UMB (CS622

Nondeterministic Finite Automata (NFAs)
Wednesday September 15, 2021

Deterministic Nondeterministic
computation computation
e Start .
( £
( s
3 L7
| ¥
C reject ( \'



Announcements

« HW1 due Sun 9/19 11:59pm EST

Upload solutions to Gradescope

LaTeX is great!

Handwritten and scanned/photo is perfectly fine

| must be able to read your answers!
« Illegible solutions will not receive any credit

« Please post HW questions to Piazza
« Don’t email me directly
« So others can benefit from the discussion, and potentially help out!

« Monday 9/13 lecture video posted

« Welcome new students!
« Make sure to catch up ASAP



last Time: FINIte State Automaton, a.k.a. DFAS

DEFINITION 1.5

A finite automaton is a S-tuple (Q, X, 0, qo, F'), where

1. @ is a finite set called the states,

2. ¥ is a finite set called the alphabet,

3. 6: Q x —Q is the transition function,
4. qo € Q is the start state, and

5. F C (@ is the set of accept states.

 Key characteristic:
e Has a finite number of states

- l.e, It's a computer with a finite amount of memory
« Can't dynamically allocate

 Often used for text matching SﬂQﬁ@ﬁ —~(en)—



Combining DFAS?

Password Requirements

e DFA

» Passwords must have a minimum length of ten (10) characters - but more is better!

» Passwords must include at least 3 different types of characters:
» upper-case letters (A-Z) <— DFA

DEA ——»>|ower-case letters (a-z)

» symbols or special characters (%, &, *, $, etc.) €<— DFA
»  numbers (0-9) «— DFA

» Passwords cannot contain all or part of your email address<— DFA

» Passwords cannot be re—used<— DFA

s://www.umb.edu/it/password

To match all requirer;lents,
can we combine smaller DFAs? Ny



https://www.umb.edu/it/password

Combini

Ng DFAS

Problem 1:

/ What should be the

transition labels?

/

Combined machine

M : Check special chars

M,: Check uppercase

adds new start state

Problem 2:
Once we enter one of the
machines, can’t go back

to the other onel!

We need a different
kind of machine!

|dea: nondeterminism allows
being in multiple states (i.e.,
multiple machines) at once!

35



Nondeterminism

Deterministic Nondeterministic
computation computation

° Start (.

. ()

states ~/ l\ f\\ Nondeterministic computation
Y can be in multiple states at

. : f \' the same time
reject ( 1

( )

* accept or reject * accept

b k£ Ak Ak— £k



Nondeterministic Finite Automata (NFA)

DEFINITION 1.37 Compare with DFA:
A finite automaton is a S-tuple (Q, X, 0, qo, F'), where
A nondeterministic finite automaton 1. Q is a finite set called the stares,
. 2. Y is a finite set called the alphabet,
IS a S_tuple (Q? 27 5? QUa F)a Where 3. 0: Q x X—=Q is the transition function,
. . 4. qo € Qs the start state, and
1. Q 1S a4 ﬁnlte set Of states, 5.47C Q is the set of accept states.
Difference

2. ¥ is a finite alphabet,
3.0: Q x X.—P(Q) is the transition function,
4. qp € @ 1s the start state, and

5. F C (@ is the set of accept states.

Power set, i.e. a transition
results in set of states



Power Sets

« A power set is the set of all subsets of a set

« Example: S={a, b, c}

 Power set of S =
* {{},{a}, {b}, {c},{a, b}, {a, c},{b,c},{a, b, c}}

« Note: includes the empty set!



Nondeterministic Finite Automata (NFA)

DEFINITION 1.37

A nondeterministic finite automaton
is a S-tuple (Q, X, 6, qo, F'), where

1. () 1s a finite set of states,
2. 3 is a finite alphabet,

Compare with DFA:

A finite automaton is a S-tuple (Q, X, 0, qo, F'), where

1. @ is a finite set called the states,

2. Y is a finite set called the alphabet,

3. 0: Q x X—Q is the transition function,
4. qo € Q is the start state, and

5. F C Q) is the set of accept states.

3.0: Q x X.—>P(Q) is the transition function,

4. g0 € Q 19 the start state, and

5. F C (@ js the set of accept states.
Transition label can be “empty”,

i.e., machine can transition Ye =X U{e}

without reading input




NFA Example

« Come up with a formal description of the following NFA:

DEFINITION 1.37

A nondeterministic finite automaton
is a S-tuple (@, X, 9, qo, F'), where

1. Q is a finite set of states,

2. Y is a finite alphabet,

3.0: Q x X.—>P(Q) is the transition function,
4. qo € Q is the start state, and

5. F C Q is the set of accept states.



The formal description of N; is (@, X, 6, q1, F'), where

1. Q@ ={q1,92,43,q4}, — 0: Q X L.—P(Q)
2. % = {0,1}, (et road)
3. 0 1s given as 0 1 e
1 |t {q1, 42} 0
Result of transition | {2 {QB} ) {Q3}
can be empty set | ;. [ () {qa} 0
qa | {q4} {qa} 0,
4. ¢ is the start state, and : E(r:g tii/]rt)zjaltnrsceigg)n :
5. F = {q4}.
q- : A

No zero (0) transition



Running Programs, NFAs (JFLAP demo):
010110



Symbol read

O _________________________
1 __________________
O _____________
A nondeterministic
{ e machine can be in

multiple states at

@ @ @ the same time!
1 _________
@ @ @ @ @ This is an accepting
0 -------- computation because
@ @ at least one path ends
In an accept state




NFAS vs DFAS

DFAs NFAs
« Can only be in one state « Can be in multiple states
e Transition: e Transition

« Must read 1 char  Can read no chars

* l.e., empty transition

* Acceptance: * Acceptance:
« If final state is accept state * If one of final states is accept state




No empty transitions

Running an NFA Program: Formal Model

Define the extended transition function: () - Q X 2T — P(Q)

* Inputs:
 Some beginning state g (not necessarily the start state)
* Inputstring W = wWiwW29 +++* Wy

« Output:

« Set of ending states

(Defined recursively)

 Base case: (q, €) =1{q}

« Recursive case: All except last char

where w’ € ¥* =w; -+ - w,_1

e |f: 5(q,w’) — {gl: 5 o ,qk} and w, € ¥

" Combine all possible state transitions for last char

n , :
 Then: 5(q,w ’wn) = U 5(q¢,wn) Last char
J=



6(g,€) = {a}
NFA Extended delta Example 5(q,wfwn)_05(qi,wn)

0,1
where w' € ¥* = wy - w,,_1
Start V/a 0 and w, €3
qo >O — {fh 7777 q}z}
* S(QUaE) —
¢ S(QU:'O) —
. 0(qgo,00) =

° S(QU, 001) =



Adding Empty Transitions

- Define the set e-REACHABLE(q)
* ...to be all states reachable from g via one or more empty transitions

(Defined recursively)

» Base case: ¢ € e-REACHABLE(q)

 Inductive case: A state is in the reachable set if ...

e-REACHABLE(q) = {r | p € e-REACHABLE(q) and r € d(p,€)}

... there is an empty transition to it
from another state in the reachable set



e-REACHABLE Example

e-REACHABLE(1) ={1,2,3,4,6}



With empty transitions

Running an NFA Program: Formal Model

Define the extended transition function: () - Q X 2T — P(Q)

* Inputs:
 Some beginning state g (not necessarily the start state)
* Inputstring W = wWiwW29 +++* Wy

« Output:

« Set of ending states

k

£e-REACHABLE( U 0(qi,wn))
i=1



Reminder:
DFA M accepts w it

An NFA's Language 5(go,w) is in F

e For NFA N = (Q,%,8,q0, F) N accepts w if d(qo,w) N F # ()
* l.e., If the final states have at least one accept state

. Language of N=L(M) = {w | é(go,w) N F # 0}

* QO: How does an NFA's language relate to regular languages
« Reminder: A language is regular if a DFA recognizes it




NFAs and Regular Languages

Theorem:
A language A is regular if and only if some NFA N recognizes it.




How to Prove a Theorem: X <& Y

e X&Y = “XifandonlyifY" = XiffY = X<=>Y
* Proof at minimum has 2 parts:
1. =>if X, thenY

* l.e., assume X, then use it to prove Y
« “forward” direction

2. <=ifY,thenX
* i.e., assume Y, then use it to prove X
e “reverse” direction




NFAs and Regular Languages

Theorem:
A language A is regular if and only if some NFA N recognizes it.

* Must prove:

« => |f A Is regular, then some NFA N recognizes it
« Easier
« We know: if A is regular, then a DFA recognizes it.
- Easy to convert DFA to an NFA! (see HW2)
« <= |f an NFA N recognizes 4, then A is regular.
« Harder
 Idea: Convert NFA to DFA




How to convert NFA-DFA?

A finite automaton is a S-tuple (Q, X, 6, qo, F'), where

1. @ is a finite set called the szates, <
2. Y is a finite set called the alphabet, : ]

3. 0: Q x ¥— Q) is the transition function,

4. qo € () 1s the start state, and

5. F C Q is the set of accept states. A nondeterministic finite automaton
is a S-tuple (Q, %, 9, qo, F'), where

1. Q is a finite set of states,

Proof idea: . :

Lot each “tate” of 2. Y is a finite alphabetz N |
the DFA be a set of 3. 0: Q x ¥.—>P(Q) is the transition function,
states in the NFA 4. qo € @ 1s the start state, and

5. F C @ is the set of accept states.



Symbol read @ Start

In a DFA, all these
states at each

\ step must be
only one state

(@
O _____________
1 il So design a state in

------------- the DFA to be a

()
@ @ @ @ set of NFA states!
()



Convert NFA-DFA, Formally
.LetNFAN= (@, 2, 0, qo, F')

 An equivalent DFA M has states Q' = P(Q) (power set of Q)



The NFA N4

A DFA D that is equivalent to the NFA N,



No empty transitions

NFA-DFA Is this correct?

Have: N = (Q,>, 0, qo, F)
Want to: constructa DFA M = (Q’, 3,9, qo’, F')
1. Q’ = P(Q) A state for M Is a set of states in N

2. For R Q" and a &€ >, R = a state in M = a set of states in N

0 (R,a) = L o(r, a)

rcR To compute next state for R,
. compute next states of each NFA state rin R,
3. qgo — {qo} then union results into one set

4. F' = {R € ()| R contains an accept state of [V}



No empty transitions

NFA-DFA Proof of Correctness

o Llet N = (QN,Z;(sNJQU;FN)
» And let NFASDFA(N) =D = (Qp,%,9p,{q}, Fp)

 Correctness criteria: L(N) = L(D)

- We will prove a stronger statement: 0p({qo}, w) = dn(go, w)
* That is, for all strings w, the DFA and NFA end Iin the same set of states



No empty transitions

NFA-DFA Proof of Correctness

e Llet N = (QnN,X,0N,qo, FN)
* And let NFASDFA(N) =D = (Qp,X,9p,{q0}, Fp)

This produces a set bc we defined

Theorem: SD({QU}, ’lU) — SN(QO; ’w} states to be sets of states

This produces a set bc of

Proof: (by induction on length of w) tine elEi1Tlien o W

« Base case w =€ dp({qo},€) and dn(qo,€) are {go}

’ IndUCtive Case w = za Go back and review
* |H: 0p ( {qo}j :I?) — 5;\;((}0} :I?), call this set of states R previous definitions
* NFA last step (from &y definition) | | 6x(r, a) to confirm
relR}
* DFA last step (from NFA-DFA definition) U On(r, a)

reR



With empty transitions

NFA-DFA,

 Have: N = (@, ,0,qo, F)
- Want to: construct a DFA M = (Q', X, ¢, qo’, F)

1. Q" =P(Q).
2. ForRe Q' and a € ¥,

§'(R,a) = | ] st

e R e-REACHABLE()(7, a))

3. qo’ :%E-REACHABLE({%})
4. F' = {R € ()| R contains an accept state of [V}

Almost the same, except ...




NFA-DFA_ Proof of Correctness

e let N = (QN}ZJ(sNJQOJFN)
« And let NFASDFA (N) =D = (Qp,X,dp,{q}, Fp)

 Correctness criteria: L(N) = L(D)

With empty transitions

- We will prove a stronger statement: 0p({qo}, w) = dn(go, w)
* That is, for all strings w, the DFA and NFA end Iin the same set of states

(Same as before)




With empty transitions

NFA-DFA_ Proof of Correctness

e Let N = (Qn, 2,0n, qo, FN)
» And let NFASDFA(N) = D = (Qp,%,0p, {q}, Fp)

Theorem: §5({go},w) = én(go,w) Almost the same, except ...

Proof: (by induction on length of w)
» Base case w =€ 0p({qo},€) and dn(qo,€) are {qo}

* Inductive case w = za

e |H: SD({(][)}, r) = Sﬁ?((]g, x), call this set of states RPPP27?
* NFA last step (from &, definition) | | 6 (r, a) c oo oo

67

rcR C
» DFA last step (from NFA-DFA definition) %ON(“ a)
rCR



Proving that NFAs Recognize Reg Langs

Theorem:
A language A is regular if and only if some NFA N recognizes it.

Proof:

=> If A Is regular, then some NFA N recognizes it
« We know: if A is regular, then a DFA recognizes it
* So convert DFAto an NFA
<= If an NFA N recognizes A, then A is regular
« We know: if a DFA recognizes a language, then it is regular
mm) - So convert NFA to DFA ...
¢ ... Using NFA>DFA algorithm we just defined! B (Q.E.D)




Combining DFAs

Problem 1: E

What should be the
transition labels?

Problem 2: m

Once we enter one of the
machines, can’t go back

to the other onel!

This i1s an NFA!
Can bein
multiple states at

once, but is still

equivalent to a

nt
)|

Llows

ll regular language! E(' 8.,
nce!

71



Nest Tine: MOTre “Combining” Operations

N )
- D 4 =
- N \©- € . < @
O
O 0 ©
€ © - © /
00O
> O N /
- y
e\ [ p Construction of N to recognize A; o Asy
1OXe N
-
o O %
| O ©/ O © O 2 > o © ©
\ , o o .5 O




In-class Quiz 9/15

On gradescope



