ecture04

CS 420 / CS 620
Computing With DFAs

Monday, September 15, 2025
UMass Boston Computer Science

N/
o=
o=
DAOD
o

ﬁ/{/ma/wem/(zf‘s’

« HW 1
» Due: 9/15 12pm (noon) EDT

« HW 1
 Out: 9/15 12pm (noon) EDT
 Due: 9/22 12pm (noon) EDT

e Check office hour times and locations on course web site

@

[JEEEY

A Computation Model Is ... (from lecture 1)

« Some definitions ...

e.g., A Natural Number is either
- Zero
- a Natural Number + 1

« And rules that describe how to compute with the definitions ...

To add two Natural Numbers:

1. Add the ones place of each num

2. Carry anything over 10

3. Repeat for each of remaining digits ...

A COmputatiOn Model Is ... (from lecture 1)

@ docs.python.org/3/reference/grammar.html

10. Full Grammar specification

This is the full Python grammar, derived directly from the grammar used to generate the CPython pe

L] [] []
PY S O m e d efl n I tl O n S Grammar/python.gram). The version here omits details related to code generation and error recovet
eeo .

s==s=========c=========== START OF THE GRAMMAR =========================

General grammatical elements and rules:

#
#
* Strings with double quotes (") denote SOFT KEYWORDS

* Strings with single quotes (') denote KEYWORDS

* Upper case names (NAME) denote tokens in the Grammar/Tokens file

* Rule names starting with "invalid " are used for specialized syntax errors

- These rules are NOT used in the first pass of the parser.

- Only if the first pass fails to parse, a second pass including the invalid
rules will be executed.

- If the parser fails in the second phase with a generic syntax error, the

Location of the generic failure of the first pass will be used (this avoids
reporting incorrect locations due to the invalid rules).

- The order of the alternatives involving invalid rules matter

#* (like anu rule in PFG).

« And rules that describe how to compute with the definitions ...

@ docs.python.org/3/reference/executionmodel.html

4. Execution model
4.1. Structure of a program

A Python program is constructed from code blocks. A block is a piece of Python program text that is execute:
a unit. The following are blocks: a module, a function body, and a class definition. Each command typed intel
tively is a block. A script file (a file given as standard input to the interpreter or specified as a command line &
ment to the interpreter) is a code block. A script command (a command specified on the interpreter commant
with the -c option) is a code block. A module run as a top level script (as module __main__) from the comm:
line using a -m argument is also a code block. The string argument passed to the built-in functions eval() a

exec() is a code block.

A code block is executed in an execution frame. A frame contains some administrative information (used for .
bugging) and determines where and how execution continues after the code block's execution has complete

4 2 Namina and hindina

Last [rne

A Computation Model Is ... (from lecture 1)

DEFINITION

« Some definitions ...

A finite automaton is a S-tuple (Q), X, 4, qo, F'), where

1. @ is a finite set called the states,

2. ¥ is a finite set called the alphabet,

3. 0: Q x ¥—Q is the tramnsition function,
4. qo € Q is the start state, and

5. F C Q is the set of accept states.

« And rules that describe how to compute with the definitions ...

P??7?

Sipser Fig 1.4

Computation with DFAS (JFLAP demo)

|
« DFA: }o ! e

 Input: “1101"

HINT: always work out concrete
examples to understand how a
machine (i.e.,, “program”) works

DFA Computation Rules

Informally

Given
« A DFA (~ a “Program”)
« and Input = string of chars, eg “1101"

A DFA computation (~ “Program run”):
o Starts in start state

« Repeats:
« Read 1 char from Input, and
« Change state according to transition rules

Result of computation:
« Accept if last state is Accept state
« Reject otherwise

DFA Computation Rules

Informally

1. Q is a finite set called the states,

2. X is a finite set called the alphabet,

3. §: Q x ¥—Q is the transition function,
4. gy € Q is the start state, and

5. FC

. F C Q is the set of accept states.

Glven

« A DFA (~ a “Program”)
« and Input = string of chars, eg “1101"

Formally (i.e., mathematically)

A DFA computation (~ “Program run”):
e Starts In start state

 Repeats:

« Read 1 char from Input, and
« Change state according to transition rules

Result of computation:
« Accept if last state is Accept state
« Reject otherwise

c M =

ow:

DFA Computation Rules

Informally

Given
« A DFA (~ a “Program”)
« and Input = string of chars, eg “1101"

A DFA computation (~ “Program run”):

Formally (i.e., mathematically)

- M = (Q72767QO7F)

W = UW1w2o - Wp

A DFA computation is a sequence of states
o Ty € Q Where:

e Starts In start state

« Repeats:
« Read 1 char from Input, and
« Change state according to transition rules

Result of computation:
« Accept if last state is Accept state
« Reject otherwise

* To = 4o

0: Q X X— Q) is the transition function.

DFA Computation Rules

Informally Formally (i.e, mathematically)
Given
» A DFA (~ a “Program”) - M = (Q,X,09)q0, F)
« and Input = string of chars, eg “1101” e w =|wws--- ﬁ)n
A DFA computation is a.sequence of states
A DFA computation (~ “Program run”): Ty o Iy € Q\\‘;Iv%\e: \
 Starts in start state * | T0[=_40
. Repeats: * |T°; :(5(7“7;_1,?1)7;), for 1 = 1,...,'n
- Read 1 char from Input, and if i=1, r, = 5(ro w;)

« Change state according to transition rules

if i=2, ry= 6(ry, wy)

Result of computation: Ifi=3, r3= 6(r, ws)
« Accept if last state is Accept state
« Reject otherwise

0: Q X X— Q) is the transition function.

DFA Computation Rules

Informally Formally (i.e, mathematically)
Glven
A DFA (~ a “Program”) - M = (Q,%,9,q,F)
« and Input = string of chars, eg “1101” W = WiW3 - Wy
A DFA computation is a sequence of states
A DFA computation (~ “Program run”): ro - T, € Q Where:
o Starts in start state * To = 4o
» Repeats: e r; =0(r;_1,w;), fori=1,...,n

« Read 1 char from Input, and
« Change state according to transition rules

Result of computation:

« Accept if last state is Accept state
« Reject otherwise

0: Q X X— Q) is the transition function.

DFA Computation Rules

Informally Formally (ie, mathematically)
Given
- A DFA (- a “Program”) - M = (Q,%,0,q0, F)
« and Input = string of chars, eg “1101” « W = WiW32 -+ Wy
A DFA computation is a sequence of states
A DFA computation (~ “Program run”): ro - T, € Q Where:
 Starts in start state * To = 4o
» Repeats: e r; =0(r;_1,w;), fori=1,...,n
« Read 1 char from Input, and —
- Change state according to transition rules This is still pretty

verbose ...

Result of computation: .
« Accept If last state is Accept state « Macceptswifr, €F
* Reject otherwise « Mrejectswifr, ¢ F

§: Q X ¥—Q is the transition function

(one-step)

A Multi-Step Transition Function

set of pairs *=“0 or more”

Define a multi-step transition function: §:Q x X" — Q

Y =set of all
possible strings!

Alphabets, Strings, Languages

An alphabet defines “all possible strings”

« An alphabet is a non-empty finite set of SyMboOLlS | (g with non-atonaset
21 p— {0’1} symbols are impossible)

22 — {a?b? Cﬂd’?e?f?g?h?i?j7k717m7n?07p7q3r7S7t7u7v?W7X?Y3z}

* A string is a finite sequence of symbols from an alphabet

01001 abracadabra = Empty string (length 0)
(e symbol is not in the alphabet!)

§: Q X ¥—Q is the transition function

(one-step)

A Multi-Step Transition Function

Define a multi-step transition function: §: Q x X" — Q
 Domain:
+ Input state ¢ € () (doesn't have to be start state)
* Inputstring w = wiw2 -+ Wy where w; € 2
* Range:

 Output state (doesn't have to be an accept state)

(Defined recursively)

e Base case: ...

wtertide: REcCursive Definitions

function factorial(n)

{

Base case if (0) Function is called before

o o
return 1: it is fully defined!

Recursive case else - -
Recursive call with

“smaller” argument

return factorial

« Why is this allowed?
e It's a “feature” (i.e., an axiom!) of the programming language

« Why does this “work”? (why doesn't it loop forever?)
« Because the recursive call always has a “smaller” argument ...
e ... and so eventually reaches the base case and stops

Recursive Definitions

A Natural Number is either:; | use of definition before
it is fully defined!
Base case e Zero, or

Recursive case e the Successor of a Natural Number “smaller” argument

Examples

« Zero

« Successor of Zero (= “one”)

» Successor of Successor of Zero (= “two”)

« Successor of Successor of Successor of Zero (= “three”) ...

Recursive Data Definitions

A node followed by a list

/

‘23 HB H35 Hmﬂ

~ (8 () .~
O O\ ©

Left sub-tree is a binary tree Right sub-tree is a binary tree

Recursive definitions have: - This is a recursive definition:
2 > Node is used before it is fully

- base case and)
data; > defined (but must be “smaller”)

- recursive case e e
(With a “smaller” object)) Note: Where's the base case???

Not good language design! | call it my F’""O”'qo"ar mistake. It Tony Hoare introduced Null references in ALGOL W back in
was the invention of the null

1965 "simply because it was so easy to implement”, says
reference in 1965. Py y P y

Mr. Hoare. He talks about that decision considering it "my
billion-dollar mistake”.

Strings Are Defined Recursively

A String is either:
Base case * the empty string (s), or

Recursive case « xa (non-empty string) where

e xis a string “smaller” argument
e« gisa ‘char’inX

Remember: all strings are
formed with “chars” from
some alphabet set X

Y =set of all
possible strings!

Recursive Data = Recursive Functions

A Natural Number is either:
« Zero, or
* the Successor of a Natural Number

(The structure of)
Recursive functions ...
match the recursively

defined input datal!

function factorial(n)

Base case
return 1;
Recursive case else
return * factorial(-1);

Recursive case must
have “smaller” : .
argument (Most) Recursive functions

are recursive because ...
its Input data is recursively

defined!

A Multi-Step Transition Function

Define a multi-step transition function: §:Q x ¥* — Q

 Domain:
« Input state ¢ €) (doesn’t have to be start state)
* Inputstringlw = wiws2 - Wy where w; € 2.
* Range:

 Output state (doesn’t have to be an accept state)

(Defined recursively)

A

e Base case 5(%5 —

Base case

Recursive Input Data
needs
Recursive Function

A String is either:
he empty string (¢), or

« xa (non-empty string)
where
« xisastring
* aisa‘“char”inZX

A Multi-Step Transition Function

Define a multi-step transition function: §:Q x ¥* — Q

 Domain:
« Input state ¢ € () (doesn’t have to be start state)
* Inputstring w = wiw2 -+ Wy where w; € 2.
* Range:

Recursive Input Data

 Output state (doesn’t have to be an accept state) needs

Recursive Function

A String is either:
 the empty string (¢), or

Recursive case =« xg (non-empty string)
) where

* Base case 6(q’ 5) = q Recursive call “smaller” arsument > XIS astring

e aisa“char’inX
string W\l\
N [|

e Recursive Case 5(q, W wn) —

\—//

where w' = wy - - wy_1

(Defined recursively)

(also called “extended transition function” --- HMU 2.2.4) 0: Q X — Q is the transition ﬁlﬂ(.‘tiﬁﬂ.

A Multi-Step Transition Function

Define a multi-step transition function: §:Q x ©* — Q

e Domain: |
« Input state ¢ €) (doesn't have to b start state)
* Inputstring w = wiws2 -+ Wy where w; € X
’ @gﬁi , Recursive Input Data
 Output state (doesn’t have to be an gccept state) needs
Recursive Function
. . A String is either:
(Defined recursively) . the empty string (&), or
+ xa (non-empty string)
A where
- st
° Base case 6(@; 6) - q . alizzfc';:;g’ inX

e Recursive Case 5((], w'wy,) = 5(5((}, w'), wy,)

where w' = wy - - wy_1

2 /‘w/'a«@é

DFA Computation Rules

Formally (i.e., mathematically)

- M = (Q72757QO7F)

W = UW1w2o - Wp

A DFA computation is a sequence of states
o - Ty € Q Where:

* To = qo

* T; :(5(7“7;_1,’607;), for ¢ = 1,...,72,

This is still pretty
verbose ...

« Macceptswifr €F
* Mrejectswifr &F

DFA Computation Rules

Formally (i.e., mathematically)

- M = (Q72757QO7F)

W = UW1w2o - Wp

» Maccepts w if 6(qo, w) € F

Alphabets, Strings, Languages

An alphabet defines “all possible strings”

« An alphabet is a non-empty finite set of symbols | (e with non-atpnavet
D1 = {O,l} symbols are impossible)

22 — {a"b‘ C‘d‘e‘f'g"h'i"j‘k‘l'm“n‘o‘p'q"r‘S‘t'u“v"w‘x“y‘z}

A string is a finite sequence of symbols from an alphabet

01001 abracadabra = Empty string (length 0)
(e symbol is not in the alphabet!)

o A language IS a set of strings Languages can be infinite
A = {good, bad}

A = {w| w contains at least one 1 and

0 {} T an even number of Os,rfollow the last 1}

The Empty set is a language “the set of all ...” “such that ...”

Machine and Language Terminology

« The language of a machine = set of strings that it accepts

*E.g, A DFA M accepts w string
M recognizes language A Set of strings

it A = {w| M accepts w}

“the set of all ...” “such that...”

Machine and Language Terminology

DFA M accepts w Using L as function mapping
. Machine - Language is
M recognizes lﬂng”age L(M) common notation

L(M) = {w| M accepts w}

Machine and Language Terminology

DFA M accepts w
M recognizes language L(M)
e Language of M = L(M) ={w| M accepts w}

Languages Are Computation Models

« The language of a machine = set of strings that it accepts

« E.g, a DFA recognizes a language

]]]]]]]]]]

A computation model = set of machines it defines e

called the s

a fin called tk lphbt
Qx,\: Q the transition function,
3 h start state, and

et of accept s

2. %is
3.
4:
5. F

« E.g, all possible DFAs are a computation model

= set of set of strings

Thus:|a computation model equivalently = a set of languages

This class Is really about studying sets of languages!

Regular Languages

» first set of languages we will study: regular languages

This class Is really about studying sets of languages!

Regular Languages: Definition

If a deterministic finite automata (DFA) recognizes a language,
then that language is called a regular language.

A Language, Regular or Not?

* [f given: a DFA M
« We know: L(M), the language recognized by M, is a regular language

Proof : If a DFA recognizes a language,
then that language Is called a regular language.

(modus ponens)

e |If given: a Language A

* |s A a regular language?
* Not necessarily!

Proving That a Language Is Regular

Prove: A language L ={ ...} Is a regular language

Proof: . .
Statements Justifications

1. DFA M = (Q,%,0,qo, F) 1. Definition of a DFA
(TODO: actually define M)
(no unbound variables!)

2. DFA M recognizes L 2. TODO: 777
3. |If a DFA recognizes L, 3. Definition of a regular
then L is a regular language language Modus Ponens
4. Language L is a regular 4. Stmts 2 and 3 f rrs T

language (and modus ponens) . p

Then we've proved:

-0

A Language: strings with odd # of 1s

Come up with string examples

. . (in a table), both
* In-class exercise (submit to gradescope): - in the language

- and not in the language

¥ ={0,1} . >
If a DFA recognizes a language, How to prove the language Is regular?

then that language is called a regular language:

Prove there's a DFA recognizing it!

Proving That a Language I1s Regular

Prove: A language L ={ ...} Is a regular language

Proof:
Statements

1. DFA M = (Q,E,5,QO,F)
(TODO: actually define M)
(no unbound variabiesi)

2. DFA M recognizes L

3. If a DFA recognizes L,
then L Is a regular language

4. Language L is a regular
language

Justifications
1. Definition of a DFA

2. TODO: ???
3. Definition of a regular
language

4, Stmts 2 and 3
(and modus ponens)

Designing Finite Automata: Tips
e Input is read only once, one char at a time (can’t go back!)

« Must decide accept/reject after that

« States = the machine’s “memory”!
e ## states must be decided in advance
e Think about what information must be “remembered”.

- Every state/symbol pair must have a defined transition (for DFAS)

« Come up with examples to help you!

Design a DFA: accept strs with odd

e States:

e 2 states:
e seen even 1s so far

e seen odds 1s so far

* Alphabet: @ and 1
0
ANy A)
- Transitions: @.@
1 O 1 O

- Start / Accept states: @.

1

1s

Proving That a Language I1s Regular

Prove: A language L ={ ...} Is a regular language

Proof:
Statements Justifications
M1. DFA M = 1. Definition of a DFA

See state diagram
(only if problem allows!)

2. DFA M recognizes L 2. TODO: 777

3. If a DFA recognizes L, 3. Definition of a regular

then L is a regular language language
4. Language L Is a regular 4, Stmts 2 and 3

language (and modus ponens)

“Prove” that DFA recognizes a language

* In-class exercise (part 2):

01
11
1101

These columns must match
for the DFA to be “correct”!

—

Yes
No
Yes

Confirm the DFA:

- Accepts strings in
the language

- Rejects strings not
in the language

Not a real proof, but ...

In this class, a table like this
is sufficient to “prove” that a
DFA recognizes a language

Analogous to what programmers do (write tests)
to “prove” their computation (code) “works”

Proving That a Language Is Regular

Prove: A language L ={ ...} Is a regular language

Proof: . .
Statements Justifications
1. DFA M = 1. Definition of a DFA
See state diagram el N
(only i problem allows) e i ol bl e cint
2. DFA M recognizes L M 2. See examples table
3. If a DFA recognizes L, 3. Definition of a regular

then L is a regular language

4. Language L is a regular 4,

language

language

Stmts 2 and 3

(and modus ponens)
B

In-class exercise 2

Remember:

To understand the language,
always come up with string
examples first (in a table)! Both:
- in the language

- and not in the language

« Prove: the following language is a regular language:

 A={w|whas exactly three 1’s }

» Where 3=1{0, 1},

DEFINITION
A finite automaton is a 5-tuple (Q, X, 6, qo, F'), where

1. @ is a finite set called the states,

2. ¥ is a finite set called the alphabet,

3. 0: Q x X—Q is the transition function,
4. qp € Q is the start state, and

5. F C Q is the set of accept states.

You will need this later in the
proof anyways!

Proving That a Language Is Regular

Prove: A language L ={ ...} Is a regular language

Proof: . .
Statements Justifications

1. DFA M = (Q,%,0,qo, F) 1. Definition of a DFA
(TODO: actually define M)
(no unbound variables!)

2. DFA M recognizes L 2. TODO: 777

3. If a DFA recognizes L, 3. Definition of a regular
then L is a regular language language

4. Language L Is a regular 4, Stmts 2 and 3

language (and modus ponens)

In-class exercise Solution

So a DFA’s computation

» Design finite automata recognizing: recognizes simple string
* {w | w has exactly three 1’s} patterns?

. States: Yes!
* Need one state to represent how many 1's seen so far
* Q={90 91, 92 93 94} Have you ever used a

programming language
feature to recognize
simple string patterns?

- Alphabet: ¥={0, 1}

()

e Transitions:

O

e Start state:
o qO

» Accept states:

* {93}

Submit 9/17 in-class work to gradescope

