UMass Boston Computer Science

CS450 High Level Languages (section 2)

Generative Recursion
Wednesday, December 4, 2024

Rlv('rlv‘lr{.\‘l(ﬂ\'
RECURSION

RECURSION
-
RECURSION

RECURSION
RECURSION

/cy/{ft/'a&

« HW 13 out
« Due: Wed 12/11 12pm (noon) EST

(improper base case!)

RECURSION
RECURSION

RECURSION

Here we go again

RECURSION

Here we go again

Last [ine

“bind/rec” Iin “CS450" Lang

53 A 450LangExpr (Expr) is one of:

, , (XY}

;3 - “(bind/rec [Var Expr] Expr¥— |

new binding is_in-scope
(can be referenced) here

S //m

Create new

variable binding new binding is_also

in-scope here!

Last [ine
bind/rec examples

(letrec RACKET
([fac
(A (n)
;3 A 450LangExpr (Expr) is one of: (if (= n 9)
HE. 1
;5 - “(bind/rec [Var Expr] Expr) _
;5 - “(Expr ? Expr : Expr) (* 4 (-Fac (4 1))))])
. p — (fac 5)) ; => 120
3y JS “truthy if” (hw10) Equivalent to
(bind/rec q CS450LANG
[fac
(fn (n)
Zero is “truthy” false (hw10) | (n 2 (* n (fac (- n 1)))
: 1))]
(fac 5)) ; => 120

HW Preview: Recursion!

Use “CS450 LANG"! ... to write recursive programs:

(Extra primitives will be added to
e ack (Acl<ermann fUﬂCtiOﬂ) INIT-ENV, ask if you need more)
reduce (list left fold)
e isort (insertion sort)
mk-fractal-tree (Fractal Tree) =~

Look it up if you don’t know any of these
« Using any resources, e.g., ChatGPT, Co-pilot, is allowed
e (still don't submit someone else’s hw, obv)

Installing “450 Lang”

) hw13.rkt - DrRacket

m] Edit View Language Racket Insert
New

New Tab

Open...

Open Recent

Open Require Path...

Reopen Closed Tab

Install .plt File...

Install Package...

Package Manager... <

Revert

==l 3

) Package Manager
File Edit Tabs Help
Do What I Mean | Currently Installed | Available from Catalog |Copy from Version | Settings

1/3538 match | Update Package List

Filter: 450lang
v installed *: auto-installed !: not default scope =: installed as link; @: installed from URL

Check.. Sou.. Catal.

v ePaekage—j Author Description Tags
git+.. https..

450lang stchang@racket-lang.org Programming Language for UMB CS450 course 39123..

Install Remove

Using “450 Lang”

¥ hw13.rkt - DrRacket*
File Edit View Language Racket

hwi3.rktv (define ..)v &5
#lang 450lang

(bind/rec
ack
(fn (m n)
(m? (n ? (acl
. (acl
: (++ n))).

(chk= (ack @ @) 1)
(chk= (ack 1 0) 2)

Don’t need the “quotes” anymore (just like other programming languages)

Recursion review

« Most recursion is structural (comes from data definitions)!

53 A List<X> is
;5 - empty |

(define (lst-fn 1st) S. - (cons X List<X>)

(cond
[(empty? 1st) ..]
[else .. (first 1st) .. (1st-fn (rest 1lst)) ..]))

TEMPLATE

A Different Kind of Recursion!

« Not all recursion is structural (comes from data definitions)!

A Different Kind of Recursion!

« Not all recursion is structural (comes from data definitions)!

;5 gcd : Nat Nat -> Nat
;5 computes greatest common divisor, using Euclid’s algorithm

What template is this
following??

(define |(gcd n m)
(if (=5 m ©)
n
(gcd m (modulo n m))

A Different Kind of Recursion!

e Non-structural recursion (doesn’t come from data definitions)
is called generative recursion

* no template? requires Termination Argument
« Explains why the function terminates - bc recursive call is “smaller”!

;5 gcd

: Nat Nat -> Nat

;5 computes greatest common divisor, using Euclid’s algorithm

(define (gcd n m)
(if (= m 9)

N

(gcd m (modulo n m)) version of the problem

But how to develop an
algorithm like this??

Recursive call must be on “smaller”

Generative (mon-structura) Recursion Design Recipe

1. Name, Signature

2. Description
* Must include Termination Argument

3. Examples
* Even more important now!

4, Code (No structural template, but can use a “general” template)

5. Tests
6. Refactor

Generative (mon-structura) Recursion Design Recipe

1. Name, Signature

2. Description
e Must include Termination Argument

3. Examples
* Even more important now!

4, Code (No structural template, but can use a “general” template)
a) Break problems into smaller problems to (recursively) solve
b) Determine how to combine smaller solutions
c) “trivially solvable” problem is base case!

5. Tests
6. Refactor

Generative (mon-structura) Recursion Design Recipe

4, Code (No structural template, but can use a “general” template)
a) Break problems into smaller problems to (recursively) solve
b) Determine how to combine smaller solutions
c) “trivially solvable” problem is base case!

Generative (mon-structura) Recursion Design Recipe

4, Code (No structural template, but can use a “general” template)
a) Break problems into smaller problems to (recursively) solve
b) Determine how to combine smaller solutions
c) “trivially solvable” problem is base case!

;5 genrec-algo: ??? -> ???

(define (genrec—alé;\problem)
(cond
[else

(genrec-algo (create-smaller-1 problem))

(genrec-algo (create-smaller-n problem)))]))

Generative (mon-structura) Recursion Design Recipe

4, Code (No structural template, but can use a “general” template)
a) Break problems into smaller problems to (recursively) solve
b) Determine how to combine smaller solutions
c) “trivially solvable” problem is base case!

;5 genrec-algo: ??? -> ???

(define (genrec-algo problem)
(cond

[else (combine-solutions
(genrec-algo (create-smaller-1 problem))

(genrec-algo (create-smaller-n problem)))]))

Generative (mon-structura) Recursion Design Recipe

4, Code (No structural template, but can use a “general” template)
a) Break problems into smaller problems to (recursively) solve
b) Determine how to combine smaller solutions
c) “trivially solvable” problem is base case!

;5 genrec-algo: ??? -> ???

(define (genrec-algo problem)
(cond
[(trivial? problem) (solve-easy problem)]| ;; base case
[else (combine-solutions
(genrec-algo (create-smaller-1 problem))

(genrec-algo (create-smaller-n problem)))]))

Generative (mon-structura) Recursion Design Recipe

4, Code (No structural template, but can use a “general” template)
a) Break problems into smaller problems to (recursively) solve
b) Determine how to combine smaller solutions
c) “trivially solvable” problem is base case!

;5 genrec-algo: ??? -> ???
;3 termination argument: recursive calls are “smaller” bc ..
(define (genrec-algo problem)
(cond
[(trivial? problem) (solve-easy problem)] ;; base case
[else (combine-solutions
(genrec-algo (create-smaller-1 problem))

(genrec-algo (create-smaller-n problem)))]))

GenRec Template Generalizes Structural!

e Trivial solution = data def base case

(define (1lst-fn 1lst)) ,
» Recursive smaller problem = data def smaller piece

(cond
[(empty? 1st) ..] « Left to figure out “Combining” pieces

[else .. (first 1st) .. (lst-fn (rest 1lst)) ..]))
i

;5 genrgc-algo: ??2? -> P2/

(define |(genrec-algo proplem)
(cond
[(trivial? problem)| (solve-easy [problem)] ;; base case

[else (combine—solu%'ons
(genrec-algo (create-smaller-1 problem))

(genrec-algo (create-smaller-n problem)))]))

Gen Rec Example: (functional) quicksort

;5 qsort: List<Int> -> List<Int>

(define (qsort 1st)
(cond
[(trivial? problem) (solve-easy lst
[else (combine-solutions
(gsort (create-smaller-1 1st))

(qso;t (create-smaller-n 1lst)))]))

Quicksort overview (“divide and conquer”)

1. Choose “pivot” element
2. Partition into smaller lsts:

« < pivot
¢ >= pivot
3. Recurse on smaller lists
{10, 80, 30, 90, 40, 50,
%

e Until base case
4. Combine small solutions

Gen Rec Example: (functional) quicksort

1. Choose “pivot” element
2. Partition into smaller lsts:

;3 gsort: List<Int> -> List<Int>

(define (gsort 1st)

/»/pivot
« >= pivot

3. Recurse until base case

4. Combine small solutions

(cond
trivial? problem 0lve-easy 1lst
[else
(define pivot (first 1st))
combine-solutions
(gsort (smaller-problem-1 1lst

(gsort (smaller-problem-n 1st)))]))

Gen Rec Example: (functional) quicksort

1. Choose “pivot” element
2. Partition into smaller lsts:

;3 gsort: List<Int> -> List<Int> /< pivot
/>= pivot
. /Recurse until base case
(define (gsort lst) 4/ Combine small solutions
(cond
trivial? problem solve-easy Ast
[else

(define pivot (first 1lst))
combine-solutions
(gsort (filter (curry > pivot)/1st))

(qsortm(filter (curry <= pivot) 1st)))]))

Gen Rec Example: (functional) quicksort

1. Choose “pivot” element

2. Partition into smaller Ists:

;3 gqsort: List<Int> -> List<Int>

« < pivot
e >=pivot

3. —Recurse until base case

(define (gsort 1st) 4. Combine small solutions
(cond

[(empty? 1st) empty] ;; base case
[else
(define pivot (first 1lst))
combine-solutions
(gsort (filter (curry > pivot)

(gsort (filter (curry <=

1st))

pivot) 1st)))]))

Gen Rec Example: (functional) quicksort

1. Choose “pivot” element

2. Partition into smaller Ists:

;3 gqsort: List<Int> -> List<Int>

(define (gsort 1st)

(cond
[(empty? 1st) empty] ;; ba
[else
(define pivo irst 1st))
(append

(gsort (filter (curry > pivot)
(cons pivot
(gsort (filter (curry <=

« < pivot
e >=pivot

3. Recurse until base case

4/Comb|ne small solutions

1st))

pivot) 1st)))]))

Gen Rec Example: (functional) quicksort

;3 gsort: List<Int> -> List<Int>

;; termination argument:

;5 recursive calls “smaller” bc at least one item dropped (pivot)
(define (gsort 1st)

(cond
[(empty? 1st) empty] ;; base case
[else
(define pivot (first 1lst))
(append

(gsort (filter (curry > pivot) 1st))
(cons pivot
(gsort (filter (curry <= pivot) 1lst)))]))

wtrbide: RECUrsion vs lteration

e Recursive functions have a self-reference

factorialUsingRecursion(n):
(n 0):
1;

n - 1);
* Iterative code typically use a loop

factorialUsingIteration(n):

Recursion vs Iteration: Which 1s “Better”?

» Recursive vs. Iterative Solutions

Recursive algorithms can be very space inefficient. Each recursive call adds a new layer to the stack,|which

means that if your algorithm recurses to a depth of n, it uses at least O(n) memory.

For this reason, it's often better to implement a recursive algorithm iteratively. All recursive algorithms can
be implemented iteratively, although sometimes the code to do so is much more complex. Before diving
into recursive code, ask yourself how hard it would be to implement it iteratively, and discuss the tradeoffs
with your interviewer.

Cracking the Coding Interview, Ch8

0 r/learnprogramming - 11 yr. ago

[Best Practices] Recursion. Why is it generally
avoided and when is it acceptable?

stack overflow
Are recursive methods always better than iterative methods in Java?

Recursion vs lteration: Conventional Wisdom

Strengths: Iteration
* |teration can be used to repeatedly execute a set of statements without the overhead of

function calls and without using stack memory.
® |teration is faster and more efficient than recursion.

* |t's easier to optimize iterative codes, and they generally have polynomial time

complexity. lteration is good with
* They are used to iterate over the elements present in data structures like an array, set, non-recursive data
map, etc.

* |f the iteration count is known, we can use for loops; else, we can use while loops, which
terminate when the controlling condition becomes false.

Weaknesses:
* |nloops, we can go only in one direction, i.e., we can't go or transfer data from the
current state to the previous state that has already been executed. | Iteration is bad with
» |t's difficult to traverse trees/graphs using loops. recursive data!
* Only limited information can be passed from one iteration to another, while in recursion,

we can|pass as many parameters as we need.| | pacyrsion better when accumulators are needed

https://www.interviewkickstart.com/learn/difference-between-recursion-and-iteration

Recursion vs lteration: Conventional Wisdom

Strengths:

Recursion

* |t's easier to code the solution using recursion when the solution of the current problem
is dependent on the solution of smaller similar problems.

Recursion better

e |t's alof

- fibonacci(n) = fibonacci(n-1) + fibonacci(n-2)
- factorial(n) = n * factorial(n-1) ZI

e Recursive codes are smaller and easier to understand.

when accumulators * We can|pass information to the next state in the form of parameters/and return
are needed information to the previous state in the form of the return value.

easier to perform operations on trees and graphs using recursion} Use recursion with

Weaknesses:

Recursion is slow

* |t

Recursion is slow

Recursion is slow | e The simplicity of recursion comes at thel

cost of time and 5pace|efﬂciency.

Recursion is slow | ® Itis much slower than iteration due to thq overhead of function calls

from one function to another.

Investigate:
Is recursion Is slower??

recursive data!

and control shift

‘lequires extra memory on the stack|for each recursive call. This memory gets
deallocated when function execution is over.

s difficult to optimize a recursive code, and they generally havg higher time complexity

an iterative codes due to overlapping subproblems.

https://www.interviewkickstart.com/learn/difference-between-recursion-and-iteration

Recursion vs Iteration: In Racket

Racket Recursion

;5 sum-to : Nat -> Nat

;5 Sums the numbers in the interval [0, X] Conclusion?
(define (sum-to x) Recursion is slower?
(if (zero? Xx)
X WAIT!
(+ x (sum-to (subl x))))) Racket does not have “for” loops

(define BIG-NUMBER 999999)

(time (sum-to BIG-NUMBER))
; Ccpu time:|202|real time: 201 gc time: 156

Racket “Iteration”

(time (for/sum ([x (addl BIG-NUMBER)]) X))
; cpu time: |15|real time: 6 gc time: ©

Recursion vs Iteration: In Racket

Racket Recursion

Conclusion? ;3 iterative-sum-to : Nat -> Nat
RecurSNDn'S}HZL . ;3 Sums the numbers in the interval [0, Xx]
slower than iteration? (define (iterative-sum-to x result)
(if (zero? x) accumulator
result
equivalent (iterative-sum-to (subl x) (+ X result))))

ttihe (iterative-sum-to BIG-NUMBER 9))

; cpu time:

“for” In Racket is just a

15

macro (i.e., “syntactic sugar”) (time (for/sum
for a recursive function ; cpu time: (15

real time: 13 gc time: ©

Racket “Iteration”

([x (addl BIG-NUMBER)]) x))
real time: 6 gc time: ©

Tail Calls

From Wikipedia, the free encyclopedia

In computer science, a tail call is a subroutine call performed as the final action of a procedure.
If the target of a tail is the same subroutine, the subroutine is said to be tail recursive, which is a
special case of direct recursion. Tail recursion (or tail-end recursion) is particularly useful, and

Is often easy to optimize in implementations.
Talil calls can be implemented without adding a new stack frame to the call stack.

Recursion vs Iteration: In Racket

Racket Recursion

Conclusion? ;5 ilterative-sum-to : Nat -> Nat
Recursion is not ;3 Sums the numbers in the interval [0, Xx]
slower than iteration? (define (iterative-sum-to x result)
(if (zero? x) Tail-recursive function
result

(iterative-sum-to (subl x) (+ x result))))

Tail-call (does not
add to stack)

(Tail) recursion is iteration!

Recursion vs Iteration: Under the Hood

* It makes sense that recursion and iteration are equivalent ...

« Recursive call compiles to:
« JUMP instruction

« Loop compiles to:
« JUMP instruction!

e ... except in languages that make them not equivalent!
* |.e, languages that push extra stack frames that are not needed

Tail-Calls in Other Languages

» Most functional languages (RACKET, HASKELL, ERLANG, F#) implement
proper tail calls
(no extra stack frame)

« Some languages require an explicit annotation
 CLOJURE: recur
* SCALA: @tailrec

« Some languages (JavaScripT) have it (ECMASCRIPT 6), but don’t have it

« Most imperative languages don’t properly implement tail calls
(they add an unnecessary stack frame)

 PYTHON, JAvA, C#, GO

Guldo Got It Backwards

Wrong!

Equivalent to

saying “every for
loop iteration
should push a

stack frame

”n
!

Tail Recursion Elimination

| recently posted an entry in my Python History blog on the origins of Python's
functional features. A side remark about not supporting tail recursion
elimination (TRE) immediately sparked several comments about what a pity it
is that Python doesn't do this, including links to recent blog entries by others
trying to "prove” that TRE can be added to Python easily. So let me defend my
position (which is that | don't want TRE in the language). If you want a short
answer, it's simply unpythonic. Here's the long answer:

First, as one commenter remarked, TRE is incompatible with nice stack
traces: when a tail recursion is eliminated, there's no stack frame left to use
to print a traceback when something goes wrong later. This will confuse users
who inadvertently wrote something recursive (the recursion isn't obvious in
the stack trace printed), and makes debugging hard. Providing an option to
disable TRE seems wrong to me: Python's default is and should always be to
be maximally helpful for debugging. This also brings me to the next issue:

About Me

|

p

D Guido van Rossum

Python's BDFL

View my complete profile

Blog Archive

> 2022 (2)
» 2019 (1)

Proper tail calls is about
eliminating stack frames
that shouldn't be there in
the first place! (because it's
just iteration!)

Tail Calls as Loops

int factorial(int n)

= Oxdeadbeef;

previous = factorial(n-1);

I
L
int previous
3F(n == 0 || m = 1)
return 1;
1
J
return n * previous;
1
J

int main(int argc)

I
L

int answer =

- = "o/ \ "
rintf("%d\n

factorial(5);

, answer);

Some languages directly
compile recursion to a loop!
(with optimizations turned on)
(because they are equivalent!)

Proper Tail Calls in JavaScript

Proper Tail Calls (PTC) is a new feature in the ECMAScript 6 language. This feature was
added to facilitate recursive programming patterns, both for direct and indirect recursion.
Various other design patterns can benefit from PTC as well, such as code that wraps some
functionality where the wrapping code directly returns the result of what it wraps. Through
the use of PTC, the amount of memory needed to run code is reduced. In deeply recursive
code, PTC enables code to run that would otherwise throw a stack overflow exception.

https://webkit.org/blog/6240/ecmascript-6-proper-tail-calls-in-webkit/

RN 2~

eature name Not supported in V8 (Chrome) or SpiderMonkey (Firefox)! W

proper tail calls (tail call optimisation)

Servers/runtimes Mobile

Desktop browsers
96 98% 98% 98% 26% 96% 7% 98% 98% 74% 98% 100% 98% 989

Compilers/polyfills
72% 55% 69% 17% 5% 1% 98% 98% 98% 98% 98% 98% 98% 98% 98% 98% 98% 100% 100% 100% 99% 98% 98% 65% 94% 58% 98%
OP Eche Node Nade Node Nede DUK)i s SraalyM GraalMM Hermes Dene i0S Samsung Qpera

Bahel?
* X6 PA l6ils17 2183519 3192520 220 27 240 18 21339 22209 0120 | 436 470 22 Mebikezs

Type:
Closwe % oce Kenn FEVS FE | FE EE | GH | CH CHII8 CHUS CH120 | Edge Edge op
*osm oate ®UOTERT g0 21 a2 | M6 | M7 | Bem Rew Cenary | M3 34 PRAGR SEAZQ SETR WK g g g

coreigsd coresis.3

[> [w2 | o2 | o2 | 02 [o] oo | oo [eaioa o2 | oo |oe e | oa | oo e | w2 [
https://compat-table.github.io/compat-table/es6/

Recursion vs Iteration: Conclusion

Strengths: Recursion

* |t's easier to code the solution using recursion when the solution of the current problem
is dependent on the solution of smaller similar problems.
- fibonacci(n) = fibonacci(n-1) + fibonacci(n-2)
- factorial(n) = n * factorial(n-1) Recursion is (usually)
e Recursive codes are smaller and easier to understand. ~ €asier to read

Recursion better
when accumulators * We can|pass information to the next state in the form of parameters/and return

are needed information to the previous state in the form of the return value.
* It's alotjeasier to perform operations on trees and graphs using recursion' Use recursion with
Weaknesses: recursive data!
* The simplicity of recursion comes at theJcost of time and 5pace|efﬂciency.
Recursion is slower ... e |tis much slower than iteration due to thgq overhead of function callsjand control shift

' from one function to another.
ves | N la ngu ages t fequires extra memory on the stack|for each recursive call. This memory gets
that Choose to jgallchted when fur.wction execgtion is over. . _ .
tis difficult to optimize a recursive code, and they generally havg higher time complexity

make |'['_ SlOWQ rl 'han iterative codes due to overlapping subproblems.

https://www.interviewkickstart.com/learn/difference-between-recursion-and-iteration

In-class: Install “450 Lang”

) hw13.rkt - DrRacket

m] Edit View Language Racket Insert
New

New Tab

Open...

Open Recent

Open Require Path...

Reopen Closed Tab

Install .plt File...

Install Package...

Package Manager... —

Revert

==l 3

) Package Manager
File Edit Tabs Help
Do What I Mean | Currently Installed | Available from Catalog |Copy from Version | Settings

1/3538 match | Update Package List

Filter: 450lang
v installed *: auto-installed !: not default scope =: installed as link; @: installed from URL

Check.. Sou.. Catal.

v ePaekage—j Author Description Tags
git+.. https..

450lang stchang@racket-lang.org Programming Language for UMB CS450 course 39123..

Install Remove

