CS450
High Level Languages

UMass Boston Computer Science

Tuesday, February 4, 2025

LAST NIGHT I DRIFTED OFF AT ONCE, JUSTLIKE THEY SAID, T FELTA || TRULY, THIS WAS
WHILE READING A LIsP Book. [|| GREAT ENUGHTENMENT. T SAW THE NAKED

THE LANGUAGE
STRUCTURE OF LISP CopE UNFOLD BEFORE ME-J| FROM WHICH THE
e e GODS WROUGHT™

ZQ P T T THE UNIVERSE.

s Fole

OF car'S

=i - P ' =

. THE PATTERNS AND METAPATTERNS DANCED. = T MEAY, OSTENSIBLY, YES.
SUDDENLY, I WAS BATHED | W SynTAx FADED, AND I SWAM INTHE PURITY OF ~ HONESTLY, WE HACKED MosT
IN A SUFFUSION OF BLUE. || [{QUANTIFIED CONCEPTION. OF IDEAS MANJFEST. . OF IT TOGETHER WITH PERL.

Logistios

e HW O In

s Due-Tue 244 Mam-EST

 HW 1 out
e Due: Tue 2/11 1Mam EST

« Course web site:
« Style: see “Racket Basics and Style”

LAST NIGHT I DRIFTED OFF
| WHILE READING A LIsP Book.

AT ONCE, JUST LIKE THEY SAID, I FELT A
GREAT ENUGHTENMENT. T SAW THE NAKED
STRUCTURE OF LISP CODE UNFOLD BEFORE ME -

TRULY, THIS WAS
THE LANGUAGE
FROM WHICH THE
(GODS WROUGHT™
THE UNIVERSE.

https://www.cs.umb.edu/~stchang/cs450/s25

e e gy =

' THE PATTERNS AND METAPATTERNS DANCED. — A=
SUDDENLY, I WAS BATHED |f [SyntAY FADED, AND I SWAM INTHE PURITY OF %

IN A SUFFUSION OF BLUE. '

QUANTIFIED CONCEPTION. OF IDEAS MANJFEST:

: =27y
T MEAN, OSTENSIBLY, YES.

HONESTLY, WE HACKED MosT
OF IT TOGETHER WITH PERL.

Last Week

Statements vs Expressions

Most other courses This course
Imperative programs are: Declarative programs are:
.. sequences of (“low level”) .. (“high level”) declarative
statements |/ instructions expressions, i.e., “arithmetic”
(Racket)
int add one (int x) { (define (add-one x)
return x + 1; (+ x 1))

Last Week

: : This position must be an
A rlth m etl C IV\ O re T (arithmetic expression that

evaluates to a) function value

 Function call: prefix notation (fn name first) (+ 12 3 4)
 Easier to write multi-arity functions

(string-append “hi” “world”)

- (fundamental) programming model; arithmetic
« But not just numbers! expressions

“hi-world”

(above []

)

« When “run”, arithmetic expressions
evaluate to an answer or value

-

Programs Need Input

e.g, students class Student {
e int ID;

= o O“ int year;

string address;

.}

“convert” “run”
into “data” (evaluate)

Program ; .
> mm) "answer’, eg, 42

Input:
- Keyboard &

- Mouse

- Gamepad Do a “real
- Touchscreen world” task
- Voice

- File

Program vs Real World

A Data Definition name

Specify possible
values of the data

/

——>

Real World “things” ...

e.g., Temperature

Real

World l

Input:
Keyboard

Mouse

.. heed a data
representation
in the program

55 A Teﬁpc IS an Integer
;5 Interpretation: It represents a
temperature in degrees Celsius

When programming,

choosing data representations
must be the first task!

(way before writing any code ...
which processes the data)

Program

)

Interpretation ... connects
data to a real world concept

;5 A TempF is an Integer
;5 Interp: It represents a
temperature in degrees Fahrenheit

;3 A TempK Is an non-negative Integer

;5 Interp: It represents a
temperature In degrees Kelvin

Specify possible

D ata D eS | g n Re Cl p e A Data Definition name values of the data

(Steps to follow)

. AESE— : ;5 A TempC is an Integer
A predicate for a data definition is a function that: .+ Interpretation: Tt represents a
evaluates to true when the given an argument is a temperature in degrees Celsius
value of the data definition (define (TempC? x) .
(integer? x)) Interpretation ... connects

data to a real world concept

« A Data Definition represents a real world concept
* [t Is what a program’s code computes “on”

* [t has the following components

Name

Set of values specification (using other data definitions)
Interpretation that explains the connection to the real world

Predicate - code version of Set of Values (step 2)
A predicate is a function that evaluates to true/false

S BY N

Parts of a Data Definition

Refers to previously defined

data definition names!
(can be built-in or come from library)

;5 A TempC is an Integer
;5 Interpretation: It represents a
temperature in degrees Celsius

Function Signaf{uses Data Definitions
... to specify types of input and output data

A predicate for a data
definition is a function that:
evaluates to true when the
given an argument is a value
of the data definition

(define (TempC? x)
(integer? x))

A data definition defines a new “type” of data

« Different languages have different mechanisms to define new types of data:
« typedef
« class
e enum
e struct

e In this course, we use a combination of comments + code

D es | g N Re C| p e (S) (Steps to follow when writing a program)

 Data Design
=== « Function Design

55 A TempC is an Integer

Designing FUNCLIONS i a1 o cets

//jj/Wﬁérp:represents a temp in degrees Fahrenheit

=
1. Name 55> c2f: TempCZ—> TempF
. ;5 Converts a Celsius temperature to Fahrenheit
2. Signature P

 # of arguments/and their data type
* Output type
« May only reference “defined” Data Definition names

3. Description

Designing Functions

1. Name ;3 c2f: TempC -> TempF
. ;3 Converts a Celsius temperature to Fahrenheit

2. Signature

 ## of arguments and their data type

* Qutput type

« May only reference “defined” Data Definition names
3. Description - shows how fn works, in English
4. Examples - shows how fn works, in code | EE;‘E 2;;

(define (c2f ctemp) ; 2f _40

5. Code (+ (* ctemp (/ 9 5)) 32)) (€)
6. Tests

(Sheck-equal? (c2f 1) (+ (/ 9 5) 32))

From testing framework (stay tuned!)

55 A TempC is an Integer

i " " 55 Interp: t temp in degrees Celsius
DQSlgn | ng FU n Ctl O nS ;5 A Temglsp;:S:: Isn‘?ege Rational

1.
2.

o v W

55 Interp: represents a temp 1n degrees Fahrenheit

Name ;; c2f: TempC -> TempF
. 55 Converts a Celsius temperature to Fahrenheit
Signature

 ## of arguments and their data type
* Qutput type
« May only reference “defined” Data Definition names

Description - shows how fn works, in English

Examples - shows how fn works, in code

(define (c2f ctemp)
Code | ", (s ctemp (/9 5)) 32))

Tests Something is wrong!
- In Code?
(check-equal? (c2f 1) (+ (/ 9 5) 32)) - inSignature?
- in Data Definition?

D es | g N Re C| p e (S) (Steps to follow when writing a program)

@’ Data Design P Programming is an
« Function Design iterative process!

lterative Programming

Other functions (“wish list”)

1.
2.

o oW

Name
Signature

Programming Is an
iterative process!

« # of arguments and their data typeﬂ

* Output type

« May only reference “defined” Data Definition names

Description
Examples

Code:—:::>

Tests

Danger, Danger

This is not a license to “hack”

l.e., arbitrarily changing code, praying it will “work” this time

Instead, program incrementally

The faster way to program

The Incremental Programming Pledge

At all times, all of the following should be true of your code:
(data defs, signatures, etc) match code

2. Code has no syntax errors
1. E.g., missing [extra parens

3. Runs without runtime errors / exceptions
1. E.g., use undefined variables, div by zero, call a “non function”

4. All tests pass

When you make a code edit that renders one of the above false, STOP ...

... and don’t do anything else until all the statements are true again.

(this way, it's easy to revert back to a “working” program)

Incremental Programming, in Action

1. Name ;3 c2f: TempC -> TempF
o ;3 Converts a Celsius temperature to Fahrenheit
2. Signature P

3. Description 2. Start with “placeholder” code 1. Make Examples runnable tests
A Examples (do not submit this!)
(define (c2f ctemp)
5. Code (case .
0) 32

6. Tests %213)@) ;12] (check-equal? (c2f @) 32)

[(-40) -40]) (check-equal? (c2f 100) 212)

(check-equal? (c2f -40) -40)

Incremental Programming, in Action

1. Name ;3 c2f: TempC -> TempF
o ;3 Converts a Celsius temperature to Fahrenheit
2. Signature P

RN 1. Make Examples runnable tests
2 DGSCI’IptIOn 2. Start with “placeholder” code g
4, Exam ples 3. Make small changes only (something easy to revert)
COde (define (c2f ctemp)
Tests (+ (* ctemp (/ 9 5)) 32))

4. Test each (small) change (before making another one)

Incremental Programming Tips Summary

1. Make Examples runnable tests

2. Start with “placeholder” code

3. Make small changes only Implies: Write small functions!

4, Test each (small) change, before making another one >

In this course, all conditions of the Increment
Programming Pledge must be true at all times!

Conventional Wisdom: \NTIte Small Functions

“SWrite Short Functions Google C++ Style Guide

Prefer small and focused functions.

We recognize that long functions are sometimes appropriate, so no hard limit is placed on functions length. If a function
exceeds about 40 lines, think about whether it can be broken up without harming the structure of the program.

Even if your long function works perfectly now, someone modifying it in a few months may add new behavior. This could
result in bugs that are hard to find. Keeping your functions short and simple makes it easier for other people to read and
modify your code. Small functions are also easier to test.

You could find long and complicated functions when working with some code. Do not be intimidated by modifying existing
code: if working with such a function proves to be difficult, you find that errors are hard to debug, or you want to use a
piece of it in several different contexts, consider breaking up the function into smaller and more manageable pieces.

Small Functions Considered

e (T e Awesome

Why | Never Write Long Functions @ Josh Saint Jacque - Follow

T minread - Aug 22, 2017
few=, Web Dev Simplified @ w
e’ 1.44M subscribers
Good rule of thumb:

100K views 2 vears aao Clean Code A function should do one, easily explainable task

Programs can be Interactive [moeuntouwrie and use

“convert”
into “data

defintions Program
> EE) answer’, eg, 42

Input: m Other “Output” (side effect).
- Kéyboard &v - Draw screen
_ Mouse - Write to file
- Play sound
- Gamepad
] Touchzcreen - Change real world (unlock door)
W - Changed computer state (game)

- File

(require 2htdp/universe)

Interactive Programs (with big-bang)

* DEMO

(require 2htdp/universe)

Interactive Programs (with big-bang)

e big-bang starts an (MVC-like) interactive loop

Model-View-Controller (MVC) Pattern

“world state” data definition!

(MODEL ‘W

UPDATES MANIPULATES

| |
Function that “converts”

world state data ... VIEW CONTROLLER
into an image
\ /!

%
< (;;;o Input:
\ ©° - Keyboard
- Mouse
USER - Gamepad
- Touchscreen
- Voice
- File from: wikipedia.org

Functions that “update”
world state data

(require 2htdp/universe)

Interactive Programs (with big-bang)

e big-bang starts an (MVC-like) interactive loop
 repeatedly updates a “world state”
« Programmer must define what the “World” is ...

e ... with a Data Definition! ;; A WorldState is a non-negative integer
;5 Interp: represents y coordinate of a
circle center, in a big-bang animation

weertude: Ntdp universe coordinates

(place-1image image x y scene) — image? procedure

(0,0)

y coordinate

image : image?

x coordinate =) x i real?

y : real?

scene . image?

Places image onto scene with its|center at the coordinates (x,y)|and crops the resulting
image so that it has the same size as scene. The coordinates are relative to the top-left of

scene.

(circle radius mode color) — image?
radius : (and/c real? (not/c negative?))
mode : mode?

color : image-color?

(square side-len mode color) — image?
side-len : (and/c real? (not/c negative?))
mode : mode?

color : image-color?

(place-image

(circle 10 "solid" "red") ,,,
0 0 H EH B
(square 40 "solid" "yellow"))

20 3 . 4,

Interactive Programs (with big-bang)

e big-bang starts an (MVC-like) interactive loop

 repeatedly updates a “world state”
« Programmer must define what the “World” is ...

e ... with a Data Definition!

Newt Line

 Render

(require 2htdp/universe)

55 A WorldState is a non-negative integer
;5 Interp: represents y coordinate of a
circle center, in a big-bang animation

“world state” data definition!

-

« World update
 Input handlers

T

Function that
llco ”
state data ...
into an image

UPDATES

l

—~ MANIPULATES

CONTROLLER

Functions that
“update” world
~ state data

Keyboard
Mouse
Gamepad

- Touchscreen

* Programmers specify “handler” functions to manipulate “World”

