

=] B s

LEFT-EDGE

IMG

35d3-1HDTH

;3 An XCoordinate is a real number in one of these intervals:

IMG-WIDTH

;5 (LEFT-EDGE + IMG-WIDTH/2, RIGHT-EDGE - IMG-WIDTH/2) : image fully within scene
;3 (-inf, LEFT-EDGE + IMG-WIDTH/2] : (part of) image out of scene, to the left
;3 [RIGHT-EDGE - IMG-WIDTH/2, +inf) : (part of) image out of scene, to the right

;; outside-L/R-edges? : XCoordinate -> Bool
(define (outside-L/R-edges? x)
(cond [(< (/ IMG-WIDTH 2) x (- RIGHT-EDGE (/ IMG-WIDTH 2)))]
[(<= x (/ IMG-WIDTH 2))]
[(>= x (- RIGHT-EDGE (/ IMG-WIDTH 2)))]))

16

Adding Intervals

2\ World [@ s

“outside?” = TRUE

A cond that evaluates to a boolean is slightly
awkward ...
Because the tests already compute the correct value!

“outside?”

TRUE

= FALSE

;; outside-L/R-edges? : XCoordinate -> Bool
(define (outside-L/R-edges? x)

(cond [(< (/ IMG-WIDTH 2) x (- RIGHT-EDGE (/ IMG-WIDTH 2))) #false]

[(<= x (/ IMG-WIDTH 2)) #true]
[(>= x (- RIGHT-EDGE (/ IMG-WIDTH 2))) #true]))

Adding Intervals

2\ World [@ s

“outside?” = TRUE

A cond that evaluates to a boolean is slightly
awkward ...

Instead, use or” and just keep true cases!

;; outside-L/R-edges? : XCoordinate -> Bool
(define (outside-L/R-edges? x)

(or (<= x (/ IMG-WIDTH 2)) /

(>= x (- RIGHT-EDGE (/ IMG-WIDTH 2))))) 4

“outside?”

TRUE

= FALSE

Helper function?

19

Make It bounce?

(struct world [x y xvel yvel])

DON'T

(define (next-world w) PROGRAM
(match-define (world x y xvel yvel) w) LIKE THIS"I

(define new-xvel

(if (or (>= x RIGHT-EDGE)
(<= x LEFT-EDGE)) (- xvel) xvel)
(define new-yvel???
(A€ (Ar (n— v ROTTOM_EDCE

Computing new velocity

;5 next-xvel : Xcoordinate Velocity -> Velocity
;; Computes a (possibly) new velocity, based on x position

(define (next-xvel x xvel)
(if (outside-L/R-edges? x)
(- xvel) |flips
xvel))) |No flip

(check-equal? (next-xvel LEFT-EDGE -10) 10) |flips

(check-equal? (next-xvel RIGHT-EDGE 10) -10) |flips

(check-equal? (next-xvel (subl RIGHT-EDGE) 10) 10) | No flip

21

Make It bounce?

(struct world [x y xvel yvel])

DON'T

(define (next-world w) PROGRAM
(match-define (world x y xvel yvel) w) LIKE THIS"I

(define new-xvel

(if (or (>= x RIGHT-EDGE)
(<= x LEFT-EDGE)) (- xvel) xvel)
(define new-yvel???
(A€ (Ar (n— v ROTTOM_EDCE

Make It bounce?

(struct world [x y xvel yvel])

\

function does
task which processes
kind of data

\

\

(define (next-world w)
(match-define (world x y xvel yvel) w)
(define new-xvel (next-xvel x xvel))
(define new-yvel (next-yvel y yvel))
(world (+ x new-xvel) (+ y new-yvel) new-xvel new-yvel)))

23

Bundom
Ball Animation

Design a big-bang animation that:
« Start: a single ball, moving with random x and y velocity

e If a ball “hits” an edge:
« for vertical edge, flip x velocity direction
 for horizontal edge, flip y velocity direction

int getRondomNumber ()

return Y, // chosen by fair dice roll.
// uaranteed to be random.

Randomness

[bracketed args] = optional

(random k [rand-gen]) — exact-nonnegative-integer?

k : (integer-in 1 4294967087) When called with an integer argument k, returns a random exact

rand-gen : pseudo-random-generator? integer in the range 0 to k-1.

= (current-pseudo-random-generator) «—— Optional arg Default value

(random min max [rand-gen]) — exact-integer? When called with two integer arguments min and max, returns a
min : exact-integer? random exact integer in the range min to max-1.

max : (integer-in (+ 1 min) (+ 4294967087 min))

rand-gen . pseudo-random-generator?

b [y "???
= (current-pseudo-random-generator) What is “random™??:
A pseudorandom number generator (PRNG), also known as a deterministic random bit

generator (DRBG),[” is an algorithm for generating a sequence of numbers whose properties

Not secure! approximate the properties of sequences of random numbers. The PRNG-generated sequence is
e.g., for generating — nottruly random, because it is completely determined by an initial value, called the PRNG's seed

passwords

Alcryptographically secure|pseudorandom number generator (CSPRNG) or

VS | cryptographic pseudorandom number generator (CPRNG) is a pseudorandom

number generator (PRNG) with properties that make it suitable for use in cryptography.

Random Functions: Same Recipe (almost)!

;5 A Velocity is a non-negative integer
;5 Interp: reresents pixels/tick change in a ball coordinate
(define MAX-VELOCITY 10)

;3 random-velocity : -> Velocity
;5 returns a random velocity between © and MAX-VELOCITY
(define (random-velocity)

(random MAX-VELOCITY)) Random functions have
no examples

Functions can
have zero args

(check-true (< (random-velocity) MAX-VELOCITY))
(check-true (>= (random-velocity) 0))
(check-true (integer? (random-velocity)))

(check-pred (A (v) (and (integer? v) Can still test! ;3 random-x : -> ?P?
(< v MAX-VELOCITY) |Justless precise ;; random-y @ -> ???
(>= v 9))) ;; random-ball : -> ???

(random-velocity))

26

Mty

Ball Animation

Design a big-bang animation that:
« Start: a single ball, moving with random x and y velocity

On a click:

add a ball at random location with random velocity

e If a ball “hits” an edge:
« for vertical edge, flip x velocity direction
 for horizontal edge, flip y velocity direction

/0/‘&&/&«&{%
Kinds of Data Definitions

 Basic data
« E.g, numbers, strings, etc
* Intervals
» Data that Is from a range of values, e.g,, [0, 100)

* Enumerations
« Data that is one of a list of possible values, e.g, “green”, “red”, “yellow”

* [temizations
« Data value that can be from a list of possible other data definitions
e E.g, either a string or number (Generalizes enumerations)

/D/‘w/aa‘%y

Kinds of Data Definitions

» Basic data
« E.g, numbers, strings, etc

* Intervals
 Data that Is from a range of values, e.g., [0, 100)

 Enumerations
« Data that is one of a list of possible values, e.g, “green”, “red”, “yellow”

e Itemizations
 Data value that can be from a list of possible other data definitions
- E.g, either a string or number (Generalizes enumerations)

== « Compound Data

Last e Data that is a combination of values from other data definitions
time

29

Multi-ball Animation

Design a big-bang animation that:
« Start: a single ball, moving with random x and y velocity
« On aclick: add a ball at random location, with random velocity

e If any ball “hits” an edge:
e if it's a vertical edge, the x velocity should flip direction
* If it's a horizontal edge, the y velocity should flip direction

Arbitrary Size Data - Lists

In C

struct node
{int data;

struct node *next; } *head:;

This is a self-referential
(i.e., recursive!) definition!

Racket List Data Definition Example

;5 A ListofInts is onefjof
;5 - empty Empty (base) case
;5 - (cons Int ListofInts) Non-empty (recursive) case

cons = “node”

TEMPLATE??

Recursive!
(using a definition to define itself)

(how can we use a list of ints
to define a list of ints?!?)

Recursion is only valid if there is both
- A base case
- A recursive case

37

Racket List Data Definition Example

;3 A ListofInts is one of

;5 - empty Empty (base) case
;5 - (cons Int ListofInts) Non-empty (recursive) case
This is both itemization and The shape of the function
compound data, so template : matches the shape of the
has both cond and getters~_> TEMPLATE for list-fn data definition!
TEMPLATE ? > yo~list-fn : ListofInts -> ???
\ define (list-fn 1lst) Wait, where is the
(cond recursion???

Empty (base) case —> [(empty?

| N
Non-empty (recursive) case —> [(cons? 1st) (first 1st)
ce.. (rest 1st)]))

38

Racket List Data Definition Example

;3 A ListofInts is onefof

55 - empty
;5 - (cons Int ListofInts

TEMPLATE??

The shape of the function

... Is also recursive!

))

))

(define (list-fn 1st)

: list-fn

; TEMPLATE for Jlist-f

(cond
[(empty? 1st)
[(cons? 1st)

ce.. (list-

matches the shape of the
data definition!

-> 2?7

So recursion in the data definition
.. means recursion in the
(template) function!

first 1st)
fn (rest 1st))]))

Racket Recursive List Fn Example: sum

Given a singly linked list. The task is to find the sum of

nodes of the given linked list. \

Description!

Data MNext

Examples:

geeksforgeeks.com

s e ;3 TEMPLATE for list-fn

Sum of nodes:

A ;3 list-fn : ListofInts -> ???
st 17 ess (define (list-fn 1st)
Output: 36 \ (Cond

Examples!

[(empty? 1st)]
[(cons? 1st) (first 1st)
ee.. (list-fn (rest 1st))]))

Racket Recursive List Fn Example: sum

Design Recipe:
Now fill in

template!
(with arithmetic)

;3 Returns sum of list of ints
;3 sum-1st: ListofInts -> Int
(define (sum-1st 1st)

(cond
[(empty? 1st)]
[else (first 1st)

.... (sum-1st (rest 1lst)) ...

1))

Racket Recursive List Fn Example: sum

;3 Returns sum of list of ints
;3 sum-1st: ListofInts -> Int
(define (sum-1st 1st)
(cond
[(empty? 1lst) 0]
[else (first 1st)
.... (sum-1st (rest 1st))]))

Racket Recursive List Fn Example: sum

))

))

: Returns sum of list of ints

sum-1st: ListofInts -> Int

(define (sum-1st 1st)

(cond
[(empty? 1st) O]
[else (+ (first 1st)
(sum-1st (rest 1st)))]))

43

Racket Recursive List Fn Example: rev

;3 TEMPLATE for list-fn
;3 list-fn : ListofInts -> ???
(define (list-fn 1st)
(cond
[(empty? 1st)]
[else (first 1st)
ee.. (list-fn (rest 1st))]))

Racket Recursive List Fn Example: rev

Design Recipe:
Now fill in

template!
(with arithmetic)

;3 reverses a list of ints
;3 rev: ListofInts -> ListofInts
(define (rev 1lst)

(cond
[(empty? 1st)]
[else (first 1st)

.... (rev (rest 1st))]))

Racket Recursive List Fn Example: rev

;5 reverses a list of ints
;; rev: ListofInts -> ListofInts
(define (rev 1lst)
(cond
[(empty? 1st) empty]
[else (first 1st)
.... (rev (rest 1st))]))

46

Racket Recursive List Fn Example: rev

(rev_(rest 1st)) = (list|5 4 3 2

(check-equal? (rev (list 1.2 3 4 5)) (list|5 4 3 2

)

ffappendJ)

1))
(first 1st)

(define (rev 1lst)
(cond

;3 reverses a list of ints
;3 rev: ListofInts -> ListofInts

[(empty? 1st) empty]
[else (append (rev (rest 1lst))
(list (first 1st)))]))

47

Recursive rev tn, with “temp” vars (preview)

;3 TEMPLATE for list-fn
;3 list-fn : ListofInts -> ???
(define (list-fn 1st)
(cond
[(empty? 1st)]
[else (first 1st)
ee.. (list-fn (rest 1st))]))

Recursive rev fn, with “temp” vars (later)

;5 reverses a list of ints
;5 rev : ListofInts -> ListofInts
(define (rev 1lst)
(cond
[(empty? 1st)]
[else (first 1st)
.e.. (rev (rest 1st))1))

49

Recursive rev fn, with “temp” vars (later)

Still follows
design
recipe!

[]
)

)

* reverses a list of ints

rev : ListofInts -> ListofInts

(define (rev lst rev-1lst-so-far)

(define (rev/tmp 1lst rev-1lst-so-far)

(cond
[(empty? 1st)]
[else (first 1st)

ce.. (rev/tmp (rest 1lst) \...)
. rev-1lst-so-far ..

An internal “helper”
function adds a “temp”
variable

(main fn calls helper fn)

2 D)),

(rev/tmp 1lst empty<4) Tmp var = reversed list “so far” (initially empty)

Recursive rev fn, with “temp” vars (later)

;3 reverses a list of ints
;3 rev . ListofInts -> ListofInts
(define (rev lst rev-1lst-so-far)
(define (rev/tmp 1lst rev-1lst-so-far)
(cond
[(empty? 1st) rev-lst-so-far]

[else (first 1st) Now figure out how to

... (rev/tmp (rest 1st)|“combine” these pieces
. rev-1st-so-far|(with “arithmetic”)

(rev/tmp 1lst empty)) 51

Recursive rev fn, with “temp” vars (later)

;3 reverses a list of ints
;3 rev . ListofInts -> ListofInts
(define (rev lst rev-1lst-so-far)
(define (rev/tmp 1lst rev-1lst-so-far)
(cond
[(empty? 1st) rev-lst-so-far]

[else (rev/tmp - |
(rest 1st) Add next list item to reversed list “so far”

(cons (first 1st) rev-lst-so-far))]))
(rev/tmp 1lst empty))

Multi-ball Animation

Design a big-bang animation that:
« Start: a single ball, moving with random x and y velocity
« On aclick: add a ball at random location, with random velocity

e If any ball “hits” an edge:
e if it's a vertical edge, the x velocity should flip direction
* If it's a horizontal edge, the y velocity should flip direction

* A WorldState 1c¢ an 1inknown nimher nf hallcl

;3 A WorldState is .. a 1list of balls!

nertute: Data Definitions (ch 5.7)

All possible data values

- Hrrue Hfalse
Hrrue Hfalse

A data definition
= (a named) subset of all
possible values

We are defining which data values are valid for our program!

All programs are data manipulators ...

So this must be the first step of programming!

Also makes “error handling” easy

nertute: Data Definitions (ch 5.7)

All possible basic data values

(make-posn "helloe" 0)
(make-posn "world" 1)
(make-posn "good" 2)

(makea-ball -1 0)
(maka-hall -1 1)

") (make-posn “"bye"” 3) (make-ball -1 2)
good (make-posn (make-posn 0 1) 2) (make-ball -1 3)
bye (make-posn 0 3) (make-ball "bya" #t)

(make-posn 1 3)
(make-posn 2 3)
(make-posn 3 3)

Possible to expand the universe
of values, e.g., new compound
data definitions (struct,

or other data structure)

Multi-ball Animation

Design a big-bang animation that:
« Start: a single ball, moving with random x and y velocity
« On aclick: add a ball at random location, with random velocity

e If any ball “hits” an edge:
e if it's a vertical edge, the x velocity should flip direction
* If it's a horizontal edge, the y velocity should flip direction

* A WorldState 1c¢ an 1inknown nimher nf hallcl

;3 A WorldState is .. a 1list of balls!

Ball
33 A WO is a

(struct
;3 wher

55 Xo X

..
A

W [X y xvel yvel] #:transparent)
ball . : N
represents x coordinate of ball center in animation

;5 Y: YCoord - represents y coordinate of ball center in animation
;3 Xvel: Integer - represents x velocity, where

postive = to the right, negative = to the left

;3 yvel: Integer - represents y vel, where

.
B

positive = down, negative = up

;3 A ListofBall is one of
33 - null
;5 - (cons Ball ListofBall)

;3 A WorldState is a ListofBall

57

(define (main)

. »
)2

(big-bang (list (random-ball))
on-mouse mouse-handler]
‘on-tick next-world]
‘to-draw render-world]))

A WorldState is a ListofBall

These need to be
updated to handle new
WorldState data def

58

next-world

List template!

;3 next-world : WorldState -> WorldState
;3 Computes the next world state on a tick
(define (next-world w)

(cond Ball
[(empty? w)%/////
[else (first w)

.... (next-world (rest w))]))

Create one
function
per “task”

(check-equal? (next-world (list (make-ball © © 1 1)))
(list (next-ball (make-ball © © 1 1)))

59

next-ball

This was the previous “next-world” function!

(define (next-ball b)

(match-define (ball x y xvel yvel) b)
(define new-xvel

(if (ball-in-scene/x? x) xvel (- xvel)))
(define new-yvel

(if (ball-in-scene/y? y) yvel (- yvel)))
(define new-x (+ X new-xvel))
(define new-y (+ y new-yvel))
(ball new-x new-y new-xvel new-yvel))

60

next-world

List template!

;3 next-world : WorldState -> WorldState
;3 Computes the next world state on a tick
(define (next-world w)

(cond Ball
[(empty? w)%/////
[else (first w)

.... (next-world (rest w))]))

Create one
function
per “task”

(check-equal? (next-world (list (make-ball © © 1 1)))
(list (next-ball (make-ball © © 1 1)))

61

next-world

;3 next-world : WorldState -> WorldState
;3 Computes the next world state on a tick
(define (next-world w)

(cond
[(empty? w) empty]
[else (first w)

.... (next-world (rest w))]))

62

next-world

;3 next-world : WorldState -> WorldState
;3 Computes the next world state on a tick
(define (next-world w)
(cond
[(empty? w) empty]
[else (cons (next-ball (first w))
(next-world (rest w)))]))

\

function does

task which processes
kind of data

A

A

63

render-world

List template!

;5 render-world : WorldState -> Image
;5 Draws the given worldstate as an image

(define (render-world w)
(cond
[(null? w) EMPTY-SCENE]

[else (place-ball (first w) (render-world (rest w)))]))

/

Separate “draw”
function for the ball

\

A

A

function does

task which processes
kind of data

64

For multi-arg function, you choose which (argument’s) template to use

Enumeration

;3 mouseHandler : WorldState XCoord YCoord MouseEvent|-> WorldState

;3 Inserts a new ball on mouse click
(define (mouse-handler w x y mevt)

Enumeration template
(collapsed)

65

Multi-ball Animation: more?

Design a big-bang animation that:
e Start: a single ball, moving with random x and y velocity

« On aclick: add a ball at random location, with random velocity

« And random size?
e And random color?

* If any ball “hits” an edge:
« if it's a vertical edge, the x velocity should flip direction
 If it's a horizontal edge, the y velocity should flip direction

;3 A WorldState is .. a 1list of balls!

69

In-class exercise: start hw

Write functions that process “Note”s and “ListofNote”s

« Add randomness: write a function insert-note? that takes
no args and returns true approximately once every 100 calls

« Write a function Notes? that takes an arbitrary list and
returns true If all are a Note?

* If you follow the template, this is super easy

Submitting

1. File: in-class-09-30-<Lastname>-<Firstname>.rkt
2. Join the in-class team: cs450f24/teams/in-class

3. Commit to repo: cs450f24/in-class-09-30
« (May need to merge/pull + rebase if someone pushes before you)

https://github.com/orgs/cs450f24/teams/in-class
https://github.com/orgs/cs450f24/teams/in-class
https://github.com/orgs/cs450f24/teams/in-class

