UMass Boston Computer Science

CS450 High Level Languages
Programming with Compound Data

Thursday, February 20, 2025

Logistios

« HW 3 out
« due: Tuesday 2/25, 11am EST

Last
7. Falling “Ball” Example

) world b= @ S

LA
|

€= What if the ball can also move side-to-side?

WorldState would need two pieces of data:
the x and y coordinates

Last
[ine

(struct world [x y] #:transparent)

(check-equal?
(next-WorldState
(mk-WorldState 0 0))
(mk-WorldState X-VEL Y-VEL))

;3 hext-WorldState : WorldState -> WorldState
;5 Computes the ball position after 1 tick

(define/contract (WorldState-fn w)
(-> WorldState? ???)
ce.. (world-x w)
ee.. (world-y w))

Template?

Template for compound
data extracts the pieces ...

Last
[ine

(check-equal?
(next-WorldState
(mk-WorldState © 0))
(mk-WorldState X-VEL Y-VEL))

;; don’t need Sighature, if redundant with contract
++—hext-WorldState WorldState -> WorldState
;3 Computes the ball position after 1 tick

(define/contract (next-WorldState w)
(-> WorldState? WorldState?)
ee.. (world-x w)
ceo. (world-y w))

Last
[ine

(check-equal?
(next-WorldState
(mk-WorldState 0 0))
(mk-WorldState X-VEL Y-VEL))

;5 Computes the ball position after 1 tick

(define/contract (next-WorldState w)
(-> WorldState? WorldState?)
(mk-WorldState

(+ (world-x w) X-VEL)
(+ (world-y w) Y-VEL)))

Last

- Extract Compound Pieces - let

(define/contract (next-WorldState w)

(let ([x (world-x w)]

Defines new W [y (world-y w)])

local variables |

‘ in scope only in the body ‘

Extract all compound
data pieces first, before
doing “arithmetic”

(mk—WorldStat?/ﬁizx X-VEL) (+ y Y-VEL))))

(let ([id val-expr] ...) body ...+)

Local variables shadow
previously defined vars

Last

7 Extract Compound Pieces — (intermal) def1ne

(define/contract (next-WorldState w)

(define x (world-x w)) é///////////

Extract all compound
data pieces first, before
doing “arithmetic”

(define y (world-y w))
(mk-WorldState (+ x X-VEL) (+ y Y-VE

(is there an easier way to do this?)

Last .
7 Extract Compound Pieces - Pattern Match!

(define/contract (next-WorldState w) [Extractall compound
data pieces, at the

(match-define (world x y) w) / same time!

(mk-WorldState (+ x X-VEL) (+ y Y-VEL))))

Extract Compound Pileces - Pattern Match!

Do we need separate “coordinate processing” functions?

WAIT

A

MAYBE!
;5 A WorldState is a (mk-WorldState [x :%y - 1nt]) |1function does

;5 Represents coordinate in big-bang animation where: task WhiCh Drocesses
35 - X 1s ball (red solid circle) horizontal center .
;5 -y 1s ball vertical center kmd Of data

A

A

(define/contract (next-WorldState w)

(match-define (world x y) w) Is this function doing too much?
(mk-WorldState (+ X X—VELi/Z:/;;j:VEL))))

Program Design Recipe |..is iterative!

1. Data Design
2. Function Design

Function Design Recipe |..is iterative!

Name
Signature - types of the function input(s) and output

Description - explain (in English prose) the function behavior

4. Examples - show (using rackunit) the function behavior

Inition)

Template - sketch out the function structure (using input’s Data

6. Code - implement the rest of the function (arithmetic)

Tests - check (using rackunit) the function behavior

Bigger Compound Data

What if the “velocity” is not constant?

;5 A WorldState is a (mk-WorldState [x : Int] [y : Int])

;; Represents a “ball” (solid red circle) in big-bang animation where:
55 - X 1s horizontal center

55 - Yy 1s vertical center

Bigger Compound Data

What if the “velocity” is not constant?

;5 A WorldState is a (mk-WorldState [x : Int] [y : Int] [xv : Int] [yv : Int])
;; Represents a “ball” (solid red circle) in big-bang animation where:

5 X 1s horizontal center

55 y is vertical center

55 - Xv is horizonal velocity

55 - yv 1is vertical velocity

(struct world [x y xv yv]| #:transparent)

;3 TEMPLATE for WorldState-fn: WorldState -> ???
(define (WorldState-fn w)
(world-x w)
(world-y w) Template?
(world-xv w) :
(world-yv w))

Bigger Compound Data

What if the “velocity” is not constant?

;5 A WorldState is a (mk-WorldState [x : Int] [y : Int] [xv : Int] [yv : Int])
;; Represents a “ball” (solid red circle) in big-bang animation where:

5 X 1s horizontal center

55 y is vertical center

55 - Xv is horizonal velocity

55 - yv 1is vertical velocity

(struct world [x y xv yv]| #:transparent)

;3 TEMPLATE for WorldState-fn: WorldState -> ???
(define (WorldState-fn w)
(match-define (world x y xv yv) w)

Template?

55 A WorldState is a (mk-WorldState [x : Int] [y : Int] [xv

)J
B
)
e o
)

o o
B2 |

Bigger Compound Data

What if the “velocity” is not constant?

: Int] [yv : Int])

Represents a “ball” (solid red circle) in big-bang animation where:

X 1s horizontal center

y is vertical center

Xv is horizonal velocity
yv is vertical velocity

(struct world [x y xv yv]| #:transparent)

;3 computes new position and vel of ball after 1 tick

(define (next-WorldState w)
(match-define (world x y xXv yv) w)

(mk-WorldState (+ x xv) (+ y yv) xXv yv))

What if velocity can change?

Bouncing Ball

A

/

Velocity “reverses” when edge is hit

Make It bounce?

=] & S

35d3-1HDTH

;3 hext-WorldState : WorldState -> WorldState
;5 Computes the next ball pos

(define (next-WorldState w)
(match-define (world x y xv yv) w)

(mk-WorldState (+ x xv) (+ y yv) Xv yv))

26

Make It bounce?

LEFT-EDGE?

f=] @ &

(define (next-WorldState w)
(match-define (world x y Xv..yV) w)

(define new-xv
(if (>= x RIGHT-EDGE) (- xvel) xvel))

(mk-WorldState (+ x xv) (+ y yv) new-xv yv))

35d3-1HDTH

27

Make It bounce?

f=] @ &

LEFT-EDGE

(define (next-WorldState w)
(match-define (world x y xXv yv) w)
(define new-xv
(if (or (>= x RIGHT-EDGE)
(<= x LEFT-EDGE)) (- xvel) xvel)
(mk-WorldState (+ x xv) (+ y yv) new-xv yv))

35d3-1HDTH

28

Make It bounce?

(define (next-WorldState w)
(match-define (world x y xXv yv) w)
(define new-xv

Should this be xv or

new-xv???

(if (or (>= x RIGHT-EDGE)
= X LEFT-EDGE)) (- xvel) xvel)

(mk-WorldState (+ x " new-xv) (+ Yy yv) new-xv yv))

29

Make It bounce?

(no tests!)

If you're no longer
following the template,
then the Data Definitions
need updating!

(define (next-WorldState
match-define (world X
(define new-xv

(if (or (>= x RIGHT-EDGE)

| DONT
“epetnott || PROGRAM

works?ee LIKE THIS!!

(<= x LEFT-EDGE)) (This is undisciplined programming\

(define new-yv???

It is slower and error-prone. Think first!

(36 (mm (~e \v BATTAOM . CREE) |

HW Advice

Clean Code

A Handbook of Agile Software Craftsmanship

——

Robert C. Martin

“Perhaps you thought that “getting it working” was the first order of
business for a professional developer.

I hope by now, however, that this book has disabused you of that idea.

The functionality that you create today has a good chance of
changing in the next release, but the readability of your code will
have a profound effect on all the changes that will ever be made.”

— Robert C. Martin,
Clean Code: A Handbook of Agile Software Craftsmanship

https://www.goodreads.com/work/quotes/3779106
https://www.goodreads.com/work/quotes/3779106
https://www.goodreads.com/work/quotes/3779106

Process One Kind of Data ata Time

;5 A WorldState is a (mk-WorldState [x : Int] [y

: Int] [xv :

Int] [yv : Int])

;; Represents a “ball” (solid red circle) in big-bang animation where:

;3 - X 1s horizontal center

55 - Yy 1s vertical center

Xv 1s horizontal velocity
- yv 1s vertical velocity

)
)

(struct world [x y xv yv] #:transparent)

A

A

A

function does

task which processes
kind of data

Process One Kind of Data ata Time

;5 A WorldState is a (mk-WorldState [x : XCoord] [y : YCoord]
[Xv : XVel] [yv : YVel])
;; Represents a “ball” (solid red circle) in big-bang animation where:

, , (XY}

;3 computes new position and vel of ball after 1 tick

(define (next-WorldState w)
(match-define (world x y xv yv) w)s\\\\\~

A

function does
task which processes

kind of data

A

A

Template?

Process One Kind of Data ata Time

;5 A WorldState is a (mk-WorldState [x : XCoord] [y : YCoord]
[Xv : XVel] [yv : YVel])
;; Represents a “ball” (solid red circle) in big-bang animation where:

’ ’ eee

;3 computes new position and vel of ball after 1 tick

(define (next-WorldState w)

(match-define (world X y Xv yv) w) "ﬂJnCt”3n<j095
(mk-WorldState task which processes
(next-x x) 1 kind of data

(next-y y)
(next-xv xv)

(next-yv yv)))

Process One Kind of Data ata Time

;5 A WorldState is a (mk-WorldState [x
[Xv : XVel]

: XCoord] [y : YCoord]

[yv : YVel])

;; Represents a “ball” (solid red circle) in big-bang animation where:

’ ’ (XY}

;3 computes new position and vel of ball after 1 tick
(define (next-WorldState w)

(match-define (world X y Xv yv) w)

(mk-WorldState
(next-x x ..
(next-y y ..

)
)

(next-xv xv ...

.)))

(next-yv yv ..

Overkill? ... Maybe?

(This is what OO programmers have to do though)

Might need extra args

Can always refactor later!

Seems like we want some intervals

“X” Data Definition

) World = B [ES

;3 An XCoord is one of

LEFT-EDGE

35d3-1HDTH

;5 Represents: possible x coordinates of ball center

36

“X” Data Definition

;3 An XCoord is one of

;3 - < LEFT-EDGE

;5 - > RIGHT-EDGE

35 - [LEFT-EDGE, RIGHT-EDGE]

;5 Represents: possible x coordinates of ball center

) World = B [

Center x
“In-scene”

LEFT-EDGE

[ft->mid

35d3-1HDTH

When converting between data types,
always define a conversion function!

Do not inline or try to keep
track in your head!

37

“X” Data Definition

) World = B [ES

Center x
“In-scene”

;3 An XCoord is one of
55 - < (lft->mid LEFT—EDGE)

LEFT-EDGE

35d3-1HDTH

e Rebresents: possible x coordinates of balll center

When converting between data types,
always define a conversion function!

Do not inline or try to keep
track in your head!

38

“X” Data Definition

;3 An XCoord is one of
35 - < (1ft->mid LEFT-EDGE)
5y — > (Pgt—>mid RIGHT—EDGE)

55 - [(1ft->mid LEFT-EDGE), (rgt->mid RIGHT—EDGE)]‘(////////

;5 Represents: possible x coordinates of ball center

) World = B [ES

Center x
/,/” “in-scene”

LEF\Y\-EDGE

35d3-1HDTH

When converting between data types,
always define a conversion function!

Do not inline or try to keep
track in your head!

39

In-scene “X" Data Definition

;3 An XCoord is one of

55 - < (1ft->mid LEFT-EDGE)

55 - > (rgt->mid RIGHT-EDGE)

;5 - InSceneX

;5 Represents: possible x coordinates of ball center

;5 An InSceneX is one of
;5 - [(1ft->mid LEFT-EDGE), (rgt->mid RIGHT-EDGE)]
;5 Represents: center x coord of fully in-scene ball

N World

=SIE7

Center x
“In-scene”

\kEzI:EDGE

35d3-1HDTH

40

“Next X"

;5 A WorldState is a (mk-WorldState [x : XCoord] [y : YCoord]
[xXv : XVel] [yv : YVel])
;; Represents a “ball” (solid red circle) in big-bang animation where:

, , eee

;3 computes new position and vel of ball after 1 tick
(define (next-WorldState w)
(match-define (world X y Xv yv) w)
(mk-WorldState
(next-x x ...)

(next-y y ...)
(next-xv xv ...)

(next-yv yv ...)))

“Next X"

;5 A WorldState is a (mk-WorldState [x : XCoord] [y : YCoord]
[Xv : XVel] [yv : YVel])
;; Represents a “ball” (solid red circle) in big-bang animation where:

e o
’ ’ eee

;3 computes new position and vel of ball after 1 tick
(define (next-WorldState w)
(match-define (world X y Xv yv) w)
(mk-WorldState
(next-x x xv) Need velocity to compute “next x”

(next-y y ...)
(next-xv xv ...)

(next-yv yv ...)))

“Next X"

;5 An InSceneX is one of
[(1ft->mid LEFT-EDGE), (rgt->mid RIGHT-EDGE)]
;5 Represents: center x coord of fully in-scene ball

WANT: X should always be “in- scene

5, hext-x : InSceneX Velocity -> InSceneX
;35 computes new x position of ball after 1 tick
(define (next-x x xv)

(+ Xﬂxv)))

May go out of 7 Not always an “Let’s add some ifs
scene! “InSceneX” and conds!”

“Next X"

;3 An XCoord is one of
;5 - < (Lft->mid LEFT-EDGE)

When converting between data types,
define a conversion function!

;5 - > (rgt->mid RIGHT-EDGE)
;5 - InSceneX
;3 Represents: possible x coordinates of ball center

;5 An InSceneX is one of
;5 - [(Lft->mid LEFT-EDGE), (rgt-¥mid RIGHT-EDGE)]
;5 Represents: center x coord of fiully in-scene ball

;5 hext-x : InSceneX Velbcity -> InSceneX
;35 computes new x position of ball after 1 tick

(define (next-x Xx Xxv)
c... (if (in-scene? (+ X XV))))

May go out of Not always an “Let’'s add some 1fs | | (but only if the data definition allows!)
scene! “InSceneX” and conds!”

”n

Convert “X" to In-scene “

. An XCoord is one of When converting between data types,

define a conversion function!

55 - < (lft->mid LEFT-EDGE)
;5 - > (rgt->mid RIGHT-EDGE)
55 - InSceneX

;3 Represents: possible x coordinates of ball center

;5 An InSceneX is one of
55 - [(Lft->mid LEFT-EDGE), (rgt->mid RIGHT-EDGE)]
;5 Represents: center x coord of fully in-scene ball

;5 next-x : InSceneX Velocity -> InSceneX
;35 computes new x position of ball after 1 tick
(define (next-x X Xxv)

(x->in-scene-x (+ X xv)))

B |

B |

i * 144 .
X function” template template Is
. completely
; An XCoord is one of det ined b
- < (1ft->mid LEFT-EDGE) €lermined by
- > (rgt->mid RIGHT-EDGE) the Input’s

B |

B |

- InSceneX
;5 Represents: possible x coordinates of ball center

“Let’s add some 1fs
and conds!”

o o
)

A function’s

Data Definition

TEMPLATE??

x-fn: XCoord -> ???

(define (x-fn x)

(but only if the data definition allows!)

/)7

(cond

(< x (1ft->mid LEFT-EDGE))]
(> x (rgt->mid RIGHT-EDGE))]
[(InSceneX? x)]))

“X function” template

;5 An XCoord is one of

;5 - < (1ft->mid LEFT-EDGE)

;5 - > (rgt->mid RIGHT-EDGE)

55 - InSceneX

;5 Represents: possible x coordinates of ball center

TEMPLATE??

;3 X-fn: XCoord -> ??°?

(define (x-fn x)

(cond
| (past-left-edge? x)]
[(past-right-edge? x)]
' (InSceneX? x)1]1))

X -> In-Scene X

;3 An XCoord is one of

33 - < (lft->mid LEFT-EDGE)
55 - > (rgt->mid RIGHT-EDGE)
;5 - InSceneX

;5 Represents: possible x coordinates of ball center

;3 X->in-scene-x : XCoord -> InSceneX
;3 converts unbounded X to in-scene X
(define (x->in-scene-Xx X)

(cond
(past-left-edge? x)]
[(past-right-edge? x)]
' (InSceneX? x)]))

X -> In-Scene X

;5 An InSceneX is one of
53 - [(1ft->mid LEFT-EDGE), (rgt->mid RIGHT-EDGE)]
;5 Represents: center x coord of fully in-scene ball

;3 X->in-scene-x : XCoord -> InSceneX
;3 converts unbounded X to in-scene X
(define (x->in-scene-X X)

(cond
[(past-left-edge? x)]
(past-right-edge? x)]
 (InSceneX? x) x]))

_ When converting between data types,
;5 An InSceneX is one of define/use a conversion function!

- [(1ft->mid LEFT-EDGE), (rgt->mid RIGHT-EDGE)]
;5 Represents: center x coord ot tully in-scene ball

;3 X->in-scene-x : XCoord -> InSceneX
;3 converts unbounded x to in-scene X
(define (x->in-scene-X X)

(cond
(past-left-edge? x) .
' (past-right-edge? x) RGT EDGE .>?.]
_(InSceneX? X) x]))

;3 An InSceneX is one of
- [(lft—>mid LEFT—EDGE), (r‘gt—>mid RIGHT—EDGE):
;5 Represents: center x coord ot tully in-scene ball

;3 X->in-scene-x : XCoord -> InSceneX
;3 converts unbounded x to in-scene X
(define (x->in-scene-X X)

(cond
(past-left-edge? x) .
' (past-right-edge? x) (rgt >mid RGT-
' (InSceneX? x) x]))

;5 An InSceneX is one of
; - [(1ft->mid LEFT-EDGE), (rgt->mid RIGHT-EDGE)]
;5 Represents: center x coord of fully in-scene ball

;3 X->in-scene-x : XCoord -> InSceneX
;3 converts unbounded x to 1n-scene X
(define (x->in-scene-Xx X)
(cond
(past-left-edge? x) .
(past-right-edge? x) (rgt >mid RIGHT-EDGE)]
_(InSceneX? X) x]))

_ When converting between data types,
;5 An InSceneX is one of define/use a conversion function!

53 - [(1ft->mid LEFT-EDGE), (rgt->mid RIGHT-EDGE)]
;5 Represents: center x coord of fully in-scene ball

;3 X->in-scene-x : XCoord -> InSceneX

;3 converts unbounded X to in-scene X

(define (x->in-scene-Xx X)

(cond

(past-left-edge? x) (1ft->mid LEFT-EDGE)]
 (past-right-edge? x) (rgt->mid RIGHT-EDGE)]
[(InSceneX? x) x]))

;3 An XCoord is one of

;5 - < (1ft->mid LEFT-EDGE)

55 - > (rgt->mid RIGHT-EDGE) (define (XCoord? x) (real? x))
;5 - InSceneX
;5 Represents: possible x coordinate of ball center

;3 An InSceneX is one of

55 - [(1ft->mid LEFT-EDGE), (rgt->mid RIGHT-EDGE)]

Use contracts to verify!

;5 Represents: center x coord of fully in-scene ball

(define (InSceneX? x)

(¢= (1ft->mid LEFT-EDGE) (define/contract (x->in-scene-x x)
X

(rgt->mid RIGHT-EDGE))) (-> XCoord? InSceneX?)

(cond

 (past-left-edge? x) (lft->mid LEFT-EDGE)]
 (past-right-edge? x) (rgt->mid RIGHT-EDGE)]
[(InSceneX? x) x]))

“Next ?”

;5 A WorldState is a (mk-WorldState [x : XCoord] [y : YCoord]
[Xv : XVel] [yv : YVel])
;; Represents a “ball” (solid red circle) in big-bang animation where:

e o
’ ’ eee

;3 computes new position and vel of ball after 1 tick
(define (next-WorldState w)

(match-define (world X y Xv yv) w)

(mk-WorldState
(next-x x xv) Other functions can be defined in a
(next-y y ...) similiar way
(next-xv xv ...)

(next-yv yv ...)))

Program Design Recipe |..is iterative!

1. Data Design
2. Function Design

Function Design Recipe |..is iterative!

Name
Signature - types of the function input(s) and output

Description - explain (in English prose) the function behavior

4. Examples - show (using rackunit) the function behavior

Inition)

Template - sketch out the function structure (using input’s Data

6. Code - implement the rest of the function (arithmetic)

Tests - check (using rackunit) the function behavior

Make It bounce?

(struct world [x y xvel yvel])

If you're no longer
following the template,
then the Data Definitions
need updating!

DON'T

(define (next-world w) PROGRAM
(match-define (world x y xvel yvel) w) LIKE THIS"I

(define new-xvel
(if (or (>= x RIGHT-EDGE)
(<= x LEFT-EDGE)) (- xvel) xvel)
(define new-yvel???
(A€ (Ar (n— v ROTTOM_EDCE

In-class exercise 2/20
on gradescope

