UMass Boston Computer Science

CS450 High Level Languages

Abstraction
Thursday, February 27, 2025

AN %64 PROCESSOR 16 SCREAMING ALONG AT BLUONS OF
CYCLES PER SECOND To RUN THE XNU KERNEL, WHICH IS
FRANTICALLY WORKING THROUGH ALL THE FOSIX-SPECIFED
ABSTRACTION To CREATE THE DRRWIN SYSTEM UNDERIING
05 X, WHICH INTURN IS STRAINING 1TSELF T0 RUN FIREFOX
AND IT5 GECKO RENDERER, WHICH CREATES A AASH OBTECT
WHICH RENDERS [DZENS OF VIDEQD FRAMES EVERY SELOND

BECALEE I LWANTED TO SEE A O
JUMP INTO A BOX AND FALL OVER.

O I AMA GOD.




Logistios

e HW 4 out
e due: Tue 3/4 11am EST

AN x64 PROCES4OR 16 SCREAMING ALONG AT BILUONS OF
CYCLES PER SECOND To RUN THE XNU KERNEL, WHICH 1S
FRANTICALLY WORKING THROUGH ALL THE FOSIX-SPECIFED
ABSTRACTION To CREATE THE DRRWIN SYSTEM UNDERIYING
05 X, WHICH INTURN IS STRAINING 1TSELF T0 RUN FIREFOX
AND IT5 GECKO RENDERER, WHICH CREATES A AASH OBTECT
WHICH RENDERS CDZENS OF VIDED FRANMES EVERY SECOND

BECAUSE I LWANTED TO SEE A G
JUMP INTD A BOX AND FALL OVER.

O I AMA GOD.




HW Advice #1

“Perhaps you thought that “getting it working” was the first order of
business for a professional developer.

I hope by now, however, that this book has disabused you of that idea.

The functionality that you create today has a good chance of
changing in the next release, but the readability of your code will
have a profound effect on all the changes that will ever be made.”

— Robert C. Martin,
Clean Code Clean Code: A Handbook of Agile Software Craftsmanship

A Handbook of Agile Software Craftsmanship

——

Robert C. Martin


https://www.goodreads.com/work/quotes/3779106
https://www.goodreads.com/work/quotes/3779106
https://www.goodreads.com/work/quotes/3779106

HW Advice #1

YOUR CODE LOOKS LIKE
SONG LYRICS WRITTEN
USING ONLY THE STUFF
THAT COMES AFTER THE
QUESTION MARK IN A URL.

SORRY.
-

IT'S LIKE A J50N | LIKE YOU READ TURING'S
TABLE OF MODEL | 1936 PAPER ON COMPUTING

NUMBERS FOR
FLASHLIGHTS
WITH “TACTICAL
IN THEIR NAMES.

\

()

AND A PAGE OF JAVASCRIPT
EXAMPLE (DDE AND GUESSED
AT EVERYTHING IN BETWEEN.

\

1

Many submissions only focused on: “getting it working”

Many submissions ignored:

« Other steps of Program Design Recipe

e Tests!
« Style Guide
e Other HW Instructions

ITS LIKE A LEET-SPEAK TRANSLATION
OF A MANIFESIO BY A SURVIVALIST CULT
LEADER WHO'S FOR SOME REASON

OBSESSED WITH MEMORY ALLOCATION.

T (AN GET SOMEONE
ELSE TO REVIELS MY CODE.

NOT MORE THAN \¢
ONCE, I BET. d

N

This hw will be graded accordingly:

* correctness (autograder) (6 pts)

» design recipe (12 pts)

» testing (12 pts)

e style (5 pts)

« README (1 pt)

Total: 36 points




HW Advice #2

“The first rule of functions is that they should be small.

The second rule of functions is that they should be smaller than that.”

— Robert C. Martin,
Clean Code Clean Code: A Handbook of Agile Software Craftsmanship

A Handbook of Agile Software Craftsmanship

In this class:

function does
task which processes
kind of data

\

A

\



https://www.goodreads.com/work/quotes/3779106
https://www.goodreads.com/work/quotes/3779106
https://www.goodreads.com/work/quotes/3779106

I ain't reading all that

HW Observations / Reminders

or sorry that happened

?2?7?

« 1 function, does 1 task, that processes 1 kind of data
ceg, handle_key (define/contract (key-handler ws key)

(-> Worldstate? string? Worldstate?)

» Define helper function(s)! ¢ (and (string=? key " ")

(<= (abs (- (+ (world-state-x ws) (/ REC-WIDTH 2))

Follows template for: (/ SCENE-WIDTH 2)))
;5 handle-key: WorldState|KeyEvent| -> WorldState (/ REC-WIDTH 2)))
;; Update WorldState (rect | gnumdata N key press (make-world-state (world-state-x ws)
(define (handle-key ws key) (if (string=? (world-state-recfill ws) "solid")
(cond VS "outline"

[ (key=? key " ") (handle-space ws) "s0lid™))
[elseM ws))

Follows template for:

;5 handle-space :|WorldState|-> WorldState template:

53 Update WorldState (rect| compound In space press |- ;; update-rec :|XCoord |RecType-> RecType
(define (handle-space w) ;5 change rect c| itemization - of invervals 1@ps midline
(mk-WorldState (define (update-rec x rectype)
(update-x (wo (cond
(update-rec (world-x w) (world-rec w)))) [ (OverlapX? x) (toggle-rec-color rectype)]
[else rectype])




Last
[ ine

A Recursive Data Definition

;5 A ListofInts is onefjof
;5 - empty Empty (base) case
;5 - (cons Int ListofInts) Non-empty (recursive) case

Recursive!
(using a definition to define itself)

(how can we use a list of ints
to define a list of ints?!?)

Recursion is only valid if there is both
- A base case
- A recursive case (that is “smaller”)




Last
[ ine

List Constructor and Accessors

) )

) )

) J

* A ListofInts i1s one of

llre

St"

- empty / “first” /
- (cons Int ListofInts)

cons = “node” constructor

(first (cons 99 empty))

; => 99

(rest (cons 99 (cons 88 empty)))

; => (cons 88 empty)




Alternate List Constructor

;3 A ListofInts 1s one of

55 - empty

;5 - (cons Int ListofInts)

(list 1 2 3) |=|(cons 1 (cons 2 (cons 3 empty)))

Also:

(first (list 1 2 3)) |; => 1
(rest (list 1 2 3)) |; => (list 2 3)

(second (list 1 2 3))|; => 2

(third (list 1 2 3)) |; => 3




Last
[ ine

) )

) )

) )

* A ListofInts i1s one of

- empty
- (cons Int ListofInts)

TEMPLATE??

(what kind of data
definition is this?)




Template: [temization

) )

) )

) J

A ListofInts is one of

- empty

Empty (base) case

- (cons Int ListofInts)

This is an
itemization,

so template has cond__

Non-empty (recursive) case

;3 TEMPLATE for list-fn

TEMPLATE??

\(ggfine (list-fn 1st)
(cond

Empty (base) case — [ (empty? 1lst) ....]

Non-empty (recursive) case —> [ (cons? 1st) ....

;5 list-fn : ListofInts -> ???

The shape of the function
matches
The shape of the data definition!

1))




Template: Itemization + Compound Data

) )
) )

) J

A ListofInts is one of
- empty / “first” / “rest”
- (cons Int ListofInts)

This is| both
itemization,

so template has cond

The shape of the function
matches
The shape of the data definition!

;3 TEMPLATE for list-fn

compound data,

so template has “getters” |

and |.. 1ist-fn : ListofInts -> ???

(define (list-fn 1st)
§ cond

[ (em 2 1st) ....]

[(cons? 1st) .T——(first 1st) ....
... (rest 1st) ....]))

Walit, where Is the
recursion???




Template: Itemization + Compound + Recursion

;3 A ListofInts isfo of
;5 - empty

;5 - (cons Int ListofInts)

The shape of the function
matches
The shape of the data definition!

“Recursion in the data definition
means ...

;3 TEMPLATE £
;3 list-fn :

(define (list-fn

TEMPLATE??

st)

(cond

... Is also recursive!

[ (empty? 1st) ...
[(cons? 1st) |..
c... (list-fn

fInts -> ??°?

. ]

-Recursion in the (template) function!

(first 1st) ....
(rest 1st))....]))




Falling “Ball” Example

%) World = @ [

1
;5 A ListofBalls is one of =@ =
55 - empty
;5 - (cons Ball ListofBalls)
;5 A WorldState is a ListofBalls
(define INITIAL-WORLD |
(list (random-ball)) OISR




List Variations = Non-empty lists

;5 A NEListofBalls (non-empty) is one of:

?27?

;5 A WorldState is a NEListofBalls




List Variations = Non-empty lists

;5 A NEListofBalls (non-empty) is one of:
;5 - (cons Ball empty)
;5 - (cons Ball NEListofBalls)

predicate? (define (non-empty-1list? arg)
\Tand\(cons? arg) Just cons?!
shallow
(constant time)
check




Non-empty lists - template

;5 A NEListofBalls (nonjjempty) is one of
;5 - (cons Ball empty)

;35 - (cons Ball NEListotBalls) Eﬁﬁgﬁﬁﬁ;ﬁ

(in both cases now)

;5 non-empty-list-fn i NEListgg> ???

template? (define (non-empty-list-fn 1s

i
e

need to check a (cond

little “deeper” to (empty? (rest 1st)) ....[(first 1lst) ....]

distinguish cases | | [else .... (first 1lst :

(still a “shallow” ) R

check because not .... (non-empty-list-fn (rest 1lst ceee]))
inspecting contents) \ shape of the function

And recursive call

matches
shape of the data definition!




Mext- SOMe Famous List Functions

. Map o (2004)
e Filter
 Fold (reduce)

Lecture: The Google MapReduce

o,

Google Cloud Platform

“BIG"
data
processing

2010

2 A
Gz ™ SpArk
(2010)



List Function Example

;3 TEMPLATE for list-fn
;3 list-fn : ListofInt -> ???
(define (list-fn 1st)
(cond
[ (empty? 1st) ....]
[(cons? 1st) .... (first 1st) ....
(list-fn (rest 1st)) ....]))




List Function Example: inc-1ist

(check-equal?
(inc-1list (list 1
(list 2

2 3))
3 4))
|

: inc-1list : ListofInt -> ListofInt

;5 increments each list element by 1
(define (inc-1st 1st)

(cond
[ (empty? 1st) ....]
[(cons? 1st) .... (first 1st)

(inc-1st (rest 1st))

1))




List Function Example: inc-1ist

;5 inc-1list : ListofInt -> ListofInt
;5 1ncrements each list element by 1
(define (inc-1st 1st)
(cond
[ (empty? 1st) empty]
[(cons? 1st) .... (first 1st) e
(inc-1st (rest 1st)) ....]))




List Function Example: inc-1ist

;5 1nc-1list : ListofInt -> ListofInt
;5 increments each list element by 1
(define (inc-1st 1st)

(cond
Want: [(empty? 1st) empty]
Int + ListofInt-> [else .... (addl (first 1lst)) ....
ListofInt

| .e.. (inc-1lst (rest 1st)) ....]))




List Function Example: inc-1ist

;5 inc-1list : ListofInt -> ListofInt
;5 1ncrements each list element by 1
(define (inc-1st 1st)
(cond
[ (empty? 1st) empty]
[else (cons (addl (first 1st))
(inc-1st (rest 1st))]))




2 /%Wb«&’{y

Multi-ball Animation

Design a big-bang animation that:
« Start: a single ball, moving with random x and y velocity
« On aclick: add a ball at random location, with random velocity

;3 A WorldState is .. a 1list of balls!




35 A Ball is a

(struct ball [x y xvel yvel] #:transparent)

;3 Where

35 X: XCoord - represents x coordinate of ball center in animation
;5 Y: YCoord - represents y coordinate of ball center in animation
;3 Xvel: Integer - represents x velocity, where

H postive = to the right, negative = to the left
;5 yvel: Integer - represents y vel, where
55 positive = down, negative = up

;3 A ListofBall is one of

55 - empty
;5 - (cons Ball ListofBall)

;3 A WorldState is a ListofBall



next-world

List template!

;5 next-world : WorldState -> WorldState
;5 Updates position of all balls by one tick
(define (next-world w)
(cond
[ (empty? w) ....]
[else .... (first w) ....
(next-world (rest w)) ....]))




next-world

;5 hext-world : WorldState -> WorldState
;5 Updates position of all balls by one tick
(define (next-world w)

(cond
[(empty? w) empty] |Ball
[else .... (first w)“....
(next-world (rest w)) ....]))

Create one
function
per “task”

(check-equal? (next-world (list (make-ball © © 1 1)))
(list (next-ball (make-ball © © 1 1)))




next-world

;5 hext-world : WorldState -> WorldState
;5 Updates position of all balls by one tick
(define (next-world w)

(cond
[(empty? w) empty]
[else .... (next-ball (first w)) ....
PEEE (next-world (rest w)) ....]))
Want:

Ball + ListofBall ->
ListofBall




next-world

;5 hext-world : WorldState -> WorldState
;5 Updates position of all balls by one tick
(define (next-world w)
(cond
[(empty? w) empty]
[else (cons (next-ball (first w))
(next-world (rest w)))]))




next-world

;5 hext-world : ListofBall -> ListofBall
;5 Updates position of all balls by one tick
(define (next-world 1lst)
(cond
[ (empty? 1lst) empty]
[else (cons (next-ball (first 1st))
(next-world (rest 1st)))]))




com

narison

(define (inc-1lst 1st)
(cond
[ (empty? 1lst) empty]
[else (cons (addl (first 1st))

( )1

(define (1st-fnl fn 1lst)
(cond
[ (empty? 1st) empty]
[else (cons (fn (first 1lst))
(1st-f\n1 (rest 1st)))]))

LN\ L P4 7/ I .‘J
[else (cons (next-ball (first 1st))
(next-world (rest 1st)))]))




Abstraction: Common List Function #1

35 lst-fnl: (?? -> ??) Listof?? -> Listof??
;5 Applies the given fn to each element of given 1st

(define (1st-fnl fn 1lst)
(cond
[ (empty? 1st) empty]

[else (cons (fn <(first 1lst))
(1s€§?ﬁ$\£pest 1st))) 1))
A

X

(define (inc-1st 1st) (lst-fniaddl 1st)
(define (next-world 1st) (lst-fnI>next-ball 1st)




Abstraction: Common List Function #1

;3 lst-fnl: (X -> X) ListofX -> ListofX
;5 Applies the given fn to each element of given 1lst

(define (1lst-fnl fn 1lst)
(cond
[ (empty? 1st) empty]
[else (cons (fn (first 1st))
(1st-fnl (rest 1st)))]))

(define (inc-1lst 1st) (lst-fnl addl 1st)
(define (next-world 1st) (lst-fnl next-ball 1st)




Abstraction: Common List Function #1

Argument is a function

/

;3 lst-fnl: (X ->/Y) ListofX -> ListofY
;5 Applies the given fn to each element of given 1lst

(define (1lst-fnl fn 1lst)
(cond
[ (empty? 1st) empty]
[else (cons (fn (first 1st))
(1st-fnl (rest 1st)))]))

(define (inc-1st 1st) (1lst-fnl addl 1st)
(define (next-world lst) (1lst-fnl next-ball 1st)




NOTE: this shows why
our Compound data

Abstraction: Data DefinitionsS |predicates shoutd be

“shallow” checks, i.e.,

list?

s A ListofInt is one of Makes abstraction easier
33 - empty :+ A Listof<X> 1is one of
;5 - (cons Int ListofInt) >

*; ; - empty parameter
;5 A ListofBall is one of ;5 - (cons X Listof<X>)
55 - empty |
;3 - (cons Ball ListofBall) To use this abstract data

definition, must Listof<Int>

instantiate X with a :
concrete data definition |-|15t°f< Ball>

(concrete = opposite of abstract)




Abstract Data Defs common In every PL

#include<]

#includ

i=1; 1 <= 18; iH)
v.push_back(i);
¥

cout << "Size @ " << v.size();
”

v.resize(7);

cout << "\nAfter resizing it b '
; g IECOMES & << v.size();



Structs define abstract data

Instantiation
/

;5 A Posn is a (mk—Pogn [Xx : Int] [y : Int])
;3 where
;5 X: Int - represents x coordinate in big-bang animation
;5 Y: Int - represents y coordinate in big-bang animation
(struct posn [x y]) <—— Abstract data - “any” x and y allowed
define/contract (mk-Posn x y

-> integer? integer? posn?

posnh X y




Common List Function #1

;3 Ist-fnl: (X -> Y) Listof<X> -> Listof<Y>
;5 Applies the given fn to each element of given 1st

(define (1lst-fnl fn 1lst)
(cond
[ (empty? 1st) empty]
[else (cons (fn (first 1lst))
(1st-fnl (rest 1st)))]))

(define (inc-1lst 1st) (lst-fnl addl 1st)
(define (next-world 1st) (lst-fnl next-ball 1st)




Common List Function #1: map

;3 map: (X -> Y) Listof<X> -> Listof<Y>
;5 Applies the given fn to each element of given 1st

(define (map fn 1lst)
(cond
[ (empty? 1st) empty]
[else (cons (fn (first 1lst))
(map (rest 1st)))]))

(define (inc-1st 1st) (map addl 1lst)
(define (next-world 1lst) (map next-ball 1lst)




Common List Function

Not allowed in HW4!

1. map

;3 map: (X -> Y) Listof<X> -> Listof<Y>

;; Produces a list resulting from [applying | |= function “call” (in

;5 @ given fn to each element of a given 1lst

function “application”
(in high-level languges)

imperative languages)

(define (map fn 1lst)
(cond
[ (empty? 1st) empty]
[else (cons (fn (first 1st))
(map (rest 1st)))]))

(check-equal? (map + (list 1 2 3)
(list 4 5 6)

(list 57 9))

(map proc Ilst ...+) — list?
proc : procedure?
I[st : list?

procedure

Applies proc to the elements of the Ists from the first elements to the last. The
proc argument must accept the same number of arguments as the number of
supplied Ists, and all 7sts must have the same number of elements. The result
is a list containing each result of proc in order.

Examples:

> (map (lambda (numberl number2)
(+ numberl number2))
(12 3 4)
'(10 100 1000 100060))
'(11 102 1003 10004)

RACKET's map takes
multiple lists




map In other high-level languages

Array.prototype.map()

The map() method of array instances creates a new array populated with the

results of calling a provided function on every element in the calling array.

JavaScript Demo: Array.map() Python3

1 const arrayl = [1, 4, 9, 16];
2

(W]

// Pass a function to map
const mapl = arrayl.map((x) => x * 2);

I

5 # Add two lists using map and lambda
6 console.log(mapl);
7| // Expected output: Array/[2, 8, 18, 32]
numbersl = [1, 2, 3]
Lambda
y ) — numbers2 = [4, 5, 6]
(“arrow function expression”) lambda

result = map(lambda X, y: X + y, numbersl, numbers2)
print(list(result))

05



Common List Function #2: 27?7




/D/‘w/ba&'gy . .
Racket Recursive List Fn Example: sum-1st

;5 TEMPLATE for list-fn
;5 list-fn : ListofInt -> »???
(define (list-fn 1lst)

(cond
[ (empty? 1st) ....]
[(cons? 1st) .... (first 1st) ....

.... (list-fn (rest 1lst)) ....]))




/D/‘w/ba&'gy . .
Racket Recursive List Fn Example: sum-1st

;5 Returns sum of list of ints
;35 sum-1st: ListofInt -> Int
(define (sum-1lst 1st)
(cond
[ (empty? 1st) 0]
[else (+ (first 1st)
(sum-1st (rest 1st)))]))




Render World: ListofBall edition

;5 render-world : ListofBall -> Image
;5 Draws the given world as an image by overlaying each ball,
;; at 1ts position, into an initially empty scene

(define (render-world 1lst)
(cond
[ (empty? 1st) .... ]
[else .... (first 1lst) .... (render-world (rest 1lst)) ....]))




Render World: ListofBall edition

;5 render-world : ListofBall -> Image
;5 Draws the given world as an image by overlaying each ball,
;; at 1ts position, into an initially empty scene

(define (render-world 1lst)
(cond
[ (empty? 1lst) EMPTY-SCENE]
[else .... (first 1lst) .... (render-world (rest 1lst)) ....]))




Render World: ListofBall edition

;5 render-world : ListofBall -> Image
;5 Draws the given world as an image by overlaying each ball,
;; at 1ts position, into an initially empty scene

(define (render-world 1lst)
(cond
[ (empty? 1lst) EMPTY-SCENE]

[else (place-ball (first lst) (render-world (rest 1st)))]))

Create one
function
per “task”

5 place—bgﬁl : Ball Image -> Image
;5 Draws a ball, using its pos as the offset, into the given image
(define (place-ball b scene)

(place-image BALLIMG (ball-x b) (ball-y b) scene))




Comparison #2

;53 sum-1st: ListofInt -> Int
(define (sum-1lst 1st)
(cond
[ (empty? 1st) 0]
[else (+ (first 1st)
(sum-1st (rest 1st)))]))

;5 render-world : ListofBall -> Image
(define (render-world 1lst)
(cond
[ (empty? 1st) EMPTY-SCENE]
[else (place-ball (first 1st)
(render-world (rest 1st)))]))




Common List Function #2

X = Type of list element N

'Y =Result Type

V4

;s list-fn2 : (X Y -> Y) Y Listof<X> -> Y

(define (lst-fn2 fn initial 1st)
(cond
[ (empty? 1lst) initial]
[else (fne(first 1lst) ( n2 fn initial (rest 1st)))]))
IS NN

;3 sum-1st: ListofIn
(define (sum-1lst 1st) (1lis
;3 render-world: ListofBall->

(define (render-world 1lst) (list-fn2~place-ball EMPTY-SCENE 1st))




Common List Function #2: foldr (start at right)

;5 foldr: (XY ->Y) Y Listof<X> -> Y

(define (foldr fn initial 1lst)

(cond Function recurs and builds up fn calls until it gets to the end

[ (empty? 1lst) initial]

[else (fn (first 1lst) (foldr fn initial (rest 1st)))]))

Then they are evaluated, last one first

;3 sum-1st: ListofInt -> Int
(define (sum-1st 1st) (foldr + © 1st))
;5 render-world: ListofBall-> Image

(define (render-world 1lst) (foldr place-ball EMPTY-SCENE 1st))




Not allowed in HW4!

Common List Function #2: foldr

;; foldr: (X .. Y ->Y) Y Listof<X> .. -> Y

(foldr proc init lst ...+) — any/c
proc . procedure?
init : any/c

I[st : list?
Racket version can also take multiple lists

Also called “reduce”
Because a list of values is
“reduced” to one value



Do we always want to start at the right?

For some functions, order doesn’t matter, but for others, it does?

(foldr + @ (list 1 2 3)) = (1 + (2 + (3 + 9)))

(1+ (24 (3+0))) = (((1L+0) +2)+ 3) (Addition is associative)

(1- (- (- e>>>®? (((1 - @) - 2) - 3)



NQleJStFunCUCW] Zb:fOldl(WHMmMU

Challenge:

* Change foldr to foldl
» 5o that the function is applied from the left (first element first)

(define (foldr fn initial 1lst) (1 + (2 + (3 +0)))
(cond '
[ (empty? 1st) initial] (1 -(2=(3-29)))
[else (fn (first 1st) (foldr fn initial (rest 1st)))]))
(define (foldl fn initial 1lst) (((1 +0) +|2) * 3)
(cond (((1 - 0) -2) - 3)

[ (empty? 1st) ....]
[else .... (first 1st) .... (foldl fn initial (rest 1lst))) ....]))




NQleJStFunCUCW] Zb:fOldl(mHMmMU

/ Y = Result Type

: 7
;5 foldr: (XY -> V) Y Listof<X> -> ¥ Expressions with needed “result” type:

(define (foldr fn initial 1st) =—initial
(cond = fn call

[ (empty? 1st) initia - recursive call itself

[else (fn irst 1st) (foldr fn initial (rest 1st)))])) (look at signature to help)

;5 foldl: (XY -> Y) Y Listof<X> -> Y

(define (foldl fn initial 1st)
(cond
[ (empty? 1st) ....]
[else .... (first 1st) .... (foldl fn initial (rest 1lst))) ....]))




NQleJStFunCUCW] Zb:fOldl(mHMmMU

/ Y = Result Type

;; foldr: (XY ->)

Y Listof<X> -> Y

Expressions with needed “result” type:

(define (foldr fn initial 1st) - initial

(cond
[ (empty? 1lst) initial]
[else (fn (first 1st)

- fn call
- _recursive call itself

(foldr fn initial (reg;/Igf)))])) (look at signature to help)

;; foldl: (XY ->Y)

Y/;i§f6f<x> ->Y

(define (foldl fn initi

1st)

(cond
[ (empty? 1lst

. ]

Now fill in args to recursive call

[else (foldl .::..(first 1st) .... (rest 1st)))1]))




NQleJStFunCﬂCW] Zb:fOldl(mHMmMU

define (foldr fn initial 1st
cond
empty? lst) initial
else (fn (first 1lst foldr fn initial (rest 1lst

;; foldl: (XY 7> Y) Y Listof<X> -> Y

(define (foldl fn initial 1st)

(cond . . - |
only argument with type of first arg is first arg itself
[(empty? 1st) .. /Y2 yp g g

[else (foldl fn .... (first 1st) .... (rest 1st)))]))




NQleJStFunCﬂCW] Zb:fOldl(mHMmMU

Expressions with needed “result” Y type:
define (foldr fn initial 1st - 1nitial
cond - fn call ¢z
empty? lst) initial - recursive call itself

else (fn (first 1st foldr fn initial (rest 1st

Now just need middle arg (and need to use the “first” piece)

/

;5 foldl: (X Y -> Y) Y¥ListofcXy -> Y

(define (foldl fn initial 1st)

(cond “rest” of list has “list”
proper “list” type
[ (empty? 1st) ....]

[else (foldl fn .... (first 1st) .... (rest 1st)))]))




NQleJStFunCﬂCW] Zb:fOldl(mHMmMU

Expressions with “result” Y type:

define (foldr fn initial 1st - initial{mm

cond
empty? lst) initial
else (fn (first 1st

- fn call
- recursive call itself

foldr fn initial (rest 1st

Now just need middle arg (and need to use the “first” piece)

/

;5 foldl: (X Yeo> Y)Y yfstof<x> ->Y

(define (foldl fn initia
(cond

[ (empty? 1st) ....]

[else (foldl fn (fn (first 1st) ....) (rest lst)))](andexmﬂpMS)

(((1L +0) +2) + 3)
|
What goes here? (look at signature)

77 |




NQleJStFunCﬂCW] Zb:fOldl(mHMmMU

Expressions with “result” Y type:
define (foldr fn initial 1st - 1nitial{mm
cond - fncall
L. - ' Il itself
empty? lst) initial recursive cd

else (fn (first 1st foldr fn initial (rest 1st

;; foldl: (XY ->Y) Y Listof<X> -> Y

1+0)+ 2) + 3
(define (foldl fn initial 1st) ((( ) +2) + 3)

(cond

[(empty? 1lst) ... Y

[else (foldl fn (fn (first 1st) initial) (rest 1lst)))]))




NQleJStFunCﬂCW] Zb:fOldl(mHMmMU

Expressions with “result” Y type:
define (foldr fn initial 1st - 1nitial{mm
cond - fncall
L. - ' Il itself
empty? lst) initial recursive cd

else (fn (first 1st foldr fn initial (rest 1st

;; foldl: (XY ->Y) Y Listof<X> -> Y

1+0)+ 2) + 3
(define (foldl fn initial 1st) ((( ) +2) + 3)

(cond “initial"???
[ (empty? 1st) initialf”””””

[else (foldl fn (fn (first 1st) initial) (rest 1lst)))]))




NQleJStFunCﬂCW] Zb:fOldl(mHMmMU

Expressions with “result” Y type:

define (foldr fn initial 1st -—initial result-so-far
cond - fn call

empty? 1lst) initial - recursive call itself
else (fn (first 1lst foldr fn initial (rest 1lst

“result so far”

;5 foldl: (XY -> Y) Y Listof<X> -> Y SETSTTS
(define (foldl fn result-so-far 1lst) ((( ) )
(cond

[ (empty? 1lst) result-so-far]
[else (foldl fn (fn (first 1lst) result-so-far) (rest 1lst)))]))




NQleJStFunCUCW] Zb:fOldl(WHMmMU

Challenge:
* Change foldr to foldl
» 5o that the function is applied from the left (first element first)

(define (foldr fn initial 1lst)
(cond
[ (empty? 1lst) initial]
[else (fn (first 1lst) (foldr fn initial (rest 1st)))]))

2

(define (foldl fn initial 1lst)
(cond
[ (empty? 1st) ....]
[else .... (first 1st) .... (foldl fn initial (rest 1lst))) ....]))




Common List Function #2: foldl / foldr

;3 foldr: (XY ->Y) Y Listof<X> -> Y
;5 Computes a single value from given list, determined by given fn and initial val.
;5 fn is applied to each list element, last-element-first (1+ (2 + (3 +20)))

(define (foldr fn initial 1st) (1 - (2 - (3 -0)))
(cond
[ (empty? 1st) initial]
[else (fn (first 1st) (foldr fn initial (rest 1st)))]))

;5 foldl: (XY ->Y) Y Listof<X> -> Y
;; Computes a single value from given list, determined by given fn and initial val.
;; fn is applied to each list element, first-element-first (((1 + 0) + 2) + 3)

(define (foldl fn result-so-far 1lst) (((1 - 8) - 2) - 3)
(cond

[ (empty? 1lst) result-so-far]

[else (foldl fn (fn (first 1lst) result-so-far) (rest 1st)))]))

88




fold (reduce) In other high-level languages

JavaScript Demo: Array.reduce()

1 const arrayl = [1, 2, 3, 4];
2 : lambda “initial”
llllst"
3 //8+1+2+3+4
4 const initialvalue = ©; k//
5 const sumWithInitial = arrayl.reduce((resultSoFar, x) => resultSoFar + x, initial);
6
7 console.log(sumWithInitial);
8 // Expected output: 10
° JavaScript Demo: Array.reduceRight()
1 const arrayl = [
2 [e, 1],
3 [2, 3],
4 [4, 5], - . .
: “Initial” optional?
5 1;
6
7 const result = arrayl.reduceRight((resultSoFar, x) => resultSoFar.concat(x));
8
9 console.log(result);

10 // Expected output: Array [4, 5, 2, 3, @, 1]
11

89



Fold "dual”™: build-1list

(build-1ist n proc) — list? procedure
n . exact-nonnegative-integer?

proc : (exact-nonnegative-integer? . -> . any)

Creates a list of n elements by applying proc to the integers from 0 to (sub1 n) in order. If
st is the resulting list, then (list-ref Ist i) is the value produced by (proc 1i).

Examples:

> (build-list 10 values)

'(0 123 4567829)

> (build-1ist 5 (lambda (x) (* x x)))
'(01 4 9 16)

(build-list 4 add1)

;5 = (map addl (list @ 1 2 3))

;5 = (list 1 2 3 4)

90



Not allowed in HW4!

Next time: Other common list functions?

e Filter

* Find

* Reverse
* Append

Look at documentation for: racket/list



In-class exercise 2/27
on gradescope



