UMass Boston Computer Science

CS450 High Level Languages

Kinds of Data Definitions

Thursday, February 13, 2025

Logistios

« HW 2 out
e due: Tues 2/18 11am EST

« Course web site:
« See The Design Recipe section
e Lecture code (see lectureO4.rkt) may occasionally be posted

STYLE notes: Overcommenting

“Redundant comments are just places
“The proper use of comments is to to collect lies and misinformation.”
compensate for our failure to express ourself - Robert C. Martin, Clean Code: A

i . Handbook of Agile Soft Craft hi
in code. Note that I used the word failure. I ot Agile ~oTOVare LIQSMANSNIp

meant it. Comments are always failures.”
— Robert C. Martin, Clean Code: A Handbook of
Agile Software Craftsmanship

“Don’t Use a Comment When You Can

Use a Function or a Variable”
- Robert C. Martin, Clean Code: A
Handbook of Agile Software Craftsmanship

(not a great variable name)

« Use comments to explain code if needed, BUT ...
- ..the best code needs no comments (not (string? str))

* Redundant comments makes code harder to read el comment
« More comments # ubettern 3 checks iJ-r str 1s a string . .
. ((not (string? str)) "error: str is not a string”)

« (Also, don't submit commented-out codel)

https://www.goodreads.com/work/quotes/3779106
https://www.goodreads.com/work/quotes/3779106
https://www.goodreads.com/work/quotes/3779106
https://www.goodreads.com/work/quotes/3779106
https://www.goodreads.com/work/quotes/3779106
https://www.goodreads.com/work/quotes/3779106
https://www.goodreads.com/work/quotes/3779106

/7“/‘:” Design Recipe, Step 1: Data Design

Create Data Definitions
» Describes the types of data that the program operates on

* Has 4 parts:
1. Name
2. Description of all possible values of the data
3. Interpretation explaining the real world concepts the data represents
4. Predicate returning false if given value is not in the Data Definition

Kinds of Data Definitions

 Basic data

= o |ntervals
« Enumerations
* |temizations

template<typename T>

class Array {
.-'“rf#- * .
int size;

T* array;
T &operator[](int index) {
if(index >= size || index < @)

throw OUT_OF_RANGE; //#define OUT_OF_RANGE ©x©A
return array[index];

Interval Data Definitio

;5 An AngleD is a number in [©, 360)

;3 interp: An angle in degrees
(define (AngleD? deg)
(and (>= deg 0) (< deg 360)))

(define/contract (deg->rad deg)
(-> AngleD? AngleR?)
(* deg (/ pi 180)))

(check-equal? (deg->rad 0) 0)

Is this what we want?

;5 An AngleR is a number i
;5 interp: An angle in radians

(define (AngleR? r)
(and (>=r 9) (< r (* 2 pi)))) the program

It depends (on our application)!
(there is no “correct” data def!)

Yet, Data
Definitions are
re 2m) crucial because
they determine
what the rest of

looks like!

Function Recipe Steps 1-3:

name, signature, description

Step 5: Code

(check-equal? (deg->rad 90) (/ pi 2))

(check-equal? (deg->rad 180) pi)

Step 4: Examples

\
exclude 5

Not allowed by data def!
but should be ok?

(check-equal? (deg->rad 360) 0)

(check-equal? (deg->rad 360) (* 2 pi))

Step 6: Tests

This is not the
only possibility!

Rule of thumb:

1 function does

1 task which processes
1 kind of data

Non-neg Int In [SCENE-TOP, SCENE-BOT+CIRC-WIDTH]

—Non—neg—Ent i SCENE-TOP;—SCENE-BOT}

) World 3]

NMAarn _mnAao Trnd 1

;5 A WorldState is a

ra 2001
NUTT=11Ccg L1110 11T 1Y, 29U]

;3 Represents:| bottom | y-coordinate of

circle, in big-bang ah@mation

visible
(place-image image x X scene) — image?
image . image?
s - Chosen Data Def
: y : real? affects code!
(define SCENE-TOP 0) - .
scene : image?

Places image onto scene with its

t the coordinates (x,y) and crops t

image so that it has the same size as scége. The coordinates are relative to

" | Be careful to use corr\e\ft Data Definitions!
\

Write helper functions

(define SCENE-BOT) | | when converting

between data types

~

(placde-image
some\img
O (—y 199)-
*(bot->center y)

some-scene)

Kinds of Data Definitions

 Basic data
* Intervals

== « Enumerations
* |temizations

enum season { spring, summer, autumn, winter };

enum Colours {
RED = 'RED',
YELLOW = 'YELLOW',
GREEN = 'GREEN'

TypeScript

Enumeration Data Definitions

;5 A TrafficLight is one of: NOTE: this is not the only

55 - RED-LIGHT p— possible data definition.
55 - GREEN-LIGHT Is there a better one?

;3 - YELLOW-LIGHT
;5 Interpretation: Represents possible colors of a traffic light

(define (red-light? x) (string=? x RED-LIGHT))
(define (green-light? x) (string=? X GREEN-LIGHT))
(define (yellow-light? x) (string=? X YELLOW-LIGHT))

(define (TrafficLight? x)
(or (red-light? x)
(green-light? x)
(yellow-light? x)))

Need to add an extra step to Data Design Recipe

Design Recipe, Step 1: Data Design

Create Data Definitions
» Describes the types of data that the program operates on
* Has 4 parts:

4. Predicate returning false if given value is not in the Data Definition

m=) -« |f needed, define extra predicates for each enumeration or itemization
(some languages do this implicitly for you, Racket does not)

Enumeration Data Definitions | cond is only allowed

in functions that
process enumeration
(or itemization) data!

(define KED-LIGHT "RED")
(defing GREEN-LIGHT "GREEN")
(defyhe YELLOW-LIGHT "YELLOW")

;5 next-light: TrafficLight -> TrafficlLight
The data and | ;; Computes the next light after the given one

function have (define (next-light light)

Function Recipe Steps 1-3:
name, signature, description

(Cond cond is multi-arm if (expression) DeSigning data ﬂ I‘St
the same [(red-light? light) GREEN-LIGHT] |swpscede | makes writing function
structure! [(green-light? light) YELLOW-LIGHT] -

[(yellow-light? light) RED-LIGHT])) (code) easier!

(keep order the same)

check-equal? (next-light RED-LIGHT) GREEN-LIGHT

check-equal? (next-light GREEN-LIGHT) YELLOW-LIGHT) |[23terd:Examples
check-equal? (next-light YELLOW-LIGHT) RED-LIGHT

Last

. Function Design Recipe

1. Name

2. Signature - types of the function input(s) and output

3. Description - explain (in English prose) the function behavior

4. Examples - show (using rackunit) the function behavior

5. Code - implement the rest of the function (arithmetic)

6. Tests - check (using rackunit) the function behavior

Function Design Recipe

5. Template - sketch out the function structure (using input’s Data Definition)

Enumeration Data Definitions

35 A TrafficLight is one of:
(define RED-LIGHT "RED")

(define GREEN-

LIGHT "GREEN")

(define YELLOW-LIGHT "YELLOW")

;5 Interpretation: Represents possible colors of a traffic light
(define (red-light? x) (string=? x RED-LIGHT))

(define, (green-light? x) (string=? x GREEN-LIGHT))
(defi;;z(yellow—light? x) (string=? x YELLOW-LIGHT))

A function’s
template is
completely
determined by
the input’s
Data Definition

(define (next-light light)
(cond
\\\s [(red-1ight? light)]
[(green-1light? light)]
[(yellow-1ight? light)]))

(keep order the same)

;5 next-light: TrafficLight -> TrafficLight
;3 Computes the next light after the given one

Step 5: Cede Template

Step 6: Code (fill in the

“.."with arithmetic)

Some Pre-defined Enumerations

; A MouseEvt 1s one of these Strings:
; A KeyEvent 1s one of:

_ : — "button-down"
; — 1String ., .
. . : — "button-up
;o — "left .,]
. ; — "drag
; — "right” .,)
L : — "move
; - u D m I
; — "enter
' - — "leave"

;3 handle-mouse: WorldState Coordinate Coordinate MouseEvt -> WorldState
;3 Produces the next WorldState

; WorldState KeyEvent -> ;5 from the given Worldstate, mouse position, and mouse event

(define (handle-key-events w ke) (define (handle-mouse w X y evt)
(cond (cond
[(= (string-length ke) 1) ...] [(str%ng=? evt "button-down")]
Ternplate .) [(string=? evt "button-up")]
[(string=? "left" ke) ...] [else]))
[(string:? "I"ight” kE) ..] \ ; A 1String is a String of length 1,
[(string=? "up" ke) ...] Design Recipe allows combining f f“fiif}ithe S
[(string=? "down" ke) ...] cases if they are handled the same . _ "% (the space bar),
- "\t" (tab),

.))

;i — "\r" (return), and
; — "\b" (backspace).
; interpretation represents keys on the keyboard

Kinds of Data Definitions

 Basic data

* Intervals

« Enumerations
=) ¢ [temizations

(Generalized enumeration)

Item izati on Data D eﬂ N |t| OIS | (Generalized enumeration)

2025 tax brackets

55 A Salary is one of:
;5 5[0, 11925]

inal Married filing Married filing Head of
Tax rate Single jointly separately 11926 48475]
48476 103350]
10% $0 to $11,925
2% $11,926 to $23,851 to $11,926 to : }} Interp: Salary in USD,
) $48,475 $96,950 $48, $64.850 split by 2025 tax bracket
$48,476 to 596, $48,476 to $64,851 to (deflne (10%-bracket? salary)
22% $103,350 $206,700 $103,350 $103,350 (and (>= salary 0) (<= salary 11925))
(define (12%-bracket? salary)
$103, o} 52086, o : o 3,351 to
2 soro0 | ssoam0 | seri00 | sio7500 (and (>= salary 11926) (<= salary 48475))
5
2o $197,301 to $394,601 to $197,301 to $197,301 to
: $250,525 $501,05(-
| The data and function ;5 taxes-owed: Salary -> USD
35% oo 2ol have the same structure! | ;; computes federal income tax owed in 2025
(define (taxes-owed salary)
o $626,351 or $751,601 or $375,801 or $626,351 or (cond
r o | else is fallthrough case [(10%-bracket? salary)]
Source: IRS. \\\\\ﬁ[(lz%—bracket? salary)]

[else]))

“ltemization” Data Def in Other Languages

interface Shape
Image render();

T

class Circle class Rectangle

Num radius; Num width; Num height;
Color col; Color col;

;5 A Shape is one of: As a Data Definition

;5 - (rect Num Num Color)
;5 Interp: fields are width, height, color

;5 - (circ Num Color)

;5 Interp: fields are radius and color

;5 Represents a shape to be drawn on a canvas

21

ltemization Caveats

55 A MaybeInt is one of:
(define NaN "Not a Number")

53 or, Integer
;5 Interp: represents a number with a possible error case

NaN is a property of the global object. In other words, it is a variable in global scope.

In modern browsers, Naih is a hon-configurable, non-writable property. Even when this is not the
case, avoid overriding It.
References JavaScript Reference Standard built-in objects NaN

There are five different types of operations that return Nan: /Vl mdn web docs_

Failed number conversion (e.g. explicit ones like parseInt("blabla"), Number{undefined) , Or

Implicit ones like (Math. abs (undefined)) NaN and its behaviors are not invented by JavaScript. Its semantics in floating point arithmeti

Math operation where the result is not a real number (e.g. Math.sqrt(-1)) (including that nan 1== nan) are specified by |[EEE 754 (7. nan's behaviors include:

Indeterminate form (e.g. @ * Infinity, 1 ** Infinity, Infinity / Infinity, Infinity - Infinity)

« If nan is involved in a mathematical operation (but not bitwise operations), the result is u

A method or expression whose operand is or gets coerced to Nah (e.g. 7 ** NaN, 7 * "blabla"] ajso nan. (See counter-example below.)

— this means NaN is contagious » When wnan Is one of the operands of any relational comparison (>, <, »>=, <=}, the resul
Other cases where an invalid value is to be represented as a number (e.g. an invalid Date new always false.

Date("blabla™).getTime() , "".charCodeAt(1)) * NaN compares unequal (via ==, l=, ===, and !==) to any other value — including to ano

NaN value.

|tem IZathn Caveats OR modify the data def!

More common cases should go first!

55 A MaybeInt is one of:

(define NaN "Not a Number™) ;; better predicate for MaybelInt
55 or, Integer (define (MaybeInt? x)
;3 Interp: represents a number with a possible error case (or (integer? x)

(define (NaN? x) (and (string? x) (NaN? x)))

(string=? x "Not a Number"))

;5 WRONG predicate for MaybelInt ;3 OK predicate for Maybelnt
#; (define (MaybeInt? x) > (MaybeInt? 1) (define (MaybeInt? x)
or (NaN? Xx LY %) string=?: contract violation (or' (and (str‘ing? X) (NaN? X))
integer? x e>.(pected: string? (integer'? X))
given: 1 '
; WRONG TEMPLATE for MaybeInt ; OK TEMPLATE for MaybelInt ;; better TEMPLATE
#;(define (maybeint-fn x (define (maybeint-fn x) (define (maybeint-fn x)
cond (cond (cond
NaN? X) [(string? x)] [(integer? x)]
integer? x) [(integer? x)])) [else])

N

3

Inside the function, we only need to distinguish between valid input cases

In-class exercise: Template practice

Data Definition choice?

?
¢ PFOS. ;5 A TrafficLight is one of:
o 2 (define RED-LIGHT "RED")
ConS. (define GREEN-LIGHT "GREEN")
(define YELLOW-LIGHT "YELLOW")
TAS < 1 55 Interpretation: Represents possible colors of a traffic light

Find Template for TrafficLight Data Def

TASK 2:
Write Template for TrafficLight2 Data Def

53 A TrafficLight2 is one of:

(define GREEN-L 0)

(define YELLOW-L 1)

(define RED-L 2)

53 Interp: represents a traffic light state

Submit to Gradescope

In-class exercise 2: big-bang practice

* Create a big-bang traffic
light simulator that
changes on a mouse click
(“button-down” event)

;5 A TrafficLight is one of:

(define RED-LIGHT "RED")

(define GREEN-LIGHT "GREEN")

(define YELLOW-LIGHT "YELLOW")

55 Interpretation: Represents possible colors of a traffic light

53 A TrafficLight2 is one of:

Submitting

1. File: in-class-02-13-<Lastname>-<Firstname>.rkt
2. Join the in-class team: cs450s25/teams/in-class

3. Committo repo: cs450s25/in-class-02-13

« (May need to merge/pull + rebase if someone pushes before you)

(define GREEN-L 0)

(define YELLOW-L 1)

(define RED-L 2)

53 Interp: represents a traffic light state

https://github.com/orgs/cs450f24/teams/in-class
https://github.com/orgs/cs450f24/teams/in-class
https://github.com/orgs/cs450f24/teams/in-class

