(Yast bocture!)

UMass Boston Computer Science

CS450 High Level Languages

High Level Comparison: FIP v§ OOP
Tuesday, May 13, 2025

THE WORLD SEEN BY AN "OBTECT-ORENTED " PROGRAMMER.

(Yast bocture!)
Logistios

« HW13 extended
+dye-Tue 513 Mam-EST
e due: Thurs 5/15 11am EST

« HW 14 out (extra credit)

« Use your Example and Test writing skills to ...

« ... find and submit bug reports for #lang 450lang !
* “bug” = does not match specification

« Up to 4 reports (20 points)

e 8+6+4+ 2 points

ue: Tue 5/20 11am EST (no late)

d
Respectful reports only!

/D/‘W/ba@é
Kinds of Data Definitions (Lecture 6)

e Basic data
« E.g, numbers, strings, etc

* Intervals
» Data that is from a range of values, e.g,,

 Enumerations
« Data that is one of a list of possible values, e.g,,

e Iltemizations

combo | ¢ Data value that can be from a list of possible other data definitions

of e E.g, either a string or number (Generalizes enumerations) + HW\/7!

« Compound Data (and
 Data that is a combination of values from other data definitions | °nwards)

ltemization of Compound Data - Example

;3 A Shape is one of:

;5 - (mk-Rect [h : Num] [w : Num] [c : Color])
;5 Interp: fields are width, height, color

;5 - (mk-Circ [r : Num] [c : Color])

;3 Interp: fields are radius and color

;5 Represents a shape to be drawn on a canvas

ltemization of Compound Data - Template

;3 A Shape is one of:
;5 - (mk-Rect [h : Num] [w : Num] [c : Color])

35 - (mk-Circ [p : Num] [c\: Color])

\ \
;5 Sshape-fn : Shape ->|???
(define (shape-fn sh)
(cond Q

[(Rect? sh) .. (rect-h sh) .. (rect-w sh) .. (rect-c sh) ..]
[(Circ? sh) .. (circ-r sh) .. (circ-c sh) ..]))

[temization of Compound Data — 2nd way

;3 A Shape is one of:
;5 - Rectangle
;35 - Circle

;5 A Rectangle is a (mk-Rect [h : Num] [w : Num] [c : Color])
;5 Interp: fields are width, height, color

;5 A Circle is a (mk-Circ [r : Num] [c : Color])

;3 Interp: fields are radius and colors

ltemization of Compound Data - template

;3 A Shape is one of:
;5 - Rectangle
;3 - Circle

;5 Shape-fn : Shape -> ???

(define (shape-fn sh)

(cond
[(Rect? sh) .. (rect-fn sh) ..]
[(Circ? sh) .. (circ-fn sh) ..]))

ltemization of Compound Data - function!

;3 A Shape is one of:
;5 - Rectangle
;3 - Circle

;3 shape-fn : Shape -> ???
(define (shape-fn sh)
(cond
[(Rect? sh) .. (rect-fn sh) ..]
[(Circ? sh) .. (circ-fn sh) ..]))

=)

;5 render : Shape -> Image
(define (render sh)
(cond
[(Rect? sh) (rect-img sh)]
[(Circ? sh) (circ-img sh)]))

A Simple OO Example: Shapes

interface Shape
Image render();

T

class Circle class Rectangle
Num radius; Num width; Num height;
Color col; Color col;
Image render() { Image render() {
return circ-img (radius, col); return rect-img (width, height, col);
} }

A Simple OO Example: Terminology

Interface / abstract class

(abstract) method
(concrete class implements)

T

interface Shape
Image render();

—— implements

. concrete) class
class Circle ()

Num radius; (compound) Data definition!

Color col; fields

Image render() {
return circ-img (radius, col);

implements

class Rectangle

Num width;

Color col; fields (compound) Data definition!

Image render() {
return rect-img (width, height, col);

¥

(concrete) method
implementation

(concrete) class

Num height;

(concrete) method
implementation

CS450 vs OO Comparison

CS 450 Design Recipe OO0 Programming

- Compound data (struct) have - Compound data (class) group
fields, separate fns process data fields and methods together!

A Simple OO Example: Compare to CS450

interface Shape
Image render();

T

|
(itemization) Data definition item |

(itemization) Data definition

class Circle class Rectangle (itemization) Data definition item
Num radius; Num width; Num height;
Color col; (compound) Data definition Color col; (compound) Data definition
Image render() { Image render() {
return circ-img (radius, col); return rect-img (width, height, col);
} function implementation } function implementation
(one cond clause) for (one cond clause) for

Shape data (split up) Shape data (split up)

CS450 vs OO Comparison

CS 450 Design Recipe OO0 Programming

- Compound data (struct) have - Compound data (class) group
fields, separate fns process data fields and methods together!

* Itemization Data Defs explicitly < Itemization Data Defs implied by
defined interface / class definitions

CS450 vs OO Comparison

CS 450 Design Recipe OO0 Programming

- Compound data (struct) have - Compound data (class) group
fields, separate fns process data fields and methods together!

* Itemization Data Defs explicitly < Itemization Data Defs implied by

defined interface / class definitions
 Functions organized by the kind + Methods organized by the kind
of data they process! of data they process!
1 function,

1 task, ... processes
1 data definition!

A Simple OO Example: Compare to Ck54450

;5 A Shape is one of:
interface Shape ;5 - Rectangle
Image render(); ;5 - Circle

T

class Circle class Rectangle |
(struct rect [w h col])
Num radius; (struct circ [r col]) Num widthsz;;7§;m height;e//’
Color col; Color col;
Image render() { Image render() {
return circNQg = — —f ' (width, height, col);
} .5 render: Shape -> Image/ F

D= FEMEEr Sl method “dispatch” - 00 does the same!

“concrete”
implementations

“abstract” _—

implementation

(rect-img sh)] <
circ-img sh)]))

[(Circ? sh)

CS450 vs OO Comparison

CS 450 Design Recipe

- Compound data (struct) have
fields, separate fns process data

* Itemization Data Defs explicitly
defined

 Functions organized by the kind
of data they process!

OO0 Programming
» Compound data (class) group
fields and methods together!

* Itemization Data Defs implied by
interface / class definitions

« Methods organized by the kind of
data they process!

 Explicit itemization dispatch (cond) * Implicit itemization dispatch

;5 (explicit) render: Shape -> Image
(define (render sh)

(cond

[(Rect? sh) (rect-img sh)]

| (Circ? sh) (circ-img sh)]))

55 (implicit) render: Shape -> Image

Image render (Shape sh)
if (sh instanceof Rectangle){ rect-img(sh); }
else it (sh instanceof Circle){ circ-img(sh); }

A Simple OO Example: Constructors

interface Shape
Image render();

Circle ¢ = Circle(10, blue); T

Image img = c.render();

class Circle

Num radius; Color col;
/] ..
Circle(r, c) {

radius = r;

col = c;
;

Q: Where are method implementations
for an object instance “stored”?

class Rectangle

Num width; Num height;

height =

/] ..

Rectangle(w, h, c) {
width = w;
col = ¢

¥

h;

Color col;

A: It's another (hidden) field (see “method table”)!

CS450 vs OO Comparison

CS 450 Design Recipe OO0 Programming

- Compound data (struct) have » Compound data (class) group
fields, separate fns process data fields and methods together!

* Itemization Data Defs explicitly < Itemization Data Defs implied by

defined interface / class definitions
 Functions organized by the kind « Methods organized by the kind of
of data they process! data they process!
 Explicit itemization dispatch (cond) * Implicit itemization dispatch
« Struct Constructor explicitly « Object Constructor implicitly

Includes method defs ??? includes method defs

OO-style Constructors ... with structs!

Method

Shape “dispatch” function Shape “interface” definition |mplementat|on
(as a field)

;; render : Shape -> Image (struct Shape [render-method])

. / circ
(define (render sh) (struct circ Shapeg [r col]) constructor
(cond — ~"-7 mustbe

Super/struct given 3 args

[(Rect? sh) (rect-img sh)]

irc? T — |
[(Circ? sh) (circ-img sh Shape constructors

\
‘ (defM
(make method an optional [circ-render- circ-img])

argument, with default) (circ circ-render-fn r col)

default

Then create same

Q: Where are method implementations 1
definitions for rect ..

for an object instance “stored”?

A: It's another (hidden) field!

CS450 vs OO Comparison

CS 450 Design Recipe OO0 Programming

« Compound data (struct) has « Compound data (class) group
(possibly function) fields! fields and methods together!

* Itemization Data Defs explicitly < ltemization Data Defs implied by
defined interface / class definitions

 Functions organized by the kind « Methods organized by the kind of
of data they process! data they process!

 Explicit itemization dispatch (cond) * Implicit itemization dispatch

« Struct Constructor explicitly « Object Constructor implicitly

iIncludes method defs includes method defs

CS450 vs OO Comparison

CS 450 Design Recipe OO Programming
» Compound data (struct) has » Compound data (class) group
(possibly function) fields! fields and methods together!
- Itemization Data Defs explicitly -« Itemization Data Defs implied by
defined interface / class definitions
 Functions organized by the kind < Methods organized by the kind of
of data they process! data they process!

 Explicit itemization dispatch (cond) ¢ Implicit itemization dispatch

 Constructor explicitly includes Constructor implicitly includes
method defs method defs

 Data to process is explicit arg Data to process (“this”) is Implicit arg

f a/f(/f(d/‘%

There's Nothing Special About OOP!

* A typical (interface and classes) OOP program is just a
specific data definition / function design choice!

* Imposed by the language!

« Data definition:
* itemization of compound data ...
« ... where processing functions are grouped with other data fields!

« Function design:

« Function to process this itemization data is split into separate
“methods” (one for each kind of item in the itemization)

fwf(/l(d/‘?

A Simple OO Example: Compare to CS450

Data definition:

ltemization of
compound dat

;; fields are radius and color

interface Shape

5 Image render(); —— Circle .
55 Interp: Represen a shape image
;5 A Rectangle is a (rect Num Num Color)

;5 A Circle is a (circ Num Color)

;5 A Shape is one of:
;5 - Rectangle

;; fields are width, height, color

class Circle

itemization item

Num radius x. Compound data fields

Color col; (struct circ [r col])

Image render() {

}

return circ-img (radius, col);

class Rectangle itemization item

Num width; Num height;,\ Compound data fie
Color col;

(struct rect [w h col])

Image render() {
return rect-img (width, height, col);

¥

lds

cﬁ(/f(/(/f(d/‘y

A Simple OO Example: Compare to CS450

;5 A Shape is one of:

interface Shape ;5 - Rectangle

Image render(); 55 - Circle ,
T ;5 Interp: Represents a shape image
class Circle class Rectangle
Num radius; Num width; Num height;
Color col; Color col;
Image render() Image regger() {
return circ-img~\{_radius, col); return|rect-img (width, height, col);
(one cond clause of a) L render: Shape -> Image ~ (one cond clause of a)
Shape-processing function, (dekine (render sh) Shape-processing function,
as a (hidden) field! (cond as a (hidden) field!

In 00 langs, this “dispatch” function |[[(rect? s

: (render-rectssh)] | calls item-specific
is implicitly written for you [(circ? sh)

render-circ“sh)])) implementations

A Simple OO Example: as structs'!

interface Shape
Image render();

T

(required) method, as field

(struct Shape [render])

class Circle

Num radius;

“Implements” interface

Color col;

(struct circ Sﬁ%pe [r col])

Image render

(Circle this) { Image render (Rectangle this) {
return circ-img (radius, col);

}

;5 render-circ : Circle -> Image f
(define (render-circ this) ..)

class Rectangle

\ Num width; Num height; \
blor col;

“Implements” interface

(struct rect Sﬁgpe [w h col])

return rect-img (width, height, col);

;5 render-rect : Rectangle -> Image
(define (render-rect this) ..)

In OO langs, every method implicitly
has a class instance arg (“this™!)

A Simple OO Example: as structs'!

interface Shape
Image render();

T

(required) method, as field

(struct Shape [render])

class Circle

Num radius;
Color col;

Image render (Circle this) { Image render (Rectangle this

}

return circ-img (radi\s, col);

g

class Rectangle

Num width; Num height;
Color col;

{
return rect-img (width,ghgight, col);

;5 render-circ : Ciﬁé&g -> Image
(define (render-circ this) ..)

;5 render-rect : Rét$angle -> Image
(define (render-rect this) ..)

In OO langs, every method implicitly
has a class instance arg (“this™!)

OO-style Constructors ... with structs!

manually write alternate Shape
constructors, with explicit method impls

(struct Shape [render])

(method arg optional,

(define (mk-circ r col default
[circ-render-fn render-circ])

(cing\girc—render—fn r col)

(define (mk-rect w h col with default)
[rect-render-fn render-rect])
(rectﬁfect—render—fn w h col)

T~ /

(strucf\zirc Shapg/Tr col])

/

(define (Pender—cirf/ihis))

o~

(struct rect Shape [w h/col])

/

(define (render-rect this) ..)

OO-style dispatch ... with structs!

450-style “dispatch” function (struct Shape [[\ender‘])
5 r‘gnder‘ : Shape -> Image 00-Style “dispatch” /
(define (render sh)
(cond ;; render : Shape/-> Image
[(rect? sh) (render-rect sh)] » (define (render/sh)
[(circ? sh) (renqer—circ\EhQJ)) Shape-render shZ/Qh))

struct “getter”

N £ . & N N \
;5 render-circ : Circle -> Image ;5 render-rect : Rectangle -> Image

(define (render-circ this) ..) (define (render-rect this) ..)

00 vs CS450 Comparison

OO Programming CS 450 Design Recipe
« interface + class imply specific <« Explicitly define any kind of
(Itemization-of-compound) Data Def Data Def
e class (compound data) has fields e struct (compound data) fields
and methods together! typically do not include functions
« class constructor implicitly adds < data processing function is
method impls to created object separate definition
« data value to process is implicit * data value to process is explicit
method arg function arg

 Implicit itemization dispatch « Explicit itemization dispatch (cond)

00 vs CS450 “O0"-Style Comparison

OO Programming CS 450 “0O0-style” Design Recipe

« interface + class imply specific . Explicitly define
(Itemization-of-compound) Data Def (itemization-of-compound) Data Def

e class (compound data) has fields =% « Include methods in struct
and methods together! (compound data) fields

e class constructor implicitly adds =< Define additional constructor with
method impls to created object explicit method args

- data value to process Is implicit # « data value to process is explicit
method arg furettor “method” arg

 Implicit itemization dispatch » « Define explicit 00-style dispatch

A Simple OO Example: Extensions?

Add a rotate method?

Add a Triangle?

Easy: Just define another class

interface Shape
Image render();

1

class Circle
Num r; Color col;

Image render() {
return circ-img (r, col);

¥

class Rectangle

Num w; Num h; Color col;

Image render() {
return rect-img (w, h, col);

}

class Triangle
Num sidel;

Image render() {
return tri-img (

}

))&

A Simple OO Example: Extensions?

Add rotate method?

interface Shape

Image render(); Hard!: must update interface
Image rotate(); and every existing class
T (might not have access!)

class Circle
Num r; Color col;

Image render() {
return circ-img (r, col);

¥

Circle rotate() { .. }

class Rectangle
Num w; Num h; Color col;

Image render() {
return rect-img (w, h, col);

}

Rectangle rotate() { .. }

class Triangle
Num sidel;

Image render() {
return tri-img ();

¥

Triangle rotate() { .. }

Shapes, CS450 style

Add a Triangle?

Hard!: must;

;5 render: Shape -> Image

(define (render sh)

(cond
[(rect? sh) (render-rect sh)]
[(circ? sh) (render-circ sh)]))

55 A Shape is one of:

;5 - Rectangle

;3 - Circle

;5 Interp: Represents a shape image

;3 A Rectangle is a (mk-rect Num Num Color)
;; fields are width, height, color

(struct rect [w h col])

;5 A Circle is a (mk-circ Num Color)

;; fields are radius and color

(struct circ [r col])

Shapes, CS450 style

Add a Triangle? ;; A Shape is one of:
;5 - Rectangle
Hard!: must: ;3 - Circle
- update data def, 5> Triangle
- define new struct, ;5 Interp: Represents a shape image

;3 A Rectangle is a (mk-rect Num Num Color)
;5 fields are width, height, color
(struct rect [w h col])

\\\\\\ ;5 A Circle is a (mk-circ Num Color)
;5 fields are radius and color
;; render: Shape -> Image AN (struct circ [r col])
(define (render sh) \\\\ ;5 A Triangle is a (mk-tri ..)
(cond > flelds are ..
[(rect? sh) (render-rect sh)] (struct tri [..])
[(circ? sh) (render-circ sh)]))

Shapes, CS450 style

Add a Triangle?

Hard!: must:

- update data def,

- define new struct,

- update every existing
“dispatch” function
(might not have access!)

\

;1 render: Shape -> Image
(define (render sh)
(¢ond
(rect? sh) (render-rect sh)]
[{circ? sh) (render-circ sh)]
[(tri? sh) (render-tri sh)]))

55 A Shape is one of:

;5 - Rectangle

;3 - Circle

;5 - Triangle

;5 Interp: Represents a shape image

;3 A Rectangle is a (mk-rect Num Num Color)
;; fields are width, height, color

(struct rect [w h col])

;5 A Circle is a (mk-circ Num Color)

;; fields are radius and color

(struct circ [r col])

;35 A Triangle is a (mk-tri ..)

;; fields are ..

(struct tri [..])

Shapes, CS450 style

Add a rotate function?

Easy!: Just define
another function!

;5 A Shape is one of:

;5 - Rectangle

;3 - Circle

;5 Interp: Represents a shape image

;5 render: Shape -> Image
(define (render sh)
(cond
[(rect? sh) (render-rect sh)]
[(circ? sh) (render-circ sh)]))

;; A Rectangle is a (mk-rect Num Num Color)
;; fields are width, height, color

(struct rect [w h col])

;5 A Circle is a (mk-circ Num Color)

;; fields are radius and color

(struct circ [r col])

| ;; rotate: Shape -> Shape

(define (rotate sh)
(cond
[(rect? sh) (rotate-rect sh)]
[(circ? sh) (rotate-circ sh)]))

FP vs OO Comparison

Add another “item” to itemization data def, e.g, Triangle
* 0O0: Easy

e Just define another class

« class methods only process that kind of item
- Implicit “Dispatch” function(s) automatically updated

e FP: Hard

« Must update data def and define another struct

» Explicit “dispatch” function(s) must be manually updated
with another cond clause

Add a new operation for itemization data def, eg, rotate
* 00: Hard

« Must update interface, and
« add new method to every class that implements it

* FP: Easy
« Just define another function

A better way? Mixins and classes as Results

(class “arithmetic”)

« AMixin Is a function, whose input and output is a class!

 Available in many languages:
* RACKET
* JAVASCRIPT
* SCALA

* (add-rotate-mixin class-without-rotate)
=> class-with-rotate

Thankyou - CS450!

Thank you ain amazing serster! Can’t Spell!
! == ; | e o =
41 JCS4500] |- 50!
1o I w .
1 U Too much hair!
\ /
== / -
| CS450~ A5()

[hank 4ou fm a }/é@at semester!

create a picture for the last lecture in CS450

