UMass Boston Computer Science

CS450 High Level Languages
Compound Data Definitions

Tuesday, February 18, 2025

class Circle {
Num radius;
Color col;

}

Logistios

e HW 2 In
o chre-Fues 28 Ham-EST

* Files should not start big-bang loop automatically!

* HW 3 out FEATURE COMPLETE Glmamaing
« due: Tues 2/25 11am EST

« Add keyboard input handler

HW Advice

Clean Code

A Handbook of Agile Software Craftsmanship

Robert C. Martin

“Perhaps you thought that “getting it working” was the first order of

business for a professional developer.

I hope by now, however, that this book has disabused you of that idea.

The functionality that you create today has a good chance of

changing in the next release, but the readability of your code will
have a profound effect on all the changes that will ever be made.”

T B COMPLETE

— Robert C. Martin,
Clean Code: A Handbook of Agile Software Craftsmanship

ARARND

https://www.goodreads.com/work/quotes/3779106
https://www.goodreads.com/work/quotes/3779106
https://www.goodreads.com/work/quotes/3779106

HW Observations

* Not ok to submit
* my code
« Code that doesn’t (or hasn't been) run
* Failing / erroring tests
« Code that doesn’t match Github (?7?)

 See: Incremental Programming Pledge!

“ inds of Data Definitions

[ine
 Basic data
« E.g, numbers, strings, etc
* Intervals

» Data that Is from a range of values, e.g,, [0, 100)

* Enumerations
« Data that is one of a list of possible values, e.g, “green”, “red”, “yellow”

* Itemizations
« Data value that can be from a list of possible other data definitions
e E.g, either a string or number (Generalizes enumerations)

Last

- Falling "Ball” Example

) world b= B [
55 A WorldState is a Non-negative Integer —i
;3 Interp: Represents the y Coordinate of the center of a
5 ball in a "big-bang animation. l

€= What if the ball can also move side-to-side? m)

the x and y coordinates ;5 ... and another Integer???

We need a way to create compound data
l.e., a data definition that
combines values of other data defs

WorldState would need two pieces of data: | ;; A Worldstate is an Integer ...

“ inds of Data Definitions

[ine
e Basic data
« E.g, numbers, strings, etc
* Intervals

 Data that Is from a range of values, e.g., [0, 100)

 Enumerations
« Data that is one of a list of possible values, e.g,, “green”, “red”, “yellow”

* Itemizations
 Data value that can be from a list of possible other data definitions
- E.g, either a string or number (Generalizes enumerations)

== « Compound Data

today ¢ Data that is a combination of values from other data definitions

Falling “Ball” Example

?7?7?

;5 A WorldState is a (mk-WorldState [x : Int] [y : Int])
;5 Represents coordinate in big-bang animation where:

a struct defines a
new kind of N
compound data

Parts of a struct def

Nname

N

N1tion

field names

(needed for testing)

/\ il

(struct world [x y] #:transparent)

(Implicitly) defines:

Same as “name” \

e A constructor function
e Creates Instances of the struct

 Accessor functions
e Get an Instance’s field value

* A predicate
e Returns true for struct instances

world

& n

“name" +

+ eee

world—x,woﬁld—y

\/

... field names

world?

\ “name" + ll?"

Falling “Ball” Example

a struct defines a
new kind of
compound data

;5 A WorldState is a (mk-WorldState [x : Int] [y : Int])
;5 Represents coordingte in big-bang animation where:

;5 - X 1s ball (red golid circle) horizontal center

55 -y 1s ball vertifal center

(struct world [x y] /#:transparent)

1ecked constructor
srammer must define)

(define INIT-WORLDSTATE (mk-WorldState © 0))
\ 4

Instances of the struct are
values of that kind of data

Data Design Recipe

Data Definition

* Has 4 parts:
1. Name
2. Description of all possible values of the data
3. Interpretation explaining the real world concepts the data represents

4. Predicate returning false if given value is not in the Data Definition
 |f needed, define extra predicates for each enumeration or itemization

Data Design Recipe - Compound Data Update

Data Definition
* Has 4 maybe 5 parts:

== 5. (checked) Constructor for compound data def values

nertute: Data Definitions (ch 5.7)

All possible data values

- Hrrue Hfalse
Hrrue Hfalse

A data definition
= (a named) subset of all
possible values

We are defining (and naming) the valid data values our program!

All programs manipulate some set of data values ...

So this must be the first step of programming!

Also makes “error handling” easy

nertute: Data Definitions (ch 5.7)

All possible basic data values

(make-posn "helloe" 0)
(make-posn "world" 1)
(make-posn "good" 2)

(makea-ball -1 0)
(maka-hall -1 1)

R (make-posn “bye" 3) (make-ball -1 2)
good (make-posn (make-posn 0 1) 2) (make-ball -1 3)
ih (make-posn 0 3) (make-ball "bye" #t)

(make-posn 1 3)
(make-posn 2 3)
(make-posn 3 3)

Possible to expand the universe
of values, e.g,

new compound data definitions
(struct, or other data structure)

22

Predicates for Compound Data

55 - Yy 1s ball vertical center
(struct world [x y] #:transparent)

;5 A WorldState is a (mk-WorldState [x : Int] [y : Int]) Compound data
;5 Represents coordinate in big-bang animation where: predicates
;3 - X is ball (red solid circle) horizontal center should be

“shallow” checks,
l.e., world?

predicate?

struct already
defines world?,
what about fields?

(define (WorldState? arg)
(world? arg)

Checked constructor
ensures that only
valid instances may
be created!

N
N

This “deep” predicate
checks too much ...

... because it's the job of
“field data type” processing functions
to check those kinds of data

(define/contract (mk-WorldState x y)
(-> integer? integer? WorldState?)
(world x y))

also, maybe exponential overhead ...

24

Data Design Recipe - Predicate Update

Data Definition
* Has maybe 5 parts:

4. Predicate
« Evaluates to true for some values in the Data Definition
» False positives ok
« Evaluates to false for some values not in the Data definition
» False negatives not ok

Last

. Function Design Recipe

1. Name

2. Signature - types of the function input(s) and output

3. Description - explain (in English prose) the function behavior

4. Examples - show (using rackunit) the function behavior

5. Code - implement the rest of the function (arithmetic)

6. Tests - check (using rackunit) the function behavior

Last

. Function Design Recipe

5. Template - sketch out the function structure (using input’s Data Definition)

Functions For Compound Data

A function that processes compound data must

« extract the individual pieces, using accessors
e combine them, with arithmetic

Functions For Compound Data - Template

A function that processes compound data must

- extract the individual pieces, using accessors <— Done with template

A function’s
template is
completely
determined by
the input’s
Data Definition

;5 A WorldState is a (mk-WorldState [x : Int] [y : Int])
;5 Represents coordinate/in big-bang animation where:

;5 - X is ball (red solfd circle) horizontal center

55 - Yy 1s ball vertic center

(struct world [x y] #:transparent)

;3 TEMPLATE for MWorldState-fn: WorldState -> ???
(define (WorldState-fn w)

ce.. (world-x w)
ce.. (world-y w))

Functions For Compound Data - Template

A function that processes compound data must
- extract the individual pieces, using accessors <— Done with template

;5 A WorldState is a (mk-WorldState [x : Int] [y : Int])
;5 Represents coordinate in big-bang animation where:

-, ;5 - X 1s ball (red solid circle) horizontal center
AfunCt|On_S 55 -y 1s ball vertical center
template Is (struct world [x y] #:transparent)

completely | .- reMpLATE for WorldState-fn: WorldState -> ???
determlnecl’ by (define/contract (WorldState-fn w)
the input'’s

(-> WorldState? ???)
ce.. (world-x w)

Data Definition

ce.. (world-y w))

Signatures / Contracts Redundant?

| Redundant? |

;5 TEMPLATE for WorldState-fn: WorldState -> ???
(defianmﬂﬂMaWW| (WorldState-fn w)

(-> WorldState? ???)

ce.. (world-x w)

ce.. (world-y w))

Function Design Recipe - Signature / Contract Update

Submitted code no longer needs both Signature and Contract
« The Contract is the Signature!

* This assumes:
« Contract predicates represent valid Data Definitions!

* NOTE - this does not change the Design Recipe!
* Only submission requirements

;3 TEMPLATE for WorldState-fn+—WerldState > 222
(define/contract (WorldState-fn w)

(-> WorldState? ???)

ce.. (world-x w)

ce.. (world-y w))

Still must program with these steps,

Function Design Recipe inthisorder

Name

Signature - types of the function input(s) and output | (not submitted in comments,
if there are valid contracts)

Description - explain (in English prose) the function behavior

4. Examples - show (using rackunit) the function behavior

(not submitted)

Template - sketch out the function structure (using input's Data Definition)

6. Code - implement the rest of the function (arithmetic)

Tests - check (using rackunit) the function behavior

Falling “Ball” Example

) world b= @ S

LA
|

€= What if the ball can also move side-to-side?

WorldState would need two pieces of data:
the x and y coordinates

;5 A WorldState is a (mk-WorldState [x : Int] [y : Int])
;5 Represents coordinate in big-bang animation where:

55 - X is ball (red solid circle) horizontal center
55 -y 1s ball vertical center

(check-equal?
(next-WorldState
(mk-WorldState 0 0))
(mk-WorldState X-VEL Y-VEL))

;3 hext-WorldState : WorldState -> WorldState
;5 Computes the ball position after 1 tick

;3 TEMPLATE for WorldState-fn: WorldState -> ???
(define/contract (WorldState-fn w)

(-> WorldState? ???)

ce.. (world-x w)

eeo. (world-y w))

(check-equal?
(next-WorldState
(mk-WorldState 0 0))
(mk-WorldState X-VEL Y-VEL))

;3 next-WorldState : WorldState -> WorldState
;3 Computes the ball position after 1 tick

(define/contract (next-WorldState w)
(-> WorldState? WorldState?)
ce.. (world-x w)
ee.. (world-y w))

(check-equal?
(next-WorldState
(mk-WorldState 0 0))
(mk-WorldState X-VEL Y-VEL))

;3 next-WorldState : WorldState -> WorldState
;3 Computes the ball position after 1 tick

(define/contract (next-WorldState w)
(-> WorldState? WorldState?)
(mk-WorldState

(+ (world-x w) X-VEL)
(+ (world-y w) Y-VEL)))

Extract Compound Pieces - Let

(define/contract (next-WorldState w)

(let ([x (world-x w)]

Defines new W [y (world-y w)])

local variables |

‘ in scope only in the body ‘

Extract all compound
data pieces first, before
doing “arithmetic”

(mk—WorldStat?/ﬁizx X-VEL) (+ y Y-VEL))))

(let ([id val-expr] ...) body ...+)

Local variables shadow
previously defined vars

Extract Compound Pieces — (interna) def1ne

(define/contract (next-WorldState w)

(define x (world-x w)) é///////////

Extract all compound
data pieces first, before
doing “arithmetic”

(define y (world-y w))
(mk-WorldState (+ x X-VEL) (+ y Y-VE

(is there an easier way to do this?)

Extract Compound Pileces - Pattern Match!

(define/contract (next-WorldState w) [Extractall compound
data pieces, at the

(match-define (world x y) w) / same time!

(mk-WorldState (+ x X-VEL) (+ y Y-VEL))))

Falling “Ball” Example

) world b= @ S

LA
|

€= What if the ball can also move side-to-side? m)

on a key-press?

WorldState would need two pieces of data:
the x and y coordinates

Last

- KeyEvent Enumeration (predefined)

; A KeyEvent 1s one of:
1String

"left”

"right"”

"up"

But remember:

A

function does
task which processes

A

(result must be WorldState)

A

kind of data

“Key event fn”

k////‘\\\\\\\\\\\\\\\\\\\\“\\\\A

Give to: big-bang on-key clause

xworldState KeyEvent -> .| WorldState >
(define (handle-key-events w ke)
(cond -=:----~‘-.-~ﬁ>
[(= (string-length ke) 1) ...]
Template [(string=? "left" ke) .. (handle-left w) ???
[(string=? "right" ke) . (handle-right w) ???
[(string=? "up" ke) ...]
[(string=? "down" ke) ...]

.))

Must call separate: (WorldState-fn w)

; A 1String is a String of length 1,
; including

; — "\\" (the backslash),

; — " " (the space bar),

;o= "\t" (tab),

i — "\r" (return), and
; — "\b" (backspace).

; interpretation represents keys on the keyboard

In-class exercise 2/18
on gradescope

