CS450
“Big Bang”, Testing, Contracts

UMass Boston Computer Science

Tuesday, February 11, 2025

2 World

=] B [

Logistios

« HW 1in, HW 0 grades out
« Questions / complaints must use gradescope re-grade request

« HW 2 out
e due: Tue 2/18 11am EST

- No HW questions by email! (I may not see it)
» Post to piazza (use private or anonymous if unsure) (I may change)
« Make it easier for staff to check one place

« “Autograder error???” (not allowed)

» This class is about learning to communicate (e.g., ask questions)
effectively!

e« See forum rules

« Course web site:
« Added Design Recipe section
» Lecture code (see lecture04.rkt) may occasionally be posted

2 World

NN

Last

[ine

Programs can be Interactive [moeuntouwrie and use

“convert”
into “data

defintions”

Input:

Keyboard
Mouse
Gamepad
Touchscreen
Voice

File

Program

‘ "answer”, e.g., 42

Other “Output” (side effect):

)

- Draw screen

- Write to file

- Play sound

- Change real world (unlock door)
- Changed computer state (game)

(require 2htdp/universe)

Interactive Programs (with big-bang)

* DEMO

(require 2htdp/universe)

Interactive Programs (with big-bang)

« big-bang starts an (MVC-like) interactive loop

Model-View-Controller (MVC) Pattern

Requires a data definition!

“world” state

[MODEL 4\

Function to “convert”
world state data ...
into a “view” image

UPDATES MANIPULATES >

Functions to “update”

/

code

\J

Can’t write any e CONTROLLER
code without a \ Vs
inition! RS S |nput:
Data Definition! & e lnput Input can also “update”
N 4 - Mouse world state data
- Gamepad
USER
Ry - Touch
ﬁ‘\’ data definition) Vg?cce >cereen

B (most programmers) _ File

from: wikipedia.org

(require 2htdp/universe)

Interactive Programs (with big-bang)

« big-bang starts an (MVC-like) interactive loop
 repeatedly updates a “world state”
« Programmer must define what the “World” is ...

e ... with a Data Definition! ;3 A WorldState is a Non-negative Integer
;3 Interp: y-coordinate of a circle center,
In a big-bang animation

Data Definitions should

represent values that change Wworld [=] B e

(Values that don’t change should '
be defined as constants)

weertude: Ntdp universe coordinates

(place-1image image x y scene) — image? procedure

(0,0)

y coordinate

image : image?

x coordinate =) x i real?

y : real?

scene . image?

Places image onto scene with its|center at the coordinates (x,y)|and crops the resulting
image so that it has the same size as scene. The coordinates are relative to the top-left of

scene.

(circle radius mode color) — image?
radius : (and/c real? (not/c negative?))
mode : mode?

color : image-color?

(square side-len mode color) — image?
side-len : (and/c real? (not/c negative?))
mode : mode?

color : image-color?

(place-image

(circle 10 "solid" "red") ,,,
0 0 H EH B
(square 40 "solid" "yellow"))

20 3 . 4,

(require 2htdp/universe)

Interactive Programs (with big-bang)

* big-bang starts an (MVC-like) interactive loop
 repeatedly updates a “world state”
« Programmer must define what the “World” is ...

e .. with a Data Definition! ;3 A WorldState isa Non-negative Integer
;3 Interp: y-coordinate of a circle center,
In a big-bang animation

* Programmers specify “handler” functions to manipulate “World”

“world state” data definition!
 Render oo
Function that (W .
« World update Convers”worlg s> e functions that
state data ...
° . . state data
l n p Ut h an d le s Into an image VIEW CONTROLLER
= /
kY & Input
N\ 4 - Keyboard
USER - Mouse

Gamepad
- Touchscreen

Last

-~ Design Recipe Intro: Data Design

Create Data Definitions
» Describes the types of data that the program operates on

* Has 4 parts:
1. A defined Name
2. Description of all possible values of the data
3. An Interpretation explains/the real world concepts the data represents

2 World = B &5

;5 A/WorldState is a Non-negative Integer _T
;5 Interp: y-coordinate ofa circle center,

In a big-bang animation

Last

-~ Design Recipe Intro: Data Design

Create Data Definitions

» Describes the types of data that the program operates on

* Has 4 parts:
1. A defined Name
2. Description of all possible values of the data

3. An Interpretation explains the real world concepts the data represents
=) 4, A predicate is code that checks if a value is in the Data Definition

« returns false if a given value is not in the data definition Word =] 0 e
;5 A WorldState isa Non-negative Integer _i
;5 Interp: y-coordinate ofa circle center,
In a big-bang animation

(define (WorldState? x)
(exact-nonnegative-integer? x))

Design Recipe

1. Data Design
2. Function Design

Last . : :
~_Designing Functions
1. Name
2. Signature

3. Description
4. Examples
5. Code

6. Tests

Designing Functions
1. Name

2. Signature - types of the function input(s) and output
 Refer to Data Definitions (create new data defs, if needed)

) es | g N | N g F Un Ctl ons “built-in" data def (from 2htdp/image lib)

Name

2. Signature - types of the function input(s) and output
 Refer to Data Definitions (create new data defs, if needed)

3. Description - explain (in English prose) how the function works

FAQ: What about “error-checking”? | -rornanding s important

but if it obscures logic, it's wrong.”

C. Martin, Clean Code: A

D e S | g n | n g F U n Ctl O n S ;slrilg(?g(rtof Aqile Software Craftsmanship

;5 render: WorldState -> Image
;5 Draws a WorldState as a 2htdp/image Image

R 2

f@/e; constant names are in A)LL-CAPS

4. Examples - show (using rackunit) how the function works

» (put after function definition)

(define (render w)
(place-image
BALL-IMG <j::]
BALL-X w
EMPTY-SCENE))

(check-equal? ¢/

(render INITIAL-WORLDSTATE)
(place-image
BALL-IMG
BALL-X INITIAL-WORLDSTATE
EMPTY-SCENE))

Examples come before (and help to write) Code!

https://www.goodreads.com/work/quotes/3779106
https://www.goodreads.com/work/quotes/3779106

|
FAQI What about “error-checkmg”? This declares that the function cannot

Designing Functions

;5 render: WorldState™-> Image

be given a non-WorldState argument!

... but we can make it more robust

;5 Draws a WorldState as a 2htdp/image Image
2. Signature - types of the function input(s) and output
 Refer to Data Definitions (create new data defs, if needed)

The Signature is error-checking

> (render "bad arg") It's the user’s fault if they call the function incorrectly

© O

place-image:

expects a real number as third argument, given "bad arg”

BUT: This is a bad error message because ... &)

... it reveals internal details that the
user doesn’t (and shouldn't have to)
know about

NOTE:
Different languages may have different
“signature” or “error handling” mechanisms

More Robust Signatures - contacs

;3 render: WorldState -> Imag{ Ufpes

- Asserts
;5 Draws a WorldState as a 2h Try-Catch-Throw

2. Signature - types of the function inpy- “return zero”

- Refer to Data Definitions (create new data« gyt the Design Recipe is
 Use define/contract with predicates! language-agnostic

It can be used no matter what language you're programming in

Function contract [(define/contract (render w)

¢-> WorldState? image?)
(place-image

> (render "bad arg")
© L render: contract violation

expected: WorldState? Good error message: BALL-IMG
given: "bad arg precise, and no © BALL-X w
in: the 1st argument of internal details!

EMPTY-SCENE))

(-> WorldState? image?,
contract from: (function render)

Designing Functions

6. Tests - check (using rackunit) that the function works
* put in separate test-suite (file)

hwo-Chang-Stephen/tests.rkt

Homework Testing L e

2

All HW submissions must include
tests.rkt, which:

Used by
* requires the hw code file, e.g, uto)grader
hwl.rkt
e defines a rackunit test- = meclauntt does o
sulite called TESTS i)

* provide TESTS

 Includes sufficient test-cases
(from the Design Recipe) for
every hw function definition

e runs without error! > your

asting

What Is a “Sufficient” Number of Tests?

Wishful: test every possible input Dynamic Properties
« Usually impossible: infinite cases
« Also redundant ...

[

No debugging or profiling) Debugging and profiling
Debugging @ Syntactic test suite coverage

o “ " . Populate “compiled” dtfectories (for faster loading)
ReallSUC: test all Classes Of InPUtS | Preserve stackirace (disable some optimizations)
« “class” depends on data defs!
- E.g., “positive” [“negative”, “left” [/ “right”, valid
* Try to think of corner cases!

Y| Enforce corStant definitions (enables some inlining)
Submedules to Run ~

;3 YCoord is either

;3 - before target This code was not run

« Minimum: 100% (Test / Example) “Coverage” e
« All code is run once by some test ;5 - out of scene
o “ ” (define (PENDING-Note? n) [(SNPI\CERNENOId-EXS-Ra=2NDD])
In "Choose Langua,ge Menu . (define (HIT-Note? n) [(ZINESEQCICEISERLIDD])
 NOTE: only works with single files (define (MISSED-Note? n) (MISSED? (Note-state n)))
° Doesn’t guarantee “Correctness”l (Why?) (define (OUTOFSCENE—NOtE? n) (OUTOFSCENEP (Note—state |
’ ' (define out-Note? OUTOFSCENE-Note?)
33 NEW

;3 A WorldState is a List<Note>

(define (num-Notes w) [@KSIgf=3dsl"D])

|deally: Until 100% confident in “correctness”

Last
/i

-

1. Data Design
2. Function Design

~ Design Recipe

S

Programming Is an
iterative process!

Each iteration
should be
incremental!

The faster way to program

“’ The Incremental Programming Pledge

[ine

At all times, all of the following should be true of your code:
(data defs, signatures, etc) match code

2. Code has no syntax errors
1. E.g., missing [extra parens

3. Runs without runtime errors / exceptions
1. E.g., use undefined variables, div by zero, call a “non function”

4. All tests pass

When you make a code edit that renders one of the above false, STOP ...

... and don’t do anything else until all the statements are true again.

(this way, it's easy to revert back to a “working” program)

Incremental Programming, in Action

1. Name ;3 c2f: TempC -> TempF
o ;3 Converts a Celsius temperature to Fahrenheit
2. Signature P

3. Description 2. Start with “placeholder” code 1. Make Examples runnable tests
A Examples (but do not submit this!)
(define (c2f ctemp)
5. Code (case .
0) 32

6. Tests %213)@) ;12] (check-equal? (c2f @) 32)

[(-40) -40]) (check-equal? (c2f 100) 212)

(check-equal? (c2f -40) -40)

Incremental Programming, in Action

1. Name ;3 c2f: TempC -> TempF
o ;3 Converts a Celsius temperature to Fahrenheit
2. Signature P

RN 1. Make Examples runnable tests
2 DGSCI’IptIOn 2. Start with “placeholder” code "
4. Exam ples 3. Make small changes only (something easy to revert)
COde (define (c2f ctemp)
Tests (+ (* ctemp (/ 9 5)) 32))

4. Test each (small) change (before making another one)

Incremental Programming: Real-World Example

e https://www.youtube.com/watch?v=1SIGgCxJa3w

* “when you do everything at once ...
you’re not sure why it’s not working!”

 “when you layer it, when you break it down ...
and you hit a spot when it’s not working ...
then you can just focus on that spot!”

g Code
Tests

4. Test each (small) change (before making another one)

3. Make small changes only (something easy to revert)

https://www.youtube.com/watch?v=1SlGgCxJa3w
https://www.youtube.com/watch?v=1SlGgCxJa3w
https://www.youtube.com/watch?v=1SlGgCxJa3w

In-class Office Hours

« Get HW 0 / HW 1 “working”?
e Add tests.rkt with test-suite named TESTS to HW1

e Start HW 2

