CS 420 / CS 620 Computing With DFAs

Monday, September 15, 2025 UMass Boston Computer Science

Announcements

- HW 1
 - <u>Due</u>: 9/15 12pm (noon) EDT
- HW 1
 - Out: 9/15 12pm (noon) EDT
 - <u>Due</u>: 9/22 12pm (noon) EDT
- Check office hour times and locations on course web site

A Computation Model is ... (from lecture 1)

• Some **definitions** ...

e.g., A **Natural Number** is either

- Zero
- a Natural Number + 1

• And rules that describe how to compute with the definitions ...

To add two Natural Numbers:

- 1. Add the ones place of each num
- 2. <u>Carry</u> anything over 10
- 3. Repeat for each of remaining digits ...

A Computation Model is ... (from lecture 1)

• Some definitions ...

docs.python.org/3/reference/grammar.html

10. Full Grammar specification

This is the full Python grammar, derived directly from the grammar used to generate the CPython pa Grammar/python.gram). The version here omits details related to code generation and error recover

• And rules that describe how to compute with the definitions ...

4. Execution model

4.1. Structure of a program

A Python program is constructed from code blocks. A *block* is a piece of Python program text that is executed a unit. The following are blocks: a module, a function body, and a class definition. Each command typed intentively is a block. A script file (a file given as standard input to the interpreter or specified as a command line a ment to the interpreter) is a code block. A script command (a command specified on the interpreter command with the <u>-c</u> option) is a code block. A module run as a top level script (as module <u>main</u>) from the commaline using a <u>-m</u> argument is also a code block. The string argument passed to the built-in functions <u>eval()</u> a exec() is a code block.

A code block is executed in an execution frame. A frame contains some administrative information (used for bugging) and determines where and how execution continues after the code block's execution has complete

4.2 Naming and binding

A Computation Model is ... (from lecture 1)

• Some definitions ...

DEFINITION

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set called the *states*,
- 2. Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- **4.** $q_0 \in Q$ is the **start state**, and
- **5.** $F \subseteq Q$ is the **set of accept states**.
- And rules that describe how to compute with the definitions ...

???

Computation with DFAs (JFLAP demo)

• Input: "1101"

HINT: always work out concrete examples to understand how a machine (i.e., "program") works

Informally

Given

- A DFA (~ a "Program")
- and Input = string of chars, e.g. "1101"

A **DFA** <u>computation</u> (~ "Program run"):

- Starts in start state
- Repeats:
 - Read 1 char from Input, and
 - Change state according to transition rules

Result of **computation**:

- Accept if last state is Accept state
- Reject otherwise

- 1. Q is a finite set called the *states*,
- 2. Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- **4.** $q_0 \in Q$ is the *start state*, and
- **5.** $F \subseteq Q$ is the **set of accept states**.

Informally

Formally (i.e., mathematically)

Given

- A DFA (~ a "Program") \longrightarrow M=
- and Input = string of chars, e.g. "1101" \longrightarrow w =

A **DFA** <u>computation</u> (~ "Program run"):

DFA Computation Rules

- Starts in start state
- Repeats:
 - Read 1 char from Input, and
 - Change state according to transition rules

Result of computation:

- Accept if last state is Accept state
- Reject otherwise

Informally

Given

- A **DFA** (~ a "Program")
- and Input = string of chars, e.g. "1101"

A **DFA** <u>computation</u> (~ "Program run"):

- Starts in start state
- Repeats:
 - Read 1 char from Input, and
 - Change state according to transition rules

Result of computation:

- Accept if last state is Accept state
- **Reject** otherwise

Formally (i.e., mathematically)

- $M = (Q, \Sigma, \delta, q_0, F)$
- $w = w_1 w_2 \cdots w_n$

A DFA computation is a sequence of states r_0 , ..., $r_n \in Q$ where:

 $\rightarrow \cdot r_0 = q_0$

Informally

Given

- A DFA (~ a "Program")
- and Input = string of chars, e.g. "1101"

A **DFA** <u>computation</u> (~ "Program run"):

- Starts in start state
- Repeats:
 - Read 1 char from Input, and
 - Change state according to transition rules

Result of computation:

- Accept if last state is Accept state
- **Reject** otherwise

Formally (i.e., mathematically)

•
$$M = (Q, \Sigma, \delta, q_0, F)$$

•
$$w = w_1 w_2 \cdots w_n$$

A DFA computation is a sequence of states $r_0, ..., r_n \in Q$ where:

$$\bullet$$
 $r_0 = q_0$

$$\rightarrow \bullet | r_i = \delta(r_{i-1}, w_i), \text{ for } i = 1, \dots, n$$

if
$$i=1, r_1 = \delta(r_0, w_1)$$

if
$$i=2$$
, $r_2 = \delta(r_1, w_2)$

if
$$i=3$$
, $r_3 = \delta(r_2, w_3)$

Informally

Given

- A DFA (~ a "Program")
- and Input = string of chars, e.g. "1101"

A **DFA** <u>computation</u> (~ "Program run"):

- Starts in start state
- Repeats:
 - Read 1 char from Input, and
 - Change state according to transition rules

Result of computation:

- Accept if last state is Accept state
- Reject otherwise

Formally (i.e., mathematically)

- $M = (Q, \Sigma, \delta, q_0, F)$
- $w = w_1 w_2 \cdots w_n$

A DFA computation is a sequence of states r_0 , ..., $r_n \in Q$ where:

• $r_0 = q_0$

$$\rightarrow \cdot r_i = \delta(r_{i-1}, w_i), \text{ for } i = 1, \dots, n$$

Informally

Given

- A DFA (~ a "Program")
- and Input = string of chars, e.g. "1101"

A **DFA** <u>computation</u> (~ "Program run"):

- Starts in start state
- Repeats:
 - Read 1 char from Input, and
 - Change state according to transition rules

Formally (i.e., mathematically)

- $M = (Q, \Sigma, \delta, q_0, F)$
- $w = w_1 w_2 \cdots w_n$

A **DFA computation** is a <u>sequence of states</u> $r_0, ..., r_n \in Q$ where:

- $r_0 = q_0$
- $r_i = \delta(r_{i-1}, w_i)$, for i = 1, ..., n

This is still pretty verbose ...

Result of computation:

- Accept if last state is Accept state-
- **Reject** otherwise

- \rightarrow *M* accepts *w* if $r_n \in F$
 - *M* rejects *w* if $r_n \notin F$

 $\delta \colon Q \times \Sigma \longrightarrow Q$ is the transition function

A Multi-Step Transition Function

set of pairs

* = "0 or more"

Define a **multi-step transition function**: $\hat{\delta}: Q \times \Sigma^* \to Q$

 Σ^* = set of all possible strings!

Alphabets, Strings, Languages

An alphabet defines "all possible strings"

(strings with non-alphabet symbols are impossible)

An alphabet is a <u>non-empty finite set</u> of symbols

$$\Sigma_1 = \{0,1\}$$

$$\Sigma_2 = \{\mathtt{a},\mathtt{b},\mathtt{c},\mathtt{d},\mathtt{e},\mathtt{f},\mathtt{g},\mathtt{h},\mathtt{i},\mathtt{j},\mathtt{k},\mathtt{l},\mathtt{m},\mathtt{n},\mathtt{o},\mathtt{p},\mathtt{q},\mathtt{r},\mathtt{s},\mathtt{t},\mathtt{u},\mathtt{v},\mathtt{w},\mathtt{x},\mathtt{y},\mathtt{z}\}$$

A string is a <u>finite</u> <u>sequence</u> of <u>symbols</u> from an <u>alphabet</u>

01001 abracadabra

Empty string (length 0)

(ε symbol is not in the alphabet!)

 $\delta: Q \times \Sigma \longrightarrow Q$ is the transition function

A Multi-Step Transition Function

Define a multi-step transition function: $\hat{\delta}: Q \times \Sigma^* \to Q$

- Domain:
 - Input state $q \in Q$ (doesn't have to be start state)
 - Input string $w = w_1 w_2 \cdots w_n$ where $w_i \in \Sigma$
- Range:
 - Output state (doesn't have to be an accept state)

(Defined recursively)

• <u>Base</u> case: ...

Interlude: Recursive Definitions

- Why is this <u>allowed</u>?
 - It's a "feature" (i.e., an axiom!) of the programming language
- Why does this "work"? (Why doesn't it loop forever?)
 - Because the recursive call always has a "smaller" argument ...
 - ... and so eventually reaches the base case and stops

Recursive Definitions

Examples

- Zero
- Successor of Zero (= "one")
- Successor of Successor of Zero (= "two")
- Successor of Successor of Successor of Zero (= "three") ...

Recursive Data Definitions

Recursive definitions have:

- base case and
- <u>recursive case</u> (with a "smaller" object)

```
/* Linked list Node*/
class Node {
   int data;
   Node next;
}

Not good language design!
```

This is a <u>recursive definition</u>:

Node is used before it is fully defined (but must be "smaller")

Note: Where's the base case???

I call it my billion-dollar mistake. It was the invention of the null reference in 1965.

— Tony Hoare —

Tony Hoare introduced Null references in ALGOL W back in 1965 "simply because it was so easy to implement", says Mr. Hoare. He talks about that decision considering it "my billion-dollar mistake".

Strings Are Defined Recursively

Remember: all strings are formed with "chars" from some alphabet set Σ

 Σ^* = set of all possible strings!

Recursive Data ⇒ Recursive Functions

its input data is recursively

defined!

match the recursively

defined input data!

A Multi-Step Transition Function

Define a **multi-step transition function**: $\hat{\delta}: Q \times \Sigma^* \to Q$

- Domain:
 - Input state $q \in Q$ (doesn't have to be start state)
 - Input string $w = w_1 w_2 \cdots w_n$ where $w_i \in \Sigma$
- Range:
 - Output state (doesn't have to be an accept state)

Recursive Input Data needs Recursive Function

(Defined recursively)

Base case $\hat{\delta}(q,arepsilon)=$

Base case A **String** is either:

- the **empty string** (ε), or
- xa (non-empty string) where
 - x is a **string**
 - a is a "char" in Σ

A Multi-Step Transition Function

Define a multi-step transition function: $\hat{\delta}: Q \times \Sigma^* \to Q$

- Domain:
 - Input state $q \in Q$ (doesn't have to be start state)
 - Input string $w = w_1 w_2 \cdots w_n$ where $w_i \in \Sigma$
- Range:
 - Output state (doesn't have to be an accept state)

Recursive Input Data needs Recursive Function

(Defined recursively)

• Base case

$$\hat{\delta}(q,\varepsilon) = q$$

string

Recursive call

A **String** is either:

"smaller" argument

• the **empty string** (ε), or

Recursive case xa (non-empty string) where

 \rightarrow • x is a string

• a is a "char" in Σ

Recursive Case

$$\hat{\delta}(q, w'w_n) = \delta(\hat{\delta}(q, w'), y)$$

where
$$w' = w_1 \cdots w_{n-1}$$

A Multi-Step Transition Function

Define a multi-step transition function: $\hat{\delta}: Q \times \Sigma^* \to Q$

- Domain:
 - Input state $q \in Q$ (doesn't have to be start state)
 - Input string $w = w_1 w_2 \cdots w_n$ where $w_i \in \Sigma$
- Range:
 - Output state (doesn't have to be an accept state)

(Defined recursively)

- ullet Base case $\hat{\delta}(q,arepsilon)=q$
- Recursive Case $\hat{\delta}(q,w'w_n) = \hat{\delta}(\hat{\delta}(q,w'),w_n)$ where $w' = w_1 \cdots w_{n-1}$

Recursive Input Data needs Recursive Function

A **String** is either:

- the **empty string** (ϵ), or
- xa (non-empty string) where
 - x is a string
 - a is a "char" in Σ

Informally

Given

- A DFA (~ a "Program")
- and Input = string of chars, e.g. "1101"

A DFA computation (~ "Program run"):

- Starts in start state
- Repeats:
 - Read 1 char from Input, and
 - Change state according to transition rules

Result of computation:

- Accept if last state is Accept state
- Reject otherwise

Formally (i.e., mathematically)

- $M = (Q, \Sigma, \delta, q_0, F)$
- $w = w_1 w_2 \cdots w_n$

A **DFA computation** is a <u>sequence of states</u> $r_0, ..., r_n \in Q$ where:

- $r_0 = q_0$
- $r_i = \delta(r_{i-1}, w_i)$, for i = 1, ..., n

This is still pretty verbose ...

- *M* accepts w if $r_n \in F$
- *M* rejects *w* if $r_n \notin F$

Informally

Given

- A DFA (~ a "Program")
- and Input = string of chars, e.g. "1101"

A **DFA** <u>computation</u> (~ "Program run"):

- Starts in start state
- Repeats:
 - Read 1 char from Input, and
 - Change state according to transition rules

Result of computation:

- Accept if last state is Accept state
- **Reject** otherwise

Formally (i.e., mathematically)

- $M = (Q, \Sigma, \delta, q_0, F)$
- $w = w_1 w_2 \cdots w_n$

A DFA computation is a sequence of states $r_0, ..., r_n \in Q$ where:

- $r_0 = q_0$
- $r_i = \delta(r_{i-1}, w_i)$, for i = 1, ..., n

- *M* accepts w if $\hat{\delta}(q_0,w) \in F$
- *M* rejects *w* if $r_n \notin F$

Alphabets, Strings, Languages

An alphabet defines "all possible strings"

(strings with non-alphabet symbols are impossible)

An alphabet is a <u>non-empty finite set</u> of symbols

$$\Sigma_1 = \{0,1\}$$

$$\Sigma_2 = \{ a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z \}$$

• A string is a finite sequence of symbols from an alphabet

01001

abracadabra

Empty string (length 0)

(ε symbol is not in the alphabet!)

A language is a <u>set</u> of strings

$$A = \{ \mathsf{good}, \mathsf{bad} \}$$

 \emptyset { }

The Empty set is a language

Languages can be infinite

 $A = \{w | w \text{ contains at least one 1 and } \}$

an even number of Os, follow the last 1}

"the set of all ..."

"such that ..."

Machine and Language Terminology

The language of a machine = set of strings that it accepts

Machine and Language Terminology

The language of a machine = set of strings that it accepts

• E.g., A DFA
$$M$$
 accepts w
$$M$$
 recognizes language $L(M) \leftarrow L(M) = \{w | M \text{ accepts } w\}$

Using L as function mapping Machine \rightarrow Language is common notation

Machine and Language Terminology

The language of a machine = set of strings that it accepts

- E.g., A DFA M accepts w

 M recognizes language L(M)
- Language of $M = L(M) = \{w | M \text{ accepts } w\}$

Languages Are Computation Models

- The language of a machine = set of strings that it accepts
 - E.g., a **DFA recognizes** a **language**
- A **computation model** = <u>set of machines</u> it defines
 - E.g., all possible DFAs are a computation model

DEFINITION

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set called the states,
- 2. Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- **4.** $q_0 \in Q$ is the *start state*, and
- **5.** $F \subseteq Q$ is the **set of accept states**.

= set of set of strings

Thus: a computation model equivalently = a set of languages

This class is <u>really</u> about studying **sets of languages!**

Regular Languages

• first set of languages we will study: regular languages

This class is <u>really</u> about studying **sets of languages!**

Regular Languages: Definition

If a **deterministic finite automata** (**DFA**) <u>recognizes</u> a language, then **that language** is called a **regular language**.

A Language, Regular or Not?

- If given: a DFA M
 - We know: L(M), the language recognized by M, is a regular language

If a DFA <u>recognizes</u> a language, then that language is called a regular language.

(modus ponens)

- If given: a Language A
 - Is A a regular language?
 - Not necessarily!

<u>Proof</u>: ??????

Proving That a Language is Regular

Prove: A language $L = \{ ... \}$ is a regular language

Proof:

Statements

- 1. **DFA** $M = (Q, \Sigma, \delta, q_0, F)$ (TODO: actually define M) (no unbound variables!)
- 2. DFA *M* recognizes *L*
- 3. If a DFA recognizes L, then L is a regular language
- 4. Language *L* is a regular language

Justifications

1. Definition of a DFA

- **2.** TODO: ???
- 3. Definition of a regular

language

4. Stmts 2 and 3 (and modus ponens)

Modus Ponens

If we can prove these:

- If P then Q
- *P*

Then we've proved:

- *Q*

A Language: strings with odd # of 1s

• In-class exercise (submit to gradescope):

String	In the language?

Come up with string examples (in a table), both

- in the language
- and not in the language

$$\Sigma_{1} = \{0,1\}$$

If a DFA <u>recognizes</u> a language, then that language is called a <u>regular language</u>.

How to prove the language is regular?

Prove there's a DFA recognizing it!

Proving That a Language is Regular

Prove: A language $L = \{ ... \}$ is a regular language

Proof:

Statements

- 1. DFA $M=(Q,\Sigma,\delta,q_0,F)$ (TODO: actually define M) (no unbound variables!)
- 2. DFA *M* recognizes *L*
- 3. <u>If a DFA recognizes L, then L</u> is a regular language
- 4. Language *L* is a regular language

Justifications

1. Definition of a DFA

- 2. TODO: ???
- 3. Definition of a regular language
- 4. Stmts 2 and 3 (and modus ponens)

Designing Finite Automata: Tips

- Input is read only once, one char at a time (can't go back!)
- Must decide accept/reject after that
- States = the machine's "memory"!
 - # states must be decided in advance
 - Think about what information must be "remembered".
- Every state/symbol pair must have a defined transition (for DFAs)
- Come up with examples to help you!

Design a DFA: accept strs with odd # 1s

- States:
 - 2 states:
 - seen even 1s so far
 - seen odds 1s so far

• Alphabet: 0 and 1

• Transitions:

• <u>Start</u> / <u>Accept</u> states:

Proving That a Language is Regular

Prove: A language $L = \{ ... \}$ is a regular language

Proof:

Statements

- ✓ 1. DFA M=See state diagram (only if problem allows!)
 - 2. DFA *M* recognizes *L*
 - 3. <u>If a DFA recognizes L, then L</u> is a regular language
 - 4. Language *L* is a regular language

Justifications

1. Definition of a DFA

- 2. TODO: ???
- 3. Definition of a regular language
- 4. Stmts 2 and 3 (and modus ponens)

"Prove" that DFA recognizes a language

• In-class exercise (part 2):

These columns must match
for the DFA to be "correct"!

`1	'
String	In the language?
1	Yes
0	No
01	Yes
11	No
1101	Yes
3	no

Confirm the DFA:

- Accepts strings in the language
- Rejects strings not in the language

Not a <u>real</u> proof, but ...

In this class, a table like this is sufficient to "prove" that a DFA recognizes a language

Analogous to what programmers do (write tests) to "prove" their computation (code) "works"

Proving That a Language is Regular

Prove: A language $L = \{ ... \}$ is a regular language

Proof:

Statements

1. DFA M=

See state diagram (only if problem allows!)

- 2. DFA *M* recognizes *L*
- 3. <u>If a DFA recognizes *L*, then *L* is a regular language</u>
- 4. Language *L* is a regular language

Justifications

1. Definition of a DFA

Not a <u>real</u> proof, but ...

In this class, an "examples table" is sufficient to "prove" that a DFA recognizes a language

- ✓ 2. See examples table
 - 3. Definition of a regular language
 - 4. Stmts 2 and 3 (and modus ponens)

In-class exercise 2

- Prove: the following language is a regular language:
 - $A = \{ w \mid w \text{ has exactly three 1's } \}$
- Where $\Sigma = \{0, 1\}$,

DEFINITION

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set called the *states*,
- 2. Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- **4.** $q_0 \in Q$ is the *start state*, and
- **5.** $F \subseteq Q$ is the **set of accept states**.

Remember:

To understand the language, always come up with string examples first (in a table)! Both:

- in the language
- and not in the language

You will need this later in the proof anyways!

Proving That a Language is Regular

Prove: A language $L = \{ ... \}$ is a regular language

Proof:

Statements

- 1. **DFA** $M=(Q,\Sigma,\delta,q_0,F)$ (TODO: actually define M) (no unbound variables!)
- 2. DFA *M* recognizes *L*
- 3. <u>If a DFA recognizes *L*, then *L* is a regular language</u>
- 4. Language *L* is a regular language

Justifications

1. Definition of a DFA

- **2.** TODO: ???
- 3. Definition of a regular language
- 4. Stmts 2 and 3 (and modus ponens)

In-class exercise Solution

- Design finite automata recognizing:
 - {w | w has exactly three 1's}
- States:
 - Need one state to represent how many 1's seen so far
 - $Q = \{q_0, q_1, q_2, q_3, q_{4+}\}$
- Alphabet: $\Sigma = \{0, 1\}$
- Transitions:

So a DFA's computation recognizes simple string patterns?

Yes!

Have you ever used a programming language feature to <u>recognize</u> <u>simple string patterns</u>?

- Start state:
 - q₀
- Accept states:
 - $\{q_3\}$

Submit 9/17 in-class work to gradescope