## CS622 Context-Free Languages (CFLs)

Wednesday, September 29, 2021



### Announcements

- First in-person class: next Monday 10/4 7pm
  - McCormack M01-0209

- HW3 due Sun 11:59pm EST
- HW2 grades released

#### 2 Exending the definition of "REACHABLE"

Define  $\varepsilon$ - REACHABLE  $q_s$ , which is like the  $\varepsilon$ - REACHABLE definition from class, but extended to sets of states. (Don't forget to handle the empty set!)

$$\varepsilon$$
-reachable <sub>$qs$</sub>  $(qs) = \bigcup_{q \in qs} \varepsilon$ -reachable $(q)$ 

#### 3 DFA->NFA

In class we showed how to convert an NFA into an an equivalent DFA, but not a DFA to NFA. Do this now.

#### More specifically:

• Come up with a procedure  $DFA \rightarrow NFA$  that converts DFAs to equivalent NFAs. In other words, given some DFA  $M=(Q,\Sigma,\delta,q_0,F)$  that satisfies the formal definition of DFAs from class,  $DFA \rightarrow NFA$  should produce some NFA  $N=(Q',\Sigma,\delta',q'_0,F')$  that satisfies the formal definition of NFAs and accepts the same language as M.

| 3. DFA M = (Q, Z, 8, 90, F)                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------|
| To produce NFA N = (QN, Σ, δN, Qo, FN)                                                                                      |
| 1. QN= Q PORTUR MAN (3.08)                                                                                                  |
| 2. Z = Z<br>3. q'o = qo De = Co o solo) svAssilad                                                                           |
| shere a File Police                                                                                                         |
| 5. $S_N$ is given or $Q' \times \Sigma_{\varepsilon} \rightarrow P(Q')$<br>for $R \in Q_N$ and $A \in \Sigma_{\varepsilon}$ |
| $S_{N}(R,\alpha) = \{S(R,\alpha)\}$                                                                                         |

A *finite automaton* is a 5-tuple  $(Q, \Sigma, \delta, q_0, F)$ , where

- **1.** Q is a finite set called the *states*,
- 2.  $\Sigma$  is a finite set called the *alphabet*,
- **3.**  $\delta: Q \times \Sigma \longrightarrow Q$  is the *transition function*,
- **4.**  $q_0 \in Q$  is the **start state**, and
- **5.**  $F \subseteq Q$  is the **set of accept states**.



#### A nondeterministic finite automaton

is a 5-tuple  $(Q, \Sigma, \delta, q_0, F)$ , where

- 1. Q is a finite set of states,
- 2.  $\Sigma$  is a finite alphabet,
- **3.**  $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$  is the transition function,
- **4.**  $q_0 \in Q$  is the start state, and
- **5.**  $F \subseteq Q$  is the set of accept states.

3 DFA->NFA

• • • •

• Then prove that your procedure is correct, i.e., that M accepts some string w if and only if N accepts w. You'll probably want to use induction on the length of w.

- $\Rightarrow$  If M accepts w, then N accepts w
- ullet If M accepts w, then  $\hat{\delta}_M(q_0,w)\in F$  Criteria for acceptance for DFAs / NFAs
- So N accepts w because  $\hat{\delta}_N(q_0,w)=\{\hat{\delta}_M(q_0,w)\}$  thus  $\hat{\delta}_N(q_0,w)\cap F_N\neq\emptyset$
- $\Leftarrow$  If *N* accepts *w*, the *M* accepts *w*
- (similar)

So correctness proof must also have these parts

So correctness proof must also have these parts

First assume:  $\hat{\delta}_N(q_0,w)=\{\hat{\delta}_M(q_0,w)\}$  — This says nothing about acceptance!

- NOTE: This must match part 1's answer!
- Some invalid equalities:

$$\hat{\delta}_N(q_0, w) \neq \hat{\delta}_M(q_0, w)$$
$$\hat{\delta}_N(q_0, w) \neq \hat{\delta}_M(\{q_0\}, w)$$

2. Z = Z3.  $Q_0' = Q_0$ 4.  $F_N = F$ 5.  $S_N$  is given as  $Q' \times Z_{\mathcal{E}} \rightarrow P(Q')$ For  $R \in Q_N$  and  $A \in Z_{\mathcal{E}}$ 

#### 3 DFA->NFA

• Then prove that your procedure is correct, i.e., that M accepts some string w if and only if N accepts w. You'll probably want to use induction on the length of w.

Now prove:  $\hat{\delta}_N(q_0, w) = \{\hat{\delta}_M(q_0, w)\}$ 

<u>Proof:</u> Using proof by induction on the length of string w

• **Base case:** We always start from the smallest string i.e.,  $w = \varepsilon$ Applying this on the theorem,  $\hat{\delta}_{N}(q0, \varepsilon)$  and  $\{\hat{\delta}_{M}(q0, \varepsilon)\}$  we get  $\{q0\}$  for  $\leftarrow$  both the cases.

From definition of  $\hat{\delta}$  (base case)

- **Inductive case:** For this we will take w = xa
  - Inductive hypothesis:  $\widehat{\delta}_N(q0, x) = \{\widehat{\delta}_M(q0, x)\}$ , call this set of states R
  - DFA last step from  $\delta_M$  definition is given as  $\{\delta_M(r, a)\}$  From definition of  $\hat{\delta}$  (inductive case)
  - NFA last step from DFA  $\rightarrow$  NFA definition is given as  $\{\delta_M(r, a)\}$

From our NFA→DFA conversion

Here,  $r \in R$  and a is the last alphabet of the string w.

Similar to closure proofs for union, concat, and star that we did in class

5 A Closure Operation

Let EXPAND<sub>c</sub> on a language L, where  $\Sigma$  is the alphabet of L and  $c \in \Sigma$ , be:

$$\text{EXPAND}_c(L) = \{ wc \mid w \in L \}$$

Prove that, for any c, EXPAND<sub>c</sub> is closed for regular languages.

L is regular so it must have an NFA recognizing it (thm from class) To prove that for any c, EXPAND<sub>c</sub> is closed for regular languages, we need to create a DFA/NFA that recognizing it.

Extend L's NFA to recognize EXPAND<sub>c</sub>(L)

 $\rightarrow$  Let L = (Q<sub>1</sub>,  $\Sigma_1$ ,  $\delta_1$ , q<sub>1</sub>, F<sub>1</sub>), we construct N = (Q,  $\Sigma$ ,  $\delta$ , q<sub>0</sub>, F) to recognize EXPAND<sub>c</sub>

- 1.  $Q = Q_1 \cup \{q_c\}$  where  $q_c$  is a new state appended to all the accept states of L with transition c.
- 2. The state  $q_0$  is the same as the start state of L
- 3. The accept state F will be the new state  $\{q_c\}$
- 4. Define  $\delta$  so that for any  $q \in Q$ , and any  $a \in \Sigma$   $\epsilon$

$$\delta(q, a) = \begin{cases} \delta_1(q, a) & q \in Q_1 \text{ and } q \notin F \\ \delta_1(q, a) & q \in F_1 \text{ and } a \neq c \\ \{q_c\} & q \in F_1 \text{ and } a = c \end{cases}$$

EXPAND<sub>c</sub>(L) must be regular if it has an NFA recognizing it (thm from class)

Therefore EXPAND<sub>c</sub> is closed for regular languages

Last Time:

**Pumping lemma** If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, s = xyz, satisfying the following conditions:

- **1.** for each  $i \geq 0$ ,  $xy^i z \in A$ ,
- **2.** |y| > 0, and
- 3.  $|xy| \le p$ .

Let B be the language  $\{0^n 1^n | n \ge 0\}$ . We use the pumping lemma to prove that B is not regular. The proof is by contradiction.

If this language is not regular, then what is it???

Maybe? ... a context-free language (CFL)?

# A Context-Free Grammar (CFG)



### CFGs: Formal Definition



A CFG Describes a Language!

**Substitution rules** (a.k.a., productions)

**terminals** (analogous to a DFA's alphabet)

A context-free grammar is a 4-tuple  $(V, \Sigma, R, S)$ , where

- 1. V is a finite set called the variables,
- 2.  $\Sigma$  is a finite set, disjoint from V, called the *terminals*,
- 3. R is a finite set of *rules*, with each rule being a variable and a string of variables and terminals, and
- **4.**  $S \in V$  is the start variable.

$$V = \{A, B\},\$$

$$\Sigma = \{\mathtt{0},\mathtt{1},\mathtt{\#}\},\$$

$$S=A$$
,

# Analogies

| Regular Language                           | Context-Free Language (CFL)                       |
|--------------------------------------------|---------------------------------------------------|
| Regular Expression                         | Context-Free Grammar (CFG)                        |
| A Reg expr <u>describes</u> a Regular lang | A CFG <u>describes</u> a CFL                      |
|                                            |                                                   |
|                                            |                                                   |
|                                            |                                                   |
|                                            |                                                   |
|                                            | Dractical applications                            |
|                                            | P <u>ractical application</u> :  Used to describe |
|                                            | programming languages!                            |

# Java Language Described with CFGs

#### ORACLE.

Java SE > Java SE Specifications > Java Language Specification

Chapter 2. Grammars

<u>Prev</u>

#### **Chapter 2. Grammars**

This chapter describes the context-free grammars used in this specification to define the lexical and syntactic structure of a program

#### 2.1. Context-Free Grammars

A context-free grammar consists of a number of productions. Each production has an abstract symbol called a nonterminal as its left hand side, and a sequence of one or more nonterminal and terminal symbols are drawn from a specified alphabet.

Starting from a sentence consisting of a single distinguished nonterminal, called the *goal symbol*, a given context-free grammar specifies a language, namely, the set of possible sequences of terminal symbols that can result from repeatedly replacing any nonterminal in the sequence with a right-hand side of a production for which the nonterminal is the left-hand side.

#### 2.2. The Lexical Grammar

A *lexical grammar* for the Java programming language is given in §3. This grammar has as its terminal symbols the characters of the Unicode character set. It defines a set of productions, starting from the goal symbol *Input* (§3.5), that describe how sequences of Unicode characters (§3.1) are translated into a sequence of input elements (§3.5).

### (partially)

# Python Language Described with a CFG

#### 10. Full Grammar specification

This is the full Python grammar, as it is read by the parser generator and used to parse Python source files:

```
# Grammar for Python
                                                                   (indentation checking
# NOTE WELL: You should also follow all the steps listed at
                                                                         probably not
# https://devguide.python.org/grammar/
                                                                  describable with a CFG)
# Start symbols for the grammar:
       single input is a single interactive statement;
       file input is a module or sequence of commands read from an input file;
       eval input is the input for the eval() functions.
       func type input is a PEP 484 Python 2 function type comment
# NB: compound stmt in single input is followed by extra NEWLINE!
# NB: due to the way TYPE COMMENT is tokenized it will always be followed by a NEWLINE
single input: NEWLINE | simple stmt | compound stmt NEWLINE
file input: (NEWLINE | stmt)* ENDMARKER
eval input: testlist NEWLINE* ENDMARKER
```

# Many (partially) Python Language Described with a CFG

#### 10. Full Grammar specification

This is the full Python grammar, as it is read by the parser generator and used to parse Python source files:

```
# Grammar for Python

# NOTE WELL: You should also follow all the steps listed at
# https://devguide.python.org/grammar/

# Start symbols for the grammar:
# single_input is a single interactive statement;
# file_input is a module or sequence of commands read from an input file;
# eval_input is the input for the eval() functions.
# func_type_input is a PEP 484 Python 2 function type comment
# NB: compound_stmt in single_input is followed by extra NEWLINE!
# NB: due to the way TYPE_COMMENT is tokenized it will always be followed by a NEWLINE
single_input: NEWLINE | simple_stmt | compound_stmt NEWLINE
file_input: (NEWLINE | stmt)* ENDMARKER
eval_input: testlist NEWLINE* ENDMARKER
```

# Generating Strings with a CFG

$$G_1 = \\ A \rightarrow 0A\mathbf{1} \\ A \rightarrow B \\ B \rightarrow \mathbf{\#}$$

# A CFG Represents a Language!

Strings in CFG's language = all possible generated strings

$$L(G_1)$$
 is  $\{0^n \# 1^n | n \ge 0\}$ 

Stop when string is all terminals

A CFG **generates** a string, by repeatedly applying substitution rules:

$$A\Rightarrow 0A1\Rightarrow 00A11\Rightarrow 000A111\Rightarrow 000B111\Rightarrow 000#111$$

Start variable

After applying 1st rule

Use 1<sup>st</sup> rule

Use 1st rule

Use 2<sup>nd</sup> rule

Use last rule

# Derivations: Formaly

A *context-free grammar* is a 4-tuple 
$$(V, \Sigma, R, S)$$
, where

- 1. V is a finite set called the *variables*,
- **2.**  $\Sigma$  is a finite set, disjoint from V, called the *terminals*,
- 3. R is a finite set of *rules*, with each rule being a variable and a string of variables and terminals, and
- **4.**  $S \in V$  is the start variable.

### Let $G = (V, \Sigma, R, S)$ Single-step

$$\alpha A\beta \underset{G}{\Rightarrow} \alpha \gamma \beta$$

#### Where:

$$\alpha,\beta \in (V \cup \Sigma)^* \text{Strings of terminals and variables}$$

$$A o \gamma \in R$$
 Rule

#### **Extended Derivation**

Base case: 
$$\alpha \stackrel{*}{\underset{G}{\Rightarrow}} \alpha$$

#### Recursive case:

• If 
$$\alpha \overset{*}{\underset{G}{\Rightarrow}} \beta$$
 and  $\beta \overset{}{\underset{G}{\Rightarrow}} \gamma$ 

• Then: 
$$\alpha \overset{*}{\underset{G}{\Rightarrow}} \gamma$$

### Formal Definition of a CFL

A *context-free grammar* is a 4-tuple  $(V, \Sigma, R, S)$ , where

- 1. V is a finite set called the *variables*,
- **2.**  $\Sigma$  is a finite set, disjoint from V, called the *terminals*,
- **3.** *R* is a finite set of *rules*, with each rule being a variable and a string of variables and terminals, and
- **4.**  $S \in V$  is the start variable.

$$G = (V, \Sigma, R, S)$$

$$L(G) = \left\{ w \in \Sigma^* \mid S \underset{G}{\overset{*}{\Rightarrow}} w \right\}$$

Any language that can be generated by some context-free grammar is called a *context-free language* 

Flashback: 
$$\{0^n1^n | n \geq 0\}$$

- Pumping Lemma says it's not a regular language
- It's a context-free language!
  - Proof?
  - Come up with CFG describing it ...
  - It's similar to:

$$A o 0A$$
1 
$$A o B \qquad L(G_1) \text{ is } \{0^n \sharp 1^n | n \ge 0\}$$
 
$$B o \sharp \ \mathcal{E}$$

### Proof of Correctness

 $L = \{0^n 1^n \mid n \ge 0\}$  rules of G:

 $A o 0A1 \mid \varepsilon$ 

Correctness statement:  $w \in L$  if and only if  $A \stackrel{*}{\Rightarrow} w$ 

$$\Rightarrow$$
 if  $w \in L$  then  $A \stackrel{*}{\Rightarrow} w$ 

**Base case**  $w = \varepsilon : \text{if } \varepsilon \in L \text{ then } A \overset{*}{\underset{G}{\Rightarrow}} \varepsilon$ 

true, due to rule  $A \to \varepsilon$ 

$$\Leftarrow$$
 if  $A \stackrel{*}{\underset{G}{\Rightarrow}} w$  then  $w \in L$ 

### Proof of Col

Note the parts of the proof:

- Clear and precise correctness statement
- All cases covered (⇒ and ⇐, base and inductive cases)
- Every step logically follows from previous
- Every step has a justification
- Uses the given facts (IH, etc)

 $L = \{0^n 1^n \mid n \ge 0\}$ rules of G:

$$A 
ightarrow 0A1 \mid \varepsilon$$

Correctness statement:  $w \in L$  if and only if  $A \stackrel{*}{\Rightarrow} w$ 

$$\Rightarrow$$
 if  $w \in L$  then  $A \stackrel{*}{\rightleftharpoons} w$ 

**Base case**  $w = \varepsilon : \text{if } \varepsilon \in L \text{ then } A \stackrel{*}{\Rightarrow} \varepsilon$  true, due to rule  $A \to \varepsilon$ 

Inductive case w = 0x1 (odd length strings not in L!)

**IH:** if  $x \in L$  then  $A \stackrel{*}{\Rightarrow} x$ 

**Need to prove:** if  $0x\mathbf{1} \in L$  then  $A \stackrel{*}{\Rightarrow} 0x\mathbf{1}$ 

if  $0x1 \in L$  then  $x \in L$  (def of L) and  $A \stackrel{*}{\Rightarrow} x$  (by IH)

if  $A \stackrel{*}{\Rightarrow} x$  then  $A \stackrel{*}{\Rightarrow} 0x1$ , by def of  $\stackrel{*}{\Rightarrow}$  and rule  $A \to 0A1$ 

Therefore: if  $0x1 \in L$  then  $A \stackrel{*}{\Rightarrow} 0x1$ 



# A String Can Have Multiple Derivations

```
\langle \text{EXPR} \rangle \rightarrow \langle \text{EXPR} \rangle + \langle \text{TERM} \rangle \mid \langle \text{TERM} \rangle
\langle \text{TERM} \rangle \rightarrow \langle \text{TERM} \rangle \times \langle \text{FACTOR} \rangle \mid \langle \text{FACTOR} \rangle
\langle \text{FACTOR} \rangle \rightarrow (\langle \text{EXPR} \rangle) \mid a
```

String to generate: **a + a × a** 

- EXPR  $\Rightarrow$
- EXPR +  $\underline{\text{TERM}} \Rightarrow$
- EXPR + TERM × FACTOR ⇒
- EXPR + TERM  $\times$  a  $\Rightarrow$

• • •

- EXPR  $\Rightarrow$
- EXPR + TERM  $\Rightarrow$
- $\underline{\text{TERM}}$  +  $\underline{\text{TERM}}$   $\Rightarrow$
- FACTOR + TERM  $\Rightarrow$
- **a** + TERM

•••

**LEFTMOST DERIVATION** 

### Derivations and Parse Trees

$$A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 000A111 \Rightarrow 000B111 \Rightarrow 000#111$$

A derivation may also be represented as a parse tree



# Multiple Derivations, Single Parse Tree

#### **Leftmost** deriviation

- <u>EXPR</u> =>
- EXPR + TERM =>
- $\underline{\text{TERM}} + \text{TERM} =>$
- FACTOR + TERM =>
- a + TERM

• • •

Since the "meaning" (i.e., parse tree) is same, by <u>convention</u> we just use **leftmost** derivation



**Rightmost** deriviation

- <u>EXPR</u> =>
- EXPR +  $\underline{\text{TERM}} = >$
- EXPR + TERM x <u>FACTOR</u> =>
- EXPR + TERM x a = >

A Parse Tree gives "meaning" to a string

# Ambiguity grammar $G_5$ :

$$\langle EXPR \rangle \rightarrow \langle EXPR \rangle + \langle EXPR \rangle \mid \langle EXPR \rangle \times \langle EXPR \rangle \mid (\langle EXPR \rangle) \mid a$$

Same string,
Different derivation,
and different parse tree!



# Ambiguity

A string w is derived *ambiguously* in context-free grammar G if it has two or more different leftmost derivations. Grammar G is *ambiguous* if it generates some string ambiguously.

An ambiguous grammar can give a string multiple meanings! (why is this **bad**?)

# Real-life Ambiguity ("Dangling" else)

What is the result of this C program?

```
• if (1) if (0) printf("a"); else printf("2");
if (1)
   if (0)
      printf("a");
   else
      printf("a");
   else
      printf("2");
```

Ambiguous grammars are confusing. In a language, a string (program) should have only **one meaning**.

Problem is, there's no guaranteed way to create an unambiguous grammar (so language designers must be careful)

# Designing Grammars: Basics

- Think about what you want to "link" together
- E.g., **XML** 
  - ELEMENT → <TAG>CONTENT</TAG>
  - Start and end tags are "linked"
- Start with small grammars and then combine (just like FSMs)

# Designing Grammars: Building Up

- Start with small grammars and then combine (just like FSMs)
  - To create a grammar for the language  $\{0^n1^n|n\geq 0\}\cup\{1^n0^n|n\geq 0\}$
  - First create grammar for lang  $\{0^n\mathbf{1}^n|\ n\geq 0\}$  :  $S_1 \to 0S_1\mathbf{1}\ |\ oldsymbol{arepsilon}$
  - Then create grammar for lang  $\{\mathbf{1}^n\mathbf{0}^n|\ n\geq 0\}$  :  $S_2 \to \mathbf{1}S_2\mathbf{0}\ |\ oldsymbol{arepsilon}$
  - Then combine:  $S o S_1\mid S_2$   $S_1 o 0S_11\mid oldsymbol{arepsilon}$   $S_2 o 1S_2$ 0  $\mid oldsymbol{arepsilon}$

"|" = "or" = union (combines 2 rules with same left side)

# Closed Operations on CFLs

• Start with small grammars and then combine (just like FSMs)

• "Or": 
$$S \rightarrow S_1 \mid S_2$$

- "Concatenate":  $S oup S_1 S_2$
- "Repetition":  $S' o S'S_1 \mid arepsilon$

# <u>In-class exercise</u>: Designing grammars

alphabet  $\Sigma$  is  $\{0,1\}$ 

 $\{w | w \text{ starts and ends with the same symbol}\}$ 

• 
$$S \rightarrow 0C'0 \mid 1C'1 \mid \epsilon$$

"string starts/ends with same symbol, middle can be anything"

"all possible terminals, repeated (ie, all possible strings)"

"all possible terminals"

# Check-in Quiz 9/29

On gradescope