UMass Boston Computer Science

CS450 High Level Languages
Generative Recursion,

Backtracking

Tuesday, May 6, 2025

Rl (',l I}.\‘I(D\
RECURSION ‘ ‘
RECURSION
RECURSION

RECURSION
RECURSION

RECDRSION

/cy/{ft/'a&

e HW 12 in
+ Dye:-Tues 56 am-EST

« HW 13 out

 Due: Tues 5/13 11am EST
e Last hw! (improper base case!)

* Must use #lang 450lang

RECURSION

Here we go again

RECURSION

Here we go again

?

Installing “450 Lang’

) hw13.rkt - DrRacket

m] Edit View Language Racket Insert
New

New Tab

Open...

Open Recent

Open Require Path...

Reopen Closed Tab

Install .plt File...

Install Package...

Package Manager... —

Revert

==l 3

) Package Manager
File Edit Tabs Help
Do What I Mean | Currently Installed | Available from Catalog |Copy from Version | Settings

1/3538 match | Update Package List

Filter: 450lang
v installed *: auto-installed !: not default scope =: installed as link; @: installed from URL

Check.. Sou.. Catal.

v ePaekage—j Author Description Tags
git+.. https..

450lang stchang@racket-lang.org Programming Language for UMB CS450 course 39123..

Remove (UPDATE if you installed last week)

Read the Programming Language Specification

U S| ng ,,450 I_a n gn linked from HW description!

fa\ Untitled Programmlng language SpeC1f1cat10n

File Edit ' From Wikipedia, the free encyclopedia

Untitled 2* |n computer programming, a programming language specification (or standard

#lang o definition) is a documentation artifact that defines a programming language so

that users and implementors can agree on what programs in that language mean.
(+ "He Specifications are typically detailed and formal, and primarily used by implementors,

with users referring to them in case of ambiguity; the C++ specification is frequently
“quotes” are

cited by users, for instance, due to the complexity. Related documentation includes
a programming language reference, which is intended expressly for users, and a
programming language rationale, which explains why the specification is written as it

Is; these are typically more informal than a specification.

A specification is more formal than user reference documentation!

Read the Programming Language Specification

U S| ng ,,450 La ngn linked from HW description!

Added features:

- Lists
#) Untitled 2 - DrRacket* - More arith fns: -, abs
File Edit View Language Racket Insert Scripts - Logical operations: =, A, V
Untitled 2~ (define ..)~ W"LE-'HH - “top'IEVEI" blnd/reC Like define

- rackunit equivalents
#lang 450lang

Not as “good” as Racket
(+ "Hello™ ", " "World!")

Design Recipe even more important now

“quotes” are implicitly inserted by the language

DO NOT “save”
, writing tests until
Taking requests ...

I
Ask for additional primitives in INIT-ENV the end!!

(you've been warned)

2 /‘W/M’Zy

Recursion review

« Most recursion is structural (i.e. comes from data definitions)!

;3 A List<X> 1is
;5 - empty |

;5 - (cons X List<X>)

(define (1lst-fn 1lst)
(cond
[(empty? 1st) ..]
[else .. (first 1lst) .. (1lst-fn (rest 1st)) ..]))

TEMPLATE

A Different Kind of Recursion!

« Not all recursion is structural (i.e, comes from data definitions)!

A Different Kind of Recursion!

« Not all recursion is structural (i.e, comes from data definitions)!

;5 gcd : Nat Nat -> Nat
;5 computes greatest common divisor, using Euclid’s algorithm

What template is this
following??

(define |(gcd n m)
(if (=5 m ©)
n
(gcd m (modulo n m))

A Different Kind of Recursion!

e Non-structural recursion (i.e., doesn't come from data definitions)
IS called generative recursion

* no template? ... requires Termination Argument
« Explains why the function terminates — because recursive call is “smaller”!

;5 gcd : Nat Nat -> Nat
;5 computes greatest common divisor, using Euclid’s algorithm

But how to develop an
algorithm like this??
(define (gcd n m)
(if (= m 9)
n Recursive call must be on
(gcd m (modulo n m)) “smaller” version of the problem

Generative (mon-structura) Recursion Design Recipe

1. Name, Signature

2. Description
* Must include Termination Argument

3. Examples
« Even more important now!

4, Code (No structural template, but can use a “general” template)

5. Tests

Generative (mon-structura) Recursion Design Recipe

1. Name, Signature

2. Description
e Must include Termination Argument

3. Examples
* Even more important now!

4, Code (No structural template, but can use a “general” template)
a) Break problems into smaller problems to (recursively) solve
b) Determine how to combine smaller solutions
c) “trivially solvable” problem is base case!

5. Tests

Generative (mon-structura) Recursion Design Recipe

4, Code (No structural template, but can use a “general” template)
a) Break problems into smaller problems to (recursively) solve
b) Determine how to combine smaller solutions
c) “trivially solvable” problem is base case!

Generative (mon-structura) Recursion Design Recipe

4, Code (No structural template, but can use a “general” template)
a) Break problems into smaller problems to (recursively) solve
b) Determine how to combine smaller solutions
c) “trivially solvable” problem is base case!

;5 genrec-algo: ??? -> ???

M
(define (genrec-algo|problem)
(cond
[else

(genrec-algo (create-smaller-1 problem))

(genrec-algo (create-smaller-n problem)))]))

Generative (on-structura) REcursion Design Recipe

4, Code (No structural template, but can use a “general” template)
a) Break problems into smaller problems to (recursively) solve
b) Determine how to combine smaller solutions
c) “trivially solvable” problem is base case!

;5 genrec-algo: ??? -> ???

(define (genrec-algo problem)
(cond

[else (combine-solutions
(genrec-algo (create-smaller-1 problem))

(genrec-algo (create-smaller-n problem)))]))

Generative (on-structura) REcursion Design Recipe

4, Code (No structural template, but can use a “general” template)
a) Break problems into smaller problems to (recursively) solve
b) Determine how to combine smaller solutions
c) “trivially solvable” problem is base case!

;5 genrec-algo: ??? -> ???

(define (genrec-algo problem)
(cond
[(trivial? problem) (solve-easy problem)] ;; base case
[else (combine-solutions
(genrec-algo (create-smaller-1 problem))

(genrec-algo (create-smaller-n problem)))]))

Generative (mon-structura) Recursion Design Recipe

4, Code (No structural template, but can use a “general” template)
a) Break problems into smaller problems to (recursively) solve
b) Determine how to combine smaller solutions
c) “trivially solvable” problem is base case!

;5 genrec-algo: ??? -> ??°?
;3 termination argument: recursive calls are “smaller” bc ..
(define (genrec-algo problem)
(cond
[(trivial? problem) (solve-easy problem)] ;; base case
[else (combine-solutions
(genrec-algo (create-smaller-1 problem))

(genrec-algo (create-smaller-n problem)))]))

GenRec Template Generalizes Structural!

(define (lst-fn 1lst) * Trivial solution = data def base case

(cond
[(empty? 1st) ..] » Left to figure out “Combining” pieces

[else .. (first 1st) .. (lst-fn (rest 1lst)) ..]))
i

« Recursive smaller problem = data def smaller piece

;5 genrgc-algo: ??2? -> P2/

(define |(genrec-algo proplem)
(cond

[(trivial? problem,
[else (combine-solu
(genrec-alg

'solve-easy |problem
%'ons
(create-smaller-1 problem))

(genrec-algo (create-smaller-n problem)))]))

Frevinsty Generative Recursion Example!

(Functional) Quicksort

;5 smaller-than: ListofInt Int -> ListofInt I(check-equal?
;3 Returns a list containing elements of given list (smaller-than (list 1 3 4 59) 4)
;; that are less than the given int (list 1 3))

;5 larger-than: ListofInt Int -> ListofInt I(check-equal?
;5 Returns a list containing elements of given list | (greater-than (list 1 3 45 9) 4)
;; that are greater than the given int (list 5 9))

;3 qsort: ListofInt -> ListofInt
;3 sorts the given list of ints in ascending order
(define (gsort 1lst)
(define pivot (random 1lst))
(append (gsort (smaller-than lst pivot))
(list pivot)
(gsort (greater-than 1lst pivot))))

Quicksort overview (“divide and conquer”)

1. Choose “pivot” element
2. Partition into smaller lsts:

« < pivot
¢ >= pivot
3. Recurse on smaller lists
{10, 80, 30, 90, 40, 50, y
K

e Until base case
4. Combine small solutions

Gen Rec Example: (functional) quicksort

1. Choose “pivot” element
2. Parti#ion into smaller lsts:

;3 gsort: List<Int> -> List<Int> ///)‘{BNOt
« >= pivot

3. Recurse until base case
4. Combine small solutions

(define (gsort 1lst)

(cond
trivial? problem 0lve-easy 1lst
[else
(define pivot (first 1st))
combine-solutions
(gsort (smaller-problem-1 1lst

(gsort (smaller-problem-n 1lst 1))

Gen Rec Example

- (functional) quicksort

;5 gqsort: LI

st<Int> -> List<In

"I

Function “arithmetic”!

>

Res

(curry f argl)

ult Is a function!

\
(lambda (argZ) (f argl arg2))

[e]l<e

Curry = “partial apply”

(fi

combine-solutions

(gsort (filter (curry > pivot)

(gsort (filter (curry <= pivot) (rest 1lst)

t 1st))

SoL Ve _u_Jy_

1st

1. Choose “pivot” element

2. Partition into smaller Ists:
« < pivot
« >= pivot

3. Recurse until base case
4. Combine small solutions

/ (1lambda (X)_(> inCDX))
(rest lst))‘hwsgtmﬁT‘__"

(curry > pivot)

“greater than”

Gen Rec Example: (functional) quicksort

1. Choose “pivot” element
2. Partition into smaller lsts:
;3 gsort: List<Int> -> List<Int> /< pivot
/>= pivot
. /Recurse until base case
(define (gsort lst) 4/ Combine small solutions
(cond
trivial? problem solve-easy Ast
[else

(define pivot (first 1st))
combine-solutions
(gsort (filter (curry > pivot)/(rest 1lst)) “lessthan”

(gsort (filter (curry <= pivot) (rest 1lst) “greaterthan”

Gen Rec Example: (functional) quicksort

1. Choose “pivot” element
2. Partition into smaller lsts:
;3 gsort: List<Int> -> List<Int> * <pivot
e >=pivot
3. Recurse until base case
(define (gsort 1st) 4. Combine small solutions
(cond
[(empty? 1st) empty] ;; base case
[else

(define pivot (first 1st))
combine-solutions
(gsort (filter (curry > pivot) (rest 1lst)))

(gsort (filtgr (curry <= pivot) (rest 1st))))]))

Gen Rec Example: (functional) quicksort

1. Choose “pivot” element
2. Partition into smaller lsts:
;3 gsort: List<Int> -> List<Int> * <pivot
e >=pivot
3. Recurse until base case
(d?finj (gsort 1lst) 4._Combine small solutions
con

[(empty? 1st) empty] ;; ba
[else
(define pivo
(append
(gsort (filter (curry > pivot) (rest 1lst)))
(list pivot)
(gsort (filter (curry <= pivot) (rest 1st))))]))

irst 1st))

Gen Rec Example: (functional) quicksort

;3 gsort: List<Int> -> List<Int>

;; termination argument:

;5 recursive calls “smaller” bc at least one item dropped (pivot)
(define (gsort 1lst)

(cond
[(empty? 1st) empty] ;; base case
[else
(define pivot (first 1st))
(append

(gsort (filter (curry > pivot) (rest 1lst)))
(list pivot)
(gsort (filter (curry <= pivot) (rest 1lst))))]))

Not always obvious!

Example: traversing a game board ...

?l

Not always obvious!

Example: traversing a game board ...

)

)

termination argument:
recursivefcalls “smaller

(define (find-sol row col)

(cond
found-sol? row col
at-last-col? col
at-last-row? row
else

/ Not always obvious!

DONE

find-sol (next row) FIRST-COLUMN)]

NO-SOLUTION

bc ... “distance” to last square gets “smaller” ?2?

What is the “smaller” problem???

))

. . Is this always true???
;> termination argument: \\\»

;5 recursive calls “smaller” bc ... “distance” to last square gets “smaller” 22?2
(define (find-sol row col)
(cond

[(found-sol? row col ..) .. DONE ..] ;; base case

[(at-last-col? .. col ..) (find-sol (next row) FIRST-COLUMN)]
at-last-row? row NO-SOLUTION What is the “smaller” problem???
else

))

N-Queens problem

» Place n queens on an n x n chess board so that
no queen “threatens” another ...

om
LR

All the positions “threatened” by a queen

N-Queens problem - solving ...

* Place n queens on an n X n chess board so that
no queen “threatens” another ...

e To find a solution ...

. ... optimistically “place” each queen in non-threatening
position on board ...

e ... and hope it works out ???

Example: 4-queens

4 x 4 Chess Board

Example: 4-queens

4 x 4 Chess Board

Example: 4-queens

Example: 4-queens

Example: 4-queens

But ... need to place 4 queens!

FAIL???
No, we havent tried all solutions ...

... heed to go backwards

4 x 4 Chess Board

Example: 4-queens - Backtracking

Example: 4-queens - Backtracking

Example: 4-queens - Backtracking

Example: 4-queens — as code

;5 termination argument:
;3 recursive calls “smaller” bc ...
(define (find-sol x vy ..)
(cond
 (done? x y curr-solution ..) .. DONE ..]
[(at-last-col? .. x ..) (find-sol FIRST-X (next y) ..)]
(at-last-row? ..y ..) .. NO-SOLUTION ..]

Example: 4-queens — as code

;5 termination argument:
;3 recursive calls “smaller” bc ...
(define (find-sol x y curr-solution)
(cond A
[(done? x y curr-solution ..) .. DONE ..]
[(at-last-col? .. x ..) (find-sol FIRST-X (next y) ..)]

| (at-Llast-row? ..y ..) .. NO-SOLUTION .. |

Accumulator!

Example: 4-queens — as code

;3 termination argument: 2?7
;5 recursive calls “smaller” bc ... Numberof“possible solutions to try” is reduced
(define (find-sol x y curr-solution)
(cond
 (done? x y curr-solution ..) .. DONE ..]
(at-last-col? .. x ..) (find-sol FIRST-X (next y) ..)]
(at-last-row? ..y ..) .. NO-SOLUTION ..]
else
(if (no-threaten? x y current-solution)
(let ([maybe-sol Optimistically place queen
(find-sol x (next y) (update x y curr-solution))])
(if (valid? maybe-sol)
maybe-sol
(find-sol (next x) y curr-solution))
(find-sol (next x) y curr-solution))]))

Example: 4-queens — as code

;5 termination argument:
;5 recursive calls “smaller” bc ... Numberof“possible solutions to try” is reduced

(define (find-sol x y curr-solution)

(cond
done? x y curr-solution ..) .. DONE ..
at-last-col? .. x ..) (find-sol FIRST-X (next y
at-last-row? .. y ..) .. NO-SOLUTION ..
[else
1f (no-threaten? x y current-solution

let maybe-sol Optimistically place queen
find-sol x (next y) (update x y curr-solution
(if (valid? maybe-sol)
maybe-sol
(find-sol (next x) y curr-solution)) Backtrack if it fails
find-sol (next x) y curr-solution

Need to check solution actually worked ...

Example: 4-queens

4 x 4 Chess Board

Example: 4-queens

4 x 4 Chess Board

Example: 4-queens

Example: 4-queens

Example: 4-queens

But ... need to place 4 queens!

FAIL???
No, we havent tried all solutions ...

... heed to go backwards

4 x 4 Chess Board

Example: 4-queens - Backtracking

Example: 4-queens - Backtracking

Example: 4-queens - Backtracking

In-class: Install “450 Lang”

74\ hwi3.rkt - DrRacket
Edit View Language Racket Insert . . o .
Read the Programming Language Specification

New
New Tab linked from HW description!

Open...

Open Recent

Open Require Path...
Reopen Closed Tab
Install .plt File...
Install Package...

Package Manager... —

Revert

==l 3

*\ Package Manager
File Edit Tabs Help
Do What I Mean | Currently Installed | Available from Catalog |Copy from Version | Settings

1/3538 match | Update Package List

Filter: 450lang
v':installed *: auto-installed ©: not default scope =: installed as link; @: installed from URL

Check.. Sou.. Catal.

vV ePasiage—y Author Description Tags
39123.. git+.. https..

450lang stchang@racket-lang.org Programming Language for UMB CS450 course

Remove (UPDATE if you installed last week)

