UMass Boston Computer Science

CS450 High Level Languages
Backtracking Design Recipe

Thursday, May 8, 2025

o

=N

Callep)

N OO
©

WOIN|EY
GO |

@) Hon

= [R S O=]

S (D=2

Logistios

« HW 13 out
e Due: Tues 5/13 11am EST
 Last hw!
« Must use #lang 450lang

9/3/1|12|716(8/94
624|195
08 6
6 3
4 3 1
7 2 6
6
419)
719

Installing “450 Lang”

74\ hwi3.rkt - DrRacket
Edit View Language Racket Insert

New

New Tab

Open...

Open Recent v
Open Require Path...

Reopen Closed Tab

Install .plt File...

Install Package...

Package Manager... —

Revert

==l 3

) Package Manager
File Edit Tabs Help
Do What I Mean | Currently Installed | Available from Catalog |Copy from Version | Settings

1/3538 match | Update Package List

Filter: 450lang
v installed *: auto-installed !: not default scope =: installed as link; @: installed from URL

vV Talkags Author Description Tags Check.. Sou.. Catal.

T

450lang stchang@racket-lang.org Programming Language for UMB CS450 course 39123.. git+.. https..
(UPDATE if you installed last week)
Update insialles | Remove Ciee a30db18bc5265deas8df6d619959c67869d4b333F

checksum
https://pkgs.racket-lang.org/package/4501lang

Read the Programming Language Specification

U S| ng ,,450 La ngn linked from HW description!

Added features:

- Lists
#) Untitled 2 - DrRacket* - More arith fns: -, abs
File Edit View Language Racket Insert Scripts - Logical operations: =, A, V
Untitled 2~ (define ..)~ W"LE-'HH - “top'IEVEI" blnd/reC Like define

- rackunit equivalents
#lang 450lang

Not as “good” as Racket
(+ "Hello™ ", " "World!")

Design Recipe even more important now

“quotes” are implicitly inserted by the language

DO NOT “save”
, writing tests until
Taking requests ...

I
Ask for additional primitives in INIT-ENV the end!!

(you've been warned)

Generative (mon-structura) Recursion Design Recipe

1. Name, Signature

2. Description
* Must include Termination Argument

3. Examples
« Even more important now!

4, Code (No structural template, but can use a “general” template)

5. Tests

2 /‘w/ba@{%

Generative (mon-structura) Recursion Design Recipe

1. Name, Signature

2. Description
e Must include Termination Argument

3. Examples
* Even more important now!

4, Code (No structural template, but can use a “general” template)
a) Break problems into smaller problems to (recursively) solve
b) Determine how to combine smaller solutions
c) “trivially solvable” problem is base case!

5. Tests

2 /‘w/ms{y

A /‘W/'aa&{y

Backtracking

A recursive algorithm for finding solutions to many
computational problems that ...

. ... tries potential solutions optimistically ... but “backtracks” when stuck
« Graph algorithms, e.g., Path finding

A /‘W/'aa&{y

Backtracking

A recursive algorithm for finding solutions to many
computational problems that ...
. ... tries potential solutions optimistically ... but “backtracks” when stuck

« Optimization, e.g.,, knapsack, “traveling salesman”

100

80+

G0

40F

201

0

0 20 40 60 80 100

100

a0

G0m

40

20

0
0 20 40 60 80 100

A /‘w/ms%y

Backtracking

A recursive algorithm for finding solutions to many
computational problems that ...
. ... tries potential solutions optimistically ... but “backtracks” when stuck
« Graph algorithms, e.g., Path finding
« Optimization, e.g., knapsack, “traveling salesman”
 Solving puzzles, e.g., Sudoku, n-queens

3|1(2
241
98

Sileg)
(&)

~E3 |SHh

4

CO=2 RS |ER |(©O=J
W |O=2&d

N-Queens problem

» Place n queens on an n x n chess board so that
no queen “threatens” another ...

All the positions “threatened” by a queen All queens safe

N-Queens problem - solving ...

* Place n queens on an n X n chess board so that
no queen “threatens” another ...

e To find a solution ...

. ... optimistically “place” each queen in non-threatening
position on board ...

e ... and hope it works out ???

Example: 4-queens

4 x 4 Chess Board

Example: 4-queens

4 x 4 Chess Board

Example: 4-queens

Example: 4-queens

Example: 4-queens

But ... need to place 4 queens!

FAIL???
No, we havent tried all solutions ...

... heed to go backwards

4 x 4 Chess Board

Example: 4-queens - Backtracking

Example: 4-queens - Backtracking

Example: 4-queens - Backtracking

Backtracking Design Recipe

« Combination of other “recipes”
« Accumulator - for “current solution”

« Generative Recursion
 Description must include Termination Argument

* Code “Template”

* 2 base cases
e Success
 Fail
* Recursive call ...

« Should optimistically move forward towards potential solution by placing a queen ...
« ... but result must be checked! And backtrack if fail ...

Example: 4-queens — as code

;5 termination argument:
;5 recursive calls “smaller” bc ...
(define (find-sol x vy ..)
(cond
(done? ..) .. DONE ..]
[(at-last-col? .. x ..) (find-sol FIRST-X (next y) ..)]
' (no-solution? ..) .. FAIL-RESULT .. |

Example: 4-queens — as code

;5 termination argument:

;5 recursive calls “smaller” bc ...

(define (find-sol x y curr-solutiggl
(cond Accumulator!

 (done? curr-solution ..) .. DONE ..]

[(at-last-col? .. x ..) (find-sol FIRST-X (next y) ..)]

' (no-solution? ..) .. FAIL-RESULT .. |

Example: 4-queens — as code

;3 termination argument: 2?7
;5 recursive calls “smaller” bc ... Numberof“possible solutions to try” is reduced
(define (find-sol x y curr-solution)
(cond
 (done? curr-solution ..) .. DONE ..]
(at-last-col? .. x ..) (find-sol FIRST-X (next y) ..)]
' (no-solution? ..) .. FAIL-RESULT ..]
else
(if (no-threaten? x y curr-solution)
(let ([maybe-sol Optimistically place queen
(find-sol x (next y) (update x y curr-solution))])
(if (valid? maybe-sol)
maybe-sol
(find-sol (next x) y curr-solution))
(find-sol (next x) y curr-solution))]))

Example: 4-queens — as code

;5 termination argument:
;5 recursive calls “smaller” bc

(define (find-sol x y curr-solution)

Number of “ possible solutions to try” is reduced

(cond
done? curr-solution ..) .. DONE ..
at-last-col? .. x ..) (find-sol FIRST-X (next y
no-solution? ..) .. FAIL-RESULT ..
[else
1f (no-threaten? x y curr-solution,

let maybe-sol Optimistically place queen
Backtracking find-sol x (next y) (update x y curr-solution))]

algorithm mustbe j £ (valid? maybe-sol)

Need to check solution actually worked ...

able to quickly
validate a m?ybe'SOl .
potential solution (find-sol (next x) y curr-solution)) Backtrack if it fails

find-sol (next x) y curr-solution

Example: 4-queens — as code

;5 termination argument:
;3 recursive calls “smaller” bc

(define (find-sol x y curr-solution)

less possible solutions to try

(cond
done? curr-solution ..) .. DONE ..
at-last-col? .. x ..) (find-sol FIRST-X (next y) ..)|]

[(no-solution? ..) .. FAIL-RESULT ..]
~~ Produce “false” value to indicate no solution

else
1f (no-threaten? x y curr-solution,

let maybe-sol

Backtracking find-sol x (nexty update x y curr-solution)) |
algorlthm‘must be "5 f (false? maybe—sol)

able to quickly ‘ b 1

validate a maybe-so

(find-sol (next x) y curr-solution))

potential solution
find-sol (next x) y curr-solution

Example: 4-queens — as code

;5 hqueens : Nat -> List<Queen>

N

(define (find-sol x y cu

\ [
;5 A Queen 1s a
;3 .. row and column ..

(cond

(at-last-col? .. x ..)
' (no-solution? ..) ..
else

 (done? curr-solution ..

) .. DONE ..]
(find-sol FIRST-X (next y) ..)]
FAIL-RESULT .. |

T Produce “false” value to indicate no solution

-(if (no-threaten? x y curr-solution)

(let ([maybe-sol

(find-sol x (next y) (update x y curr-solution))])
(if (false? maybe-sol)

maybe-sol
(find-sol (
(find-sol (next

next x) y curr-solution))
X) y curr-solution))]))

Example: 4-queens — as code

;5 hqueens : Nat -> Maybe<List<Queen>>

[] []
, , eoe

(define (find-sol x y curr-solution)

(cond
done? curr-solution ..) .. DONE ..
[(at-last-col? .. x ...) (find-sol FIRST-X (next y]
[(no-solution? ..) .. FAIL-RESULT ..]
else T~ Produce “false” value to indicate no solution

1f (no-threaten? x y curr-solution,
let maybe-sol
find-sol x (next y) (update x y curr-solution
(if (false? maybe-sol)
maybe-sol
(find-sol (next x) y curr-solution))
find-sol (next x) y curr-solution

Maybe Data Definitions

o o
)

o o
)

nqueens

AN

: Nat -> Maybe<List<Queen>>

AV

))

))

;5 A Maybe<X> is either:
; - false T~
; = X

Parameterized Data Def

N-queens Solution Validation

e Still useful to write a valid? predicate, i.e, for testing

A “valid” n-queens solution has
* n (unique) queens
* No queens threaten any other

(define (23Ueens—safe? gl q2)

