UMass Boston Computer Science

CS450 High Level Languages (section2)

Recursive Data Definitions

(part 2)
Wednesday, October 2, 2024

Logistios

* HW 4 out
« due: Mon 10/7 12pm (noon) EST

FEATURE COMPLETE (Amarzing

AAAAND...
&

HW Advice

Clean Code

A Handbook of Agile Software Craftsmanship

Robert C. Martin

“Perhaps you thought that “getting it working” was the first order of

business for a professional developer.

I hope by now, however, that this book has disabused you of that idea.

The functionality that you create today has a good chance of

changing in the next release, but the readability of your code will
have a profound effect on all the changes that will ever be made.”

T B COMPLETE

— Robert C. Martin,
Clean Code: A Handbook of Agile Software Craftsmanship

ARARND

https://www.goodreads.com/work/quotes/3779106
https://www.goodreads.com/work/quotes/3779106
https://www.goodreads.com/work/quotes/3779106

YOUR CODE LOOKS LIKE
SONG LYRICS WRITTEN
USING ONLY THE STUFF
THAT COMES AFTER THE

HW Advice =

N

IT'S LIKE A J5ON
TABLE OF MODEL

NUMBERS FOR
FLASHLIGHTS
WITH “TACTICAL
IN THEIR NAMES.

\

()

LIKE YOU RERD TURING'S
1936 PAPER ON COMPUTING
AND A PAGE OF JAVASCRIPT
EXAMPLE (DDE AND GUESSED
AT EVERYTHING IN BETWEEN.

\

1

ITS LIKE A LEET-SPEAK TRANSLATION
OF A MANIFESIO BY A SURVIVALIST CULT
LEADER WHO'S FOR SOME REASON

OBSESSED WITH MEMORY ALLOCATION.

T (AN GET SOMEONE

FLSE TO REVIEL) 1Y CODE.

NOT MORE THAN \¢
ONCE, I BET. d

N

Many submissions only focusing on: “getting the code working”

Many submissions ignored:

« all other steps of programming design recipe
« style guide
« Other instructions in hw

This hw will be graded accordingly:

]

]

.]

correctness (9 pts)

design recipe (20 pts)

style (5 pts)

README (1 pt)

Total: 35 points

HW Advice

“The first rule of functions is that they should be small.

The second rule of functions is that they should be smaller than that.”

— Robert C. Martin,
Clean Code Clean Code: A Handbook of Agile Software Craftsmanship

A Handbook of Agile Software Craftsmanship

In this class:

create one function per
- (data definition processing) task

https://www.goodreads.com/work/quotes/3779106
https://www.goodreads.com/work/quotes/3779106
https://www.goodreads.com/work/quotes/3779106

/D/‘w/ba&'gy .
Predicates for Compound Data

;3 A Ball is one of: Compound data
(struct ball [x y xvel yvel] #:transparent) predicates

;3 X : XCoord - ball center horiz coord in animation should be

;3 Y @ Ycoord - ball center vert coord in animation “shallow” checks,
;5 xvel : Velocity - ball horiz pixels/tick velocity l.e., ball?

;5 yvel : Velocity - ball vert pixels/tick velocity

redicate? ; : :

2 (define (Ball? arg) 22?2 This “deep” predicate
struct already (and (ball? arg) checks too much ...
defines ball?, ; ;
what about fields? ... because it's the job of

“coordinate” and “velocity”
processing functions to check
) those kinds of data

(define/contract (mk-ball x y xvel yvel)
Note: (-> XCoord? YCoord? Velocity? Velocity? ball?)

Checked constructor ok (ball x y xvel yvel)) 9

;3 A ListofBalls is one of

5, - empty
;5 - (cons Ball ListofBalls)

;3 A WorldState is a ListofBalls

(define INITIAL-WORLD
(1list (random-ball))

Not empty!

10

List Variations = Non-empty lists

;5 A NEListofBalls (non-empty) is one of:

?27?

;5 A WorldState is a NEListofBalls

11

List Variations = Non-empty lists

;5 A NEListofBalls (non-empty) is one of:
;5 - (cons Ball empty)
;5 - (cons Ball NEListofBalls)

predicate?

(define (non-empty-1list? arg)

\Tand\(cons? arg)

Just cons? !
(shallow check)

12

Non-empty lists - template

template?

;5 A NEListofBalls (nonjjempty) is one of

;5 - (cons Ball empty)
;5 - (cons Ball NEListotBalls)

NEList

;5 nhon-empty-list-fn

Don't forget to
extract pieces of
compound data

need to check a
little “deeper” to
distinguish cases
(still a “shallow”
check because not
inspecting contents)

(define (non-empty-list-fn 1st
(cond
(empty? (rest 1st))
[else (first 1st) ...

.... (non-empty-1list-fn (rest 1lst))]))

\

And recursive call

shape of the function
matches
shape of the data definition!

13

Mewt: FAmMous List Functions

+ Map O
e Filter

Lecture: The Google MapReduce

 Fold (reduce) q

Google Cloud Platform

“BIG"
data
processing

2
Gl = Sporf(z

17

/D/‘w/ba&é . o
Racket List Data Definition Example

;3 A ListofInt is one @f

;5 - empty Empty (base) case

;5 - (cons Int ListofInt) Non-empty (recursive) case
cons = “node” Recursive!

(using a definition to define itself)

TEMPLATE?? (how can we use a list of ints
to define a list of ints?!?)

Recursion is a valid concept (from math), but only if there is both
- A base case
- A recursive case

;%w%m%?

Racket Recursive List Fn Template

;3 A ListofInt is one @f
5y, - empty

;5 - (cons Int ListofInt)

(cond

;3 TEMPLATE
;3 list-fn ¢
(define (list-fn 1st)

ListofIn

[(empty? 1st)
[(cons? 1st)

1st-

-> 2?7

first 1st)
(list-fn (rest 1lst))]))

Racket Recursive List Fn: inc-1ist

;5 TEMPLATE for list-fn
;5 list-fn : ListofInt -> »???
(define (list-fn 1st)

(cond
[(empty? 1st)]
[(cons? 1st) (first 1st)

(list-fn (rest lst)i.::..]))

Racket Recursive List Fn: inc-1ist

(check-equal?
(inc-1list (list 1
(list 2

2 3))
3 4))
|

: inc-1list : ListofInt -> ListofInt

;5 increments each list element by 1
(define (inc-1st 1st)

(cond
[(empty? 1st)]
[(cons? 1st) (first 1st)

(inc-1st (rest 1st))

1))

Racket Recursive List Fn: inc-1ist

;3 inc-1list : ListofInt -> ListofInt
;5 1ncrements each list element by 1
(define (inc-1st 1st)
(cond
[(empty? 1st) empty]
[(cons? 1st) (first 1st) e
(inc-1st (rest 1st))]1))

Racket Recursive List Fn: inc-1ist

;5 1nc-1list : ListofInt -> ListofInt
;5 increments each list element by 1
(define (inc-1st 1st)

(cond
[(empty? 1st) empty]
[else (addl (first 1st))

(inc-1st (rest 1st))]))

Racket Recursive List Fn: inc-1ist

;3 inc-1list : ListofInt -> ListofInt
;5 1ncrements each list element by 1
(define (inc-1st 1st)
(cond
[(empty? 1st) empty]
[else (cons (addl (first 1st))
(inc-1st (rest 1st))]))

2 /‘w/mf{%

Multi-ball Animation

Design a big-bang animation that:
« Start: a single ball, moving with random x and y velocity
« On aclick: add a ball at random location, with random velocity

35 A Ball is a

(struct ball [x y xvel yvel] #:transparent)

;3 Where

35 X: XCoord - represents x coordinate of ball center in animation
;5 Y: YCoord - represents y coordinate of ball center in animation
;3 Xvel: Integer - represents x velocity, where

H postive = to the right, negative = to the left
;5 yvel: Integer - represents y vel, where
55 positive = down, negative = up

;3 A ListofBall is one of

55 - empty
;5 - (cons Ball ListofBall)

;3 A WorldState is a ListofBall

next-world

List template!

;5 hext-world : WorldState -> WorldState
;5 Updates position of all balls by one tick
(define (next-world w)

(cond
[(empty? w)]
[else (first w)

... (next-world (rest w))]))

next-world

;5 hext-world : WorldState -> WorldState
;5 Updates position of all balls by one tick
(define (next-world w)

(Cond Ball
[(empty? w) emptﬁi////
[else (first w)

.... (next-world (rest w))]))

Create one
function
per “task”

(check-equal? (next-world (list (make-ball © © 1 1)))
(list (next-ball (make-ball © © 1 1)))

next-world

;5 hext-world : WorldState -> WorldState
;5 Updates position of all balls by one tick
(define (next-world w)

(cond
[(empty? w) empty]
[else (next-ball (first w))

.... (next-world (rest w))]))

next-world

;5 hext-world : WorldState -> WorldState
;5 Updates position of all balls by one tick
(define (next-world w)
(cond
[(empty? w) empty]
[else (cons (next-ball (first w))
(next-world (rest w)))]))

next-world

;3 hext-world : ListofBall -> ListofBall
;3 Updates position of all balls by one tick
(define (next-world 1lst)
(cond
[(empty? 1lst) empty]
[else (cons (next-ball (first 1st))
(next-world (rest 1lst)))]))

com

narison

)J

)J

: inc-1st: ListofInt -> ListofInt
: Returns list with each element incremented
(define (inc-1lst 1st)

(cond
[(empty? 1st) empty]
[else (cons (addl (first 1st))
(inc-1st (rest 1lst)))]))

)

) J

next-world : ListofBall -> ListofBall
Updates position of each ball by one tick

(define (next-world 1st)

(cond
[(empty? 1lst) empty]
[else (cons (next-ball (first 1st))
(next-world (rest 1st)))]))

Abstraction: Common List Function #1

;5 lst-fnl: (?? -> ??) Listof?? -> Listof??
;5 Applies the given fn to each element of given 1st

(define (1st-fnl fn 1lst)
(cond
[(empty? 1lst) empty]
[else (cons (fn (first 1lst))
(1st-fnl (rest 1st)))]))

(define (inc-1lst 1st) (lst-fnl addl 1st)
(define (next-world 1st) (lst-fnl next-ball 1st)

Abstraction: Common List Function #1

;3 lst-fnl: (X -> X) ListofX -> ListofX
;5 Applies the given fn to each element of given 1lst

(define (1lst-fnl fn 1lst)
(cond
[(empty? 1lst) empty]
[else (cons (fn (first 1st))
(1st-fnl (rest 1st)))]))

(define (inc-1lst 1st) (lst-fnl addl 1st)
(define (next-world lst) (1lst-fnl next-ball 1st)

Abstraction: Common List Function #1

Function argument

/

;3 lst-fnl: (X -> Y) ListofX -> ListofY
;5 Applies the given fn to each element of given 1lst

(define (1lst-fnl fn 1lst)
(cond
[(empty? 1lst) empty]
[else (cons (fn (first 1st))
(1st-fnl (rest 1st)))]))

(define (inc-1lst 1st) (lst-fnl addl 1st)
(define (next-world lst) (1lst-fnl next-ball 1st)

AbSUaCtIOﬂ Data D@ﬂﬂ't'OnS predicates should be

)
)

)

A ListofInt is one of
- empty

- (cons Int ListofInt)

)
)

)

* yy empty
A ListofBall is one of ;5 - (cons X Listof<X>)

- empty
- (cons Ball ListofBall)

NOTE: this shows why
our Compound data

“shallow” checks, i.e.,
list?

Makes abstraction easier

;3 A Listof<X> is one of

To use this abstract data :
definition, must Listof<Int>

instantiate X with a —
concrete data definition |-|15t°f< Ball>

(concrete = opposite of abstract)

Abstract Data Defs common in every PL

#include<]
#includ

using n

i=1; 1 <= 18; iH)
v.push_back(i);
¥

cout << "Size @ " << v.size();

v.resize(7);

cout << "\nAfter resizing it becomes : " << v.size();

Structs define abstract data

Abstract data - “any” x and y allowed

;3 A Posn is a Z////

(struct posn [x y])

;3 where

;5 X: Integer - represents x coordinate in big-bang animation
55 Y. Integer - represents y coordinate in big-bang animation

(implicit) Instantiation

Common List Function #1

;3 Ist-fnl: (X -> Y) Listof<X> -> Listof<Y>
;5 Applies the given fn to each element of given 1st

(define (1lst-fnl fn 1lst)
(cond
[(empty? 1lst) empty]
[else (cons (fn (first 1lst))
(1st-fnl (rest 1st)))]))

(define (inc-1lst 1st) (lst-fnl addl 1st)
(define (next-world 1st) (lst-fnl next-ball 1st)

Common List Function #1: map

;3 map: (X -> Y) Listof<X> -> Listof<Y>
;5 Applies the given fn to each element of given 1st

(define (map fn 1lst)
(cond
[(empty? 1lst) empty]
[else (cons (fn (first 1lst))
(map (rest 1st)))]))

(define (inc-1st 1st) (map addl 1lst)
(define (next-world 1st) (map next-ball 1lst)

Not allowed in HW4!
Common List Function #1: map

(map proc lst ...+) — list?

proc . procedure?
Ist : list?

map: (A B C .. -> Z) Listof<A> Listof» Listof<C> .. -> Listof<Z>
;5 Applies the given fn to elements (at same index) of given 1lsts

(check-equal? (map + (list 1 2 3) (list 4 5 6)
(list 57 9))

Common List Function #2: 27?7

2 /‘w/ba&{%

Racket Recursive List Fn Example: sum

))

))

: list-fn :

- TEMPLATE for list-fn

ListofInt -> ??°?

(define (list-fn 1st)

(cond
[(empty? 1st)]
[(cons? 1st) (first 1st)

ce.. (list-fn (rest 1st))]))

/D/‘w/ba&'gy
Racket Recursive List Fn Example: sum

;3 Returns sum of list of ints
;3 sum-1st: ListofInt -> Int
(define (sum-1lst 1st)
(cond
[(empty? 1lst) O]
[else (+ (first 1st)
(sum-1st (rest 1st)))]))

Render World: ListofBall edition

;5 render-world : ListofBall -> Image
;5 Draws the given world as an image by overlaying each ball,
;; at 1ts position, into an initially empty scene

(define (render-world 1st)
(cond
[(empty? 1st)]
[else (first 1st) (render-world (rest 1lst))]))

Render World: ListofBall edition

;5 render-world : ListofBall -> Image
;5 Draws the given world as an image by overlaying each ball,
;; at 1ts position, into an initially empty scene

(define (render-world 1st)
(cond
[(empty? 1lst) EMPTY-SCENE]
[else (first 1lst) (render-world (rest 1lst))]))

Render World: ListofBall edition

;5 render-world : ListofBall -> Image
;5 Draws the given world as an image by overlaying each ball,
;; at 1ts position, into an initially empty scene

(define (render-world 1st)
(cond
[(empty? 1lst) EMPTY-SCENE]

[else (place-ball (first lst) (render-world (rest 1st)))]))

Create one
function
per “task”

5 place—bgﬁl : Ball Image -> Image
;5 Draws a ball, using its pos as the offset, into the given image
(define (place-ball b scene)

(place-image BALLIMG (ball-x b) (ball-y b) scene))

Comparison #2

;53 sum-1st: ListofInt -> Int
(define (sum-1lst 1st)
(cond
[(empty? 1lst) 0]
[else (+ (first 1st)
(sum-1st (rest 1st)))]))

;5 render-world : ListofBall -> Image
(define (render-world 1lst)
(cond
[(empty? 1st) EMPTY-SCENE]
[else (place-ball (first 1st)
(render-world (rest 1st)))]))

Common List Function #2

X = Type of list element N

'Y =Result Type

V4

;s list-fn2 : (X Y -> Y) Y Listof<X> -> Y

(define (lst-fn2 fn initial 1st)
(cond
[(empty? 1lst) initial]
[else (fn (first 1lst) (1st-fn2 fn initial (rest 1st)))]))

;3 sum-1st: ListofInt -> Int

(define (sum-1st 1st) (list-fn2 + © 1lst))

;5 render-world: ListofBall-> Image

(define (render-world 1lst) (list-fn2 place-ball EMPTY-SCENE 1st))

Common List Function #2: foldr (start at right)

;5 foldr: (XY ->Y) Y Listof<X> -> Y

(define (foldr fn initial 1lst)

(cond Function recurs and builds up fn calls until it gets to the end

[(empty? 1lst) initial]

[else (fn (first 1lst) (foldr fn initial (rest 1st)))]))

Then they are evaluated, last one first

;3 sum-1st: ListofInt -> Int
(define (sum-1st 1st) (foldr + © 1st))
;5 render-world: ListofBall-> Image

(define (render-world 1lst) (foldr place-ball EMPTY-SCENE 1st))

Not allowed in HW4!
Common List Function #2: foldr

;; foldr: (X .. Y ->Y) Y Listof<X> .. -> Y

(foldr proc init lst ...+) — any/c
proc . procedure?
init : any/c

I[st : list?
Racket version can also take multiple lists

s 1t ok to always start at the right?

For some functions, order doesn’t matter, but for others, it does?
(foldr + © (list 1 2 3)) = (1 + (2 + (3 + ©)))

(1 + 2+ (3+0))) =(((1+0)+2)+3)

(1-(2-(3-0)))=(((1-@)-2)-3)®

Need LlSt FU ﬂCtIOﬂ 2b 'FOldl (start from left)

Challenge:
* Change foldr to foldl
* 50 that the function is applied from the left (first element first)

(define (foldr fn initial 1lst)
(cond
[(empty? 1lst) initial]
[else (fn (first 1st) (foldr fn initial (rest 1st)))]))

$

(define (foldl fn initial 1lst)
(cond
[(empty? 1lst)]
[else (first 1st) (foldl fn initial (rest 1lst)))]))

Next time: Other common list functions

e Filter

* Find

* Reverse
« append

INn-class exercise: more hw4

Write functions that process “Note”s and “ListofNote”s

« Work on other Notes? List functions
* If you follow the template, this is super easy
* (very similar to what you just saw!)

Submitting

1. File:in-class-10-02-<Lastname>-<Firstname>.rkt
2. Join the in-class team: cs450f24/teams/in-class

3. Committo repo: cs450f24/in-class-10-02
« (May need to merge/pull + rebase if someone pushes before you)

https://github.com/orgs/cs450f24/teams/in-class
https://github.com/orgs/cs450f24/teams/in-class
https://github.com/orgs/cs450f24/teams/in-class

