UMass Boston Computer Science

CS450 High Level Languages

Generative Recursion
Tuesday, March 11, 2025

SR vT
SAVING TIME!
GETITRIGHTY,

RECI !{Sl()\
RECURSION
RECURSION
RECURSION

RECURSION
RECURSION

RRCLIRSION

/cy/{ft/'a&

e HW 5 in
« Pye:Tues 3/11 Mam EST

 HW 6 out
e Due: Tues 3/25 11am EST (2 weeks)

(improper base case!)

« Reminder: Spring Break next week! &
* No lecture

Rli@[{{&(iN ‘
RECURSION
RECURSION

RECURSION
RECURSION

Here we go again

RECURSION

Here we go again

Might need for HW6! /@W'M/
... use only when necessary!

Two-Argument Templates tdlp chzs

« Sometimes ... a fn must process two arguments simultaneously

« This template should combine templates of both args
* (This is only possible if the data defs are simple enough)

;3 hit?: Ball Ball -> Boolean?
55 evaluateé\ﬁo\¢rue if the two Balls have overlap

(2-argument) TEMPLATE

(define (hit? bl b2)
Ball bl template
|

Ball b2 template

Must combine all these pieces
together somehow ...

;5 hit?: Ball Ball -> Boolean?
;5 evaluates to true if the two Balls have overlap

(define (hit? bl b2)
(ball-x bl) (ball-y bl) .
(ball-x b2) (ball-y b2) ...)

Must combine all these pieces
together somehow ...

;5 hit?: Ball Ball -> Boolean?
;5 evaluates to true if the two Balls have overlap

(define (hit? bl b2)
... (dist (ball-x bl) (ball-y bl)
(ball-x b2) (ball-y b2)) ...)

Must combine all these pieces
together somehow ...

;5 hit?: Ball Ball -> Boolean?
;5 evaluates to true if the two Balls have overlap

(define (hit? bl b2)
(< (dist (ball-x bl) (ball-y bl)
(ball-x b2) (ball-y b2))

))

;3 hit?: Ball Ball -> Boolean?
;3 evaluates to true if the two Balls have ove

rlap

(define (hit? bl b2)
(< (dist (ball-x bl) (ball-y bl)

(assuming coor

dinates are center)

(ball-x b2) (ball-y b2))
(+ (ball-radius bl) (ball-radius b2))))

Recursion review

« Most recursion is structural (i.e. comes from data definitions)!

;3 A List<X> 1is
;5 - empty |

(define (1lst-fn 1lst)
(cond
[(empty? 1st) ..]
[else .. (first 1lst) .. (1lst-fn (rest 1st)) ..]))

;5 - (cons X List<X>)

TEMPLATE

A Different Kind of Recursion!

« Not all recursion is structural (i.e, comes from data definitions)!

A Different Kind of Recursion!

« Not all recursion is structural (i.e, comes from data definitions)!

;5 gcd : Nat Nat -> Nat
;5 computes greatest common divisor, using Euclid’s algorithm

What template is this
following??

(define |(gcd n m)
(if (=5 m ©)
n
(gcd m (modulo n m))

A Different Kind of Recursion!

e Non-structural recursion (i.e., doesn't come from data definitions)
IS called generative recursion

* no template? ... requires Termination Argument
« Explains why the function terminates — because recursive call is “smaller”!

;5 gcd : Nat Nat -> Nat
;5 computes greatest common divisor, using Euclid’s algorithm

But how to develop an
algorithm like this??
(define (gcd n m)
(if (= m 9)
n Recursive call must be on
(gcd m (modulo n m)) “smaller” version of the problem

Generative (mon-structura) Recursion Design Recipe

1. Name, Signature

2. Description
* Must include Termination Argument

3. Examples
« Even more important now!

4, Code (No structural template, but can use a “general” template)

5. Tests

Generative (mon-structura) Recursion Design Recipe

1. Name, Signature

2. Description
e Must include Termination Argument

3. Examples
* Even more important now!

4, Code (No structural template, but can use a “general” template)
a) Break problems into smaller problems to (recursively) solve
b) Determine how to combine smaller solutions
c) “trivially solvable” problem is base case!

5. Tests

Generative (mon-structura) Recursion Design Recipe

4, Code (No structural template, but can use a “general” template)
a) Break problems into smaller problems to (recursively) solve
b) Determine how to combine smaller solutions
c) “trivially solvable” problem is base case!

Generative (mon-structura) Recursion Design Recipe

4, Code (No structural template, but can use a “general” template)
a) Break problems into smaller problems to (recursively) solve
b) Determine how to combine smaller solutions
c) “trivially solvable” problem is base case!

;5 genrec-algo: ??? -> ???

M
(define (genrec-algo|problem)
(cond
[else

(genrec-algo (create-smaller-1 problem))

(genrec-algo (create-smaller-n problem)))]))

Generative (on-structura) REcursion Design Recipe

4, Code (No structural template, but can use a “general” template)
a) Break problems into smaller problems to (recursively) solve
b) Determine how to combine smaller solutions
c) “trivially solvable” problem is base case!

;5 genrec-algo: ??? -> ???

(define (genrec-algo problem)
(cond

[else (combine-solutions
(genrec-algo (create-smaller-1 problem))

(genrec-algo (create-smaller-n problem)))]))

Generative (on-structura) REcursion Design Recipe

4, Code (No structural template, but can use a “general” template)
a) Break problems into smaller problems to (recursively) solve
b) Determine how to combine smaller solutions
c) “trivially solvable” problem is base case!

;5 genrec-algo: ??? -> ???

(define (genrec-algo problem)
(cond
[(trivial? problem) (solve-easy problem)] ;; base case
[else (combine-solutions
(genrec-algo (create-smaller-1 problem))

(genrec-algo (create-smaller-n problem)))]))

Generative (mon-structura) Recursion Design Recipe

4, Code (No structural template, but can use a “general” template)
a) Break problems into smaller problems to (recursively) solve
b) Determine how to combine smaller solutions
c) “trivially solvable” problem is base case!

;5 genrec-algo: ??? -> ??°?
;3 termination argument: recursive calls are “smaller” bc ..
(define (genrec-algo problem)
(cond
[(trivial? problem) (solve-easy problem)] ;; base case
[else (combine-solutions
(genrec-algo (create-smaller-1 problem))

(genrec-algo (create-smaller-n problem)))]))

GenRec Template Generalizes Structural!

(define (lst-fn 1lst) * Trivial solution = data def base case

(cond
[(empty? 1st) ..] » Left to figure out “Combining” pieces

[else .. (first 1st) .. (lst-fn (rest 1lst)) ..]))
i

« Recursive smaller problem = data def smaller piece

;5 genrgc-algo: ??2? -> P2/

(define |(genrec-algo proplem)
(cond

[(trivial? problem,
[else (combine-solu
(genrec-alg

'solve-easy |problem
%'ons
(create-smaller-1 problem))

(genrec-algo (create-smaller-n problem)))]))

Frevinsty Generative Recursion Example!

(Functional) Quicksort

;5 smaller-than: ListofInt Int -> ListofInt I(check-equal?
;3 Returns a list containing elements of given list (smaller-than (list 1 3 4 59) 4)
;; that are less than the given int (list 1 3))

;5 larger-than: ListofInt Int -> ListofInt I(check-equal?
;5 Returns a list containing elements of given list | (greater-than (list 1 3 45 9) 4)
;; that are greater than the given int (list 5 9))

;3 qsort: ListofInt -> ListofInt
;3 sorts the given list of ints in ascending order
(define (gsort 1lst)
(define pivot (random 1lst))
(append (gsort (smaller-than lst pivot))
(list pivot)
(gsort (greater-than 1lst pivot))))

Quicksort overview (“divide and conquer”)

1. Choose “pivot” element
2. Partition into smaller lsts:

« < pivot
¢ >= pivot
3. Recurse on smaller lists
{10, 80, 30, 90, 40, 50, y
K

e Until base case
4. Combine small solutions

Gen Rec Example: (functional) quicksort

1. Choose “pivot” element
2. Parti#ion into smaller lsts:

;3 gsort: List<Int> -> List<Int> ///)‘{BNOt
« >= pivot

3. Recurse until base case
4. Combine small solutions

(define (gsort 1lst)

(cond
trivial? problem 0lve-easy 1lst
[else
(define pivot (first 1st))
combine-solutions
(gsort (smaller-problem-1 1lst

(gsort (smaller-problem-n 1lst 1))

Gen Rec Example

- (functional) quicksort

;5 gqsort: LI

st<Int> -> List<In

"I

Function “arithmetic”!

>

Res

(curry f argl)

ult Is a function!

\
(lambda (argZ) (f argl arg2))

[e]l<e

Curry = “partial apply”

(fi

combine-solutions

(gsort (filter (curry > pivot)

(gsort (filter (curry <= pivot) (rest 1lst)

t 1st))

SoL Ve _u_Jy_

1st

1. Choose “pivot” element

2. Partition into smaller Ists:
« < pivot
« >= pivot

3. Recurse until base case
4. Combine small solutions

/ (1lambda (X)_(> inCDX))
(rest lst))‘hwsgtmﬁT‘__"

(curry > pivot)

“greater than”

Gen Rec Example: (functional) quicksort

1. Choose “pivot” element
2. Partition into smaller lsts:
;3 gsort: List<Int> -> List<Int> /< pivot
/>= pivot
. /Recurse until base case
(define (gsort lst) 4/ Combine small solutions
(cond
trivial? problem solve-easy Ast
[else

(define pivot (first 1st))
combine-solutions
(gsort (filter (curry > pivot)/(rest 1lst)) “lessthan”

(gsort (filter (curry <= pivot) (rest 1lst) “greaterthan”

Gen Rec Example: (functional) quicksort

1. Choose “pivot” element
2. Partition into smaller lsts:
;3 gsort: List<Int> -> List<Int> * <pivot
e >=pivot
3. Recurse until base case
(define (gsort 1st) 4. Combine small solutions
(cond
[(empty? 1st) empty] ;; base case
[else

(define pivot (first 1st))
combine-solutions
(gsort (filter (curry > pivot) (rest 1lst)))

(gsort (filtgr (curry <= pivot) (rest 1st))))]))

Gen Rec Example: (functional) quicksort

1. Choose “pivot” element
2. Partition into smaller lsts:
;3 gsort: List<Int> -> List<Int> * <pivot
e >=pivot
3. Recurse until base case
(d?finj (gsort 1lst) 4._Combine small solutions
con

[(empty? 1st) empty] ;; ba
[else
(define pivo
(append
(gsort (filter (curry > pivot) (rest 1lst)))
(list pivot)
(gsort (filter (curry <= pivot) (rest 1st))))]))

irst 1st))

Gen Rec Example: (functional) quicksort

;3 gsort: List<Int> -> List<Int>

;; termination argument:

;5 recursive calls “smaller” bc at least one item dropped (pivot)
(define (gsort 1lst)

(cond
[(empty? 1st) empty] ;; base case
[else
(define pivot (first 1st))
(append

(gsort (filter (curry > pivot) (rest 1lst)))
(list pivot)
(gsort (filter (curry <= pivot) (rest 1lst))))]))

wtrtide: RECUrsion vs lteration

e Recursive functions have a self-reference

factorialUsingRecursion(n):
(n 0):
1;

n - 1);
* Iterative code typically use a loop

factorialUsingIteration(n):

Recursion vs Iteration: Which 1s “Better”?

» Recursive vs. Iterative Solutions

Recursive algorithms can be very space inefficient. Each recursive call adds a new layer to the stack,|which

means that if your algorithm recurses to a depth of n, it uses at least O(n) memory.

For this reason, it's often better to implement a recursive algorithm iteratively. All recursive algorithms can
be implemented iteratively, although sometimes the code to do so is much more complex. Before diving
into recursive code, ask yourself how hard it would be to implement it iteratively, and discuss the tradeoffs
with your interviewer.

Cracking the Coding Interview, Ch8

0 r/learnprogramming - 11 yr. ago

[Best Practices] Recursion. Why is it generally
avoided and when is it acceptable?

stack overflow
Are recursive methods always better than iterative methods in Java?

Recursion vs lteration: Conventional Wisdom

Strengths: Iteration
* |teration can be used to repeatedly execute a set of statements without the overhead of

function calls and without using stack memory.
® |teration is faster and more efficient than recursion.

* |t's easier to optimize iterative codes, and they generally have polynomial time

complexity. Iteration is good with
* They are used to iterate over the elements present in data structures like an array, set, non-recursive data
map, etc.

* |f the iteration count is known, we can use for loops; else, we can use while loops, which
terminate when the controlling condition becomes false.

Weaknesses:
* |nloops, we can go only in one direction, i.e., we can't go or transfer data from the
current state to the previous state that has already been executed. | Iteration is bad with
» |t's difficult to traverse trees/graphs using loops. recursive data!
* Only limited information can be passed from one iteration to another, while in recursion,

we can|pass as many parameters as we need.| | pacursion better when accumulators are needed

https://www.interviewkickstart.com/learn/difference-between-recursion-and-iteration

Recursion vs lteration: Conventional Wisdom

Strengths: Recursion

* |t's easier to code the solution using recursion when the solution of the current problem
is dependent on the solution of smaller similar problems.
- fibonacci(n) = fibonacci(n-1) + fibonacci(n-2)
- factorial(n) = n * factorial(n-1) ZI

Recursion better e Recursive codes are smaller and easier to understand.

when accumulators * We can|pass information to the next state in the form of parameters/and return

are needed information to the previous state in the form of the return value.
e |t's a lof easier to perform operations on trees and graphs using recursion} Use recursion with
Weaknesses: recursive data!

Recursion is slow | e The simplicity of recursion comes at the|cost of time and 5pace|efﬂciency.

Recursion is slow | ® Itis much slower than iteration due to thg overhead of function callsjand control shift
from one function to another.

* |t fequires extra memory on the stack|for each recursive call. This memory gets
deallocated when function execution is over.

Recursion is slow

Recursion is slow

Investigate: s difficult to optimize a recursive code, and they generally havg higher time complexity
Is recu rsion iS SlOWG r?? pn iterative codes due to overlapping subproblems.

https://www.interviewkickstart.com/learn/difference-between-recursion-and-iteration

Recursion vs Iteration: In Racket

Racket Recursion

;5 sum-to : Nat -> Nat

;5 Sums the numbers in the interval [0, X] Conclusion?
(define (sum-to x) Recursion is slower?
(if (zero? Xx)
X WAIT!
(+ x (sum-to (subl x))))) Racket does not have “for” loops

(define BIG-NUMBER 999999)

(time (sum-to BIG-NUMBER))
; Ccpu time:|202|real time: 201 gc time: 156

Racket “Iteration”

(time (for/sum ([x (addl BIG-NUMBER)]) X))
; cpu time: |15|real time: 6 gc time: ©

Recursion vs Iteration: In Racket

Racket Recursion

Conclusion? ;3 iterative-sum-to : Nat -> Nat
RecurSNDn'S}HZL . ;3 Sums the numbers in the interval [0, Xx]
slower than iteration? (define (iterative-sum-to x result)
(if (zero? x) accumulator
result
equivalent (iterative-sum-to (subl x) (+ X result))))

ttihe (iterative-sum-to BIG-NUMBER 9))

; cpu time:

“for” In Racket is just a

15

macro (i.e., “syntactic sugar”) (time (for/sum
for a recursive function ; cpu time: (15

real time: 13 gc time: ©

Racket “Iteration”

([x (addl BIG-NUMBER)]) x))
real time: 6 gc time: ©

Tail Calls

From Wikipedia, the free encyclopedia

In computer science, a tail call is a subroutine call performed as the final action of a procedure.
If the target of a tail is the same subroutine, the subroutine is said to be tail recursive, which is a
special case of direct recursion. Tail recursion (or tail-end recursion) is particularly useful, and

Is often easy to optimize in implementations.
Talil calls can be implemented without adding a new stack frame to the call stack.

Recursion vs Iteration: In Racket

Racket Recursion

Conclusion? ;5 ilterative-sum-to : Nat -> Nat
Recur5"3n|5}ﬂlt . ;3 Sums the numbers in the interval [0, Xx]
slower than iteration? (define (iterative-sum-to x result)
(if (zero? x) Tail-recursive function
result

(iterative-sum-to (subl x) (+ x result))))

Tail-call (does not
add to stack)

(Tail) recursion is iteration!

Recursion vs Ilteration: Under the Hood

* It makes sense that recursion and iteration are equivalent ...

« Recursive call compiles to:
« JUMP instruction

« Loop compiles to:
« JUMP instruction!

« ... except in languages that make them not equivalent!
* |.e, languages that push extra stack frames that are not needed

Tail-Calls in Other Languages

» Most functional languages (RACKET, HASKELL, ERLANG, F#) implement
proper tail calls
(no extra stack frame)

« Some languages require an explicit annotation
 CLOJURE: recur
* SCALA: @tailrec

» Some languages (JavaScripT) have it (ECMASCRIPT 6), but don't have it

« Most imperative languages don’t properly implement tail calls
(they add an unnecessary stack frame)

 PYTHON, JAvA, CH#, GO

Guldo Got It Backwards

Tail Recursion Elimination

| recently posted an entry in my Python History blog on the origins of Python's
functional features. A side remark about not supporting tail recursion
elimination (TRE) immediately sparked several comments about what a pity it
is that Python doesn't do this, including links to recent blog entries by others
trying to "prove” that TRE can be added to Python easily. So let me defend my
position (which is that | don't want TRE in the language). If you want a short

About Me

|

p

D Guido van Rossum

Python's BDFL

View my complete profile

answer, it's simply unpythonic. Here's the long answer: Blog Archive
. . : : > 2022 (2)
First, as one commenter remarked, TRE is incompatible with nice stack
Wrong! . T , » 2019 (1)
traces: when a tail recursion is eliminated, there's no stack frame left to use
to print a traceback when something goes wrong later. This will confuse —
Equivalent to saying: .ently wrote something recursive (the recursion isn't obviot Proper tail calls is about

“every for lOOp iteration ce printed), and makes debugging hard. Providing an optio e“mmatmg stack fr.ames that
should push a stack frame!” ieems wrong to me: Python's default is and should always b shouldn't be there in the first

be maximally helpful for debugging. This also brings me to the next issd place! (because it's just iteration!)

factorial:

1 .
> omp edi, 1 Compiler output:
3 jle .116
4 pushris godbolt.org
5 mov eax, 2
. 6 push ria x86-64 gcc 142 @ -03
on Tail Ca ; |me
8 push ri2
9 lea ri12d, [rdi-1]
10 push rbx
11 mov ebx, edi
12 sub rsp, 16
(: 13 cmp edi, 2
14 je .13
. . . 15 lea ri3d, [rdi-2]
// Program to find factorial of a number n modulo prime i cnp edi, 3
int factorial(int n, int prime) 17 je .14
18 lea risd, [rdi-3]
{ 19 cmp edi, 4
if (n <= 1) { 20 je .15
21 lea riad, [rdi-4]
// base case > cnp edi, 5
return 1; 23 je .16
24 lea edi, [rdi-5]

LS
M
n

mov DWORD PTR [rsp+12], esi

26 call factorial
. . 0 . . 27 mov esi, DWORD PTR [rsp+12] StaCk pUSh
return (n * factorial(n - 1, prime) % prime) % prime; o8 inul eax, riad
1 .
) Non-tail-call | - .
31 mov eax, edx
Slower, more memory - @
33 L6
34 cdqg
35 idiv esi
36 mov eax, edx
37 imul eax, ri3d
38 .L5:
39 cdq
40 idiv esi
41 mov eax, edx
42 imul eax, ri2d
43 L4

I
I

. cdq
https://www.geeksforgeeks.org/tail-call-optimisation-in-c/ 5 idiv esi

B R

il

Compiler output:
godbolt.org

x86-64 gcc 142 @ -03

¢ Tail Calls as Loops

V{ C program to illustrate Tail call Optimisation

int factorial(int store, int num, int prime) { // this function calculates factorial modulo prime
if (num < 1) { int factorial(int num, int prime) {
// Base case int store = 1;
} store = (storedprime * 1%prime)%prime;
. N . . . ! | for loop
return factorial((storeXprime * num#prime)%prime, num - 1, prime); return store;
} LTail call - compiled directly to for loop! @ ’ @
Faster, less memory 1 factorial(int, int, int): 1 factorial(int, int):
2 mov ecx, edx 2 mov edx, 1
3 test esi, esi 3 test edi, edi
A jle .15 l jle .11
5 .L2: 5 .13:
6 mov eax, edi 6 mov eax, edx
= cdq 7 cdq
No stack push! | idiv ecx . Recursion is same
mov eax, edx 9 mov eax, edx
10 imul eax, esi 10 imul eax, edi as for lOOp!
11 cdq 11 cdq
12 idiv ecx 12 idiv esi
13 mov edi, edx 13 sub edi, 1
Some languages (with -O3 optimization) ol c0 ¢ 4 [neis
. . . jne .12 IEE
directly compile recursion to a loop! 16 .L5: 16] mov eax, edx

17 mov eax, edi 17 ret

(because they are equivalent!) : e

Proper Tail Calls in JavaScript

Proper Tail Calls (PTC) is a new feature in the ECMAScript 6 language. This feature was
added to facilitate recursive programming patterns, both for direct and indirect recursion.
Various other design patterns can benefit from PTC as well, such as code that wraps some
functionality where the wrapping code directly returns the result of what it wraps. Through
the use of PTC, the amount of memory needed to run code is reduced. In deeply recursive
code, PTC enables code to run that would otherwise throw a stack overflow exception.

https://webkit.org/blog/6240/ecmascript-6-proper-tail-calls-in-webkit/

edtre name Not supported in V8 (Chrome) or SpiderMonkey (Firefox)! %

proper tail calls (tail call optimisation)

Servers/runtimes Mobile

Desktop browsers
96 98% 98% 98% 26% 96% 7% 98% 98% 74% 98% 100% 98% 989

Compilers/polyfills
72% 55% 69% 17% 5% 1% 98% 98% 98% 98% 98% 98% 98% 98% 98% 98% 98% 100% 100% 100% 99% 98% 98% 65% 94% 58% 98%
OP Eche Node Nade Node Nede DUK)i s SraalyM GraalMM Hermes Dene i0S Samsung Qpera

Bahel?
* X6 PA l6ils17 2183519 3192520 220 27 240 18 21339 22209 0120 | 436 470 22 Mebikezs

Type:
Closwe % oce Kenn FEVS FE | FE EE | GH | CH CHII8 CHUS CH120 | Edge Edge op
*osm oate ®UOTERT g0 21 a2 | M6 | M7 | Bem Rew Cenary | M3 34 PRAGR SEAZQ SETR WK g g g

coreigsd coresis.3

[> [w2 | o2 | o2 | 02 [o] oo | oo [eaioa o2 | oo |oe e | oa | oo e | w2 [
https://compat-table.github.io/compat-table/es6/

Recursion vs Iteration: Conclusion

Strengths: Recursion

* |t's easier to code the solution using recursion when the solution of the current problem
is dependent on the solution of smaller similar problems.
- fibonacci(n) = fibonacci(n-1) + fibonacci(n-2)
- factorial(n) = n * factorial(n-1) Recursion is (usually)
e Recursive codes are smaller and easier to understand. ~ €asier to read

Recursion better
when accumulators * We can|pass information to the next state in the form of parameters/and return

are needed information to the previous state in the form of the return value.
* It's alotjeasier to perform operations on trees and graphs using recursion' Use recursion with
Weaknesses: recursive data!
* The simplicity of recursion comes at theJcost of time and 5pace|efﬂciency.
Recursion is slower ... e |tis much slower than iteration due to thgq overhead of function callsjand control shift

' from one function to another.
e | N [a ngu ages t fequires extra memory on the stack|for each recursive call. This memory gets
that ChOOse to jgallchted when fur.wction execgtion is over. . _ .
tis difficult to optimize a recursive code, and they generally havg higher time complexity

make |‘['_ Slowe rl 'han iterative codes due to overlapping subproblems.

https://www.interviewkickstart.com/learn/difference-between-recursion-and-iteration

