CS622

Context-Free Languages (CFLs)

Wednesday, September 29, 2021

grammars (generators) automata (acceptors)

recursively Turing
enumerable machine

* more complex
+ more powerful
« less restricted

i

context- linear bounded
sensitive automaton

push-down
automaton

regular finite
grammar automaton



%/{/{0«/{0@#(@/{13’

* First in-person class: next Monday 10/4 7pm
« McCormack M01-0209

 HW3 due Sun 11:59pm EST

 HW2 grades released



2 Exending the definition of "REACHABLE"

H WZ R e V | e VV Define e- REACHABLEg;s, which is like the - REACHABLE definition from class, but

extended to sets of states. (Don’t forget to handle the empty set!)

e-REACHABLE,(qs) = | ] e-REACHABLE(q)
qeqs



3 DFA->NFA

In class we showed how to convert an NFA into an an equivalent DFA, but not a DFA to

HWZ Re\”e\/\/ NFA. Do this now.

More specifically:

» Come up with a procedure DFA—NFA that converts DFAs to equivalent NFAs. In other
words, given some DFA M = (Q, X, J, qo, F') that satisfies the formal definition of
DFAs from class, DFA—NFA should produce some NFA N = (Q', 3, ¢', qf), F") that
satisfies the formal definition of NFAs and accepts the same language as M.

Q) . D‘:A M = (& A r : cg v an ' F ) A finite automaton is a 5-tuple (Q, X, 4, qo, F'), where
s 1. Q) is a finite set called the szates,

! 2. ¥ is a finite set called the alphabet,
To “D’(OOQM‘*Q' Mpp{ 2 (@"\ f 2 * g*‘) ¥ qv’(’ 4 FM’) 3. 8: Q x ¥—Q is the transition function,

4. qo € Q is the start state, and
5. F C Q is the set of accept states.

$

o q; = Q.7 A nondeterministic finite automaton
Q 'C'\\ i ‘}: is a S-tuple (@, %, 9, qo, F), where
o | Py i 1. @ is a finite set of states,
£§. % N s %Wb’" e § x= £ °Cg) 2. ¥ is a finite alphabet,
For e Q. OMA Qa € Zf, 3.0: Q x X.—P(Q) is the transition function,

4. qp € @ is the start state, and
5. F C Q is the set of accept states.




3 DFA->NFA

| \ WZ R e V | e W » Then prove that your procedure is correct, i.e., that M accepts some string w if and

only if NV accepts w. You'll probably want to use induction on the length of w.

= If M accepts w, then N accepts w

* If M accepts w, then §,;(qo, w) € F < criteriafor acceptance for bFas / NFas
» So N accepts w because dx(qo, w) = {da(qo, w)} thus dn (go, w) N Fn # 0
& If N accepts w, the M accepts w

e (similar) T OF - (024 9 F)

So correctness proof must also have these parts
o ’\Wocﬁ,uce, NFF N = (@.\\ Z 5 (’L FN)

First assume: SN(Qo, w) — {SM(QO; ’U})} This says nothing about acceptance! |

A0 - Nigye K2 ST ] | ah

« NOTE: This must match part1’s answer! 2. 2:% s oo
R el i
« Some invali Ities: , 5 , TR i
>ome al d equalt =5 (]0 7! - QO € gu\ i¢ %?m % Q'x3.—> Q)
(SN (Jo, 7!51\/[ {QO} ) Enal Lo @y odviae s,

S Ria) = f8R.a)Y i"




3 DFA->NFA

H WZ R e V | e W o Then prove that your procedure is correct, i.e., that M accepts some string w if and
only if N accepts w. You'll probably want to use induction on the length of w.

~

Now prove: dx(qo, w) = {dr(qo, w)}

Proof: Using proof by induction on the length of string w

e Base case: We always start from the smallest string i.e., w = ¢

Applying this on the theorem, dv (g0, €) and {5um (g0, £)} we get {0} for «——

From definition of § (base case)

both the cases.
e Inductive case: For this we will take w = xa

* Inductive hypothesis: o (g0, x) = {dv (g0, x)}, call this set of states

R
= DFA last step from d definition is given as {dum (7, @)} <

From definition of § (inductive case)

» NFA last step from DFA — NFA definition is given as {oum (7, a)}\

From our NFA—DFA conversion

Here, r € R and a is the last alphabet of the string w.




5 A Closure Operation

I—I \/\/2 R e V i e W Let EXPAND, on a language L, where ¥ is the alphabet of L and e € X, be:

EXPAND.(L) = {we | w € L}

Similar to closure
proofs for union,
concat, and star that
we did in class

Prove that, for any ¢, EXPAND. is closed for regular languages.

To prove that for any ¢, EXPAND:. is closed for regular languages, we need to create a

DFA/NFA that recognizing it. Extend I’s NFA to EXPAND,(L)
: : recognize EXPAND,(L -

Lis regularso it / g (L) mUStN?:eA regularolfo it has
must have an NFA | 5 Let L =(Qi, X1, 81 ,q1, F1), we construct N = (Q, ¥, 8, qo, F) to recognize EXPANDL an( ) ]rcecognllzm)g it
recognizing it (thm o . , i i e B thm from class

from class) . Q=QiU{q.} where qc is a new state appended to a € accept states of L with transition c.
2. The state qo 1s the same as the start state of L Therefore EXPAND,
3. The accept state F will be the new state{ g} is closed for
regular languages

4. Define d so that forany q € Q,andanya € X ¢

8:(q,a) qgeQ,and g € F
d(qa) =1 8;(qa) geF,anda#c
{q.} geFianda=c



Pumping lemma If A is a regular language, then there is a number p (the
pumping length) where if s is any string in A of length at least p, then s may be

Z t 7 P divided into three pieces, s = zyz, satistying the following conditions:
as me, 1. for each i > 0, zy'z € A,

2. ly| > 0, and

3. |zy| < p.

Let B be the language {0"1"|n > 0}. We use the pumping lemma to prove that
B is not regular. The proof is by contradiction.

If this language is not regular, then what Is it???

Maybe? ... a context-free language (CFL)?




A Context-Free Grammar (CFG)

terminals
Top variable is
Start variable A — 0A1
A — B Substitution rules

Variables
(also called a B — #
nonterminals)

(a.k.a., productions)

terminals (analogous to a DFA’s alphabet)



CFGs: Formal Definition

ogrammar GGy

Top variable is

Start variable

Variables
(also called a

nonterminal)

R 1s

terminals

A — 0A1

A— B
B — #

A CFG Describes a
Language!

Substitution rules
(a.k.a., productions)

terminals (analogous to a DFA’s alphabet)

A context-free grammar is a 4-tuple (V, X, R, S), where

1. V is a finite set called the variables,
2. ¥ is a finite set, disjoint from V/, called the terminals,

3. R is a finite set of 7ules, with each rule being a variable and a

string of variables and terminals, and

4. S € V is the start variable.

V = {A, B),
= {O.J, 1,,#},
S = A,




Analogies

Regular Language Context-Free Language (CFL)

Regular Expression Context-Free Grammar (CFG)
A Reg expr describes a Regular lang A CFG describes a CFL

Practical application:
Used to describe
programming languages!

21



Java Language Described with CFGs

ORACLE

Java SE > Java SE Specifications > Java Language Specification

Chapter 2. Grammars

Prev

Chapter 2. Grammars

This chapter describes the context-free grammars used in this specification to define the lexical and syntactic structure of a progran

2.1. Context-Free Grammars

A context-free grammar consists of a number of productions. zach production has an abstract symbol called & nonterminal as its lef
hand side, and a sequence of one or more nonterminal ancl terminal symbols as its right-hand side. For each grammar, the terminal
symbols are drawn from a specified alphabet.

Startina from a sentence consistina of a sinale distinauished nonterminal. called the goal svmbol. a given context-free grammar
specifies a language, namely, the set of possible sequences of terminal symbols that can result from repeatedly replacing any
nonterminal in the sequence with a right-hand side of a production for which the nonterminal is the left-hand side.

2.2. The Lexical Grammar

A lexical grammar for the Java programming language is given in §3. This grammar has as its terminal symbols the characters of th
Unicode character set. It defines a set of productions, starting from the goal symbol Input (§3.5), that describe how sequences of

l lninAadA nlharantAare (82 A\ ara tranclatad inta a camanna Af inrniit Alarmantes (282 R

https://docs.oracle.com/javase/specs/jls/se7/html/jls-2.html

22



(partially)

Python Language Described with a CFG

10. Full Grammar specification

This is the full Python grammar, as it is read by the parser generator and used to parse Python source files:

# Grammar for Python

NOTE WELL: You should also follow all the steps listed at

#
# https://devguide.python.org/qgrammar/

Start symbols for the grammar:

(indentation checking
probably not
describable with a CFG)

single_input i1s a single interactive statement;

file input 1s a module or sequence of commands read from an

eval 1input is the input for the eval() functions.

func _type input is a PEP 484 Python 2 function type comment
NB: compound stmt in single input is followed by extra NEWLINE!

HOoH K W W R

single input: NEWLINE | simple_stmt | compound_ stmt NEWLINE
file input: (NEWLINE | stmt)* ENDMARKER
eval input: testlist NEWLINE* ENDMARKER

https://docs.python.org/3/reference/grammar.html

input file;

NB: due to the way TYPE COMMENT is tokenized it will always be followed by a NEWLINE

23




Many (partially)

Pythenr Language Described with a CFG

10. Full Grammar specification

This is the full Python grammar, as it is read by the parser generator and used to parse Python source files:

# Grammar for Python

# NOTE WELL: You should also follow all the steps Llisted at
# https://devguide.python.org/qgrammar/

Start symbols for the grammar:
single_input i1s a single interactive statement;
file input 1s a module or sequence of commands read from an input file;
eval 1input is the input for the eval() functions.
func _type input is a PEP 484 Python 2 function type comment
NB: compound stmt in single input is followed by extra NEWLINE!
# NB: due to the way TYPE COMMENT is tokenized it will always be followed by a NEWLINE
single input: NEWLINE | simple_stmt | compound_ stmt NEWLINE
file_input: (NEWLINE | stmt)* ENDMARKER
eval input: testlist NEWLINE* ENDMARKER

&
#
#
#
#
#

https://docs.python.org/3/reference/grammar.html

24



Generating Strings with a CFG

A CFG Represents
a Language!

G1:

Strings in CFG's language
A — 041 = all possible generated strings
A— B

B — #

L(Gy) 1s {0"#1"|n > 0}

Stop when string is all terminals

A CFG generates a string, by repeatedly applying substitution rules:
A= 0A1 = 00A11 = 000A111 = 0008111 = 000#111

Start variable || after applying 15t rule | | Use 15t rule Use Tst rule Use 2" rule Use last rule



A context-free grammar is a 4-tuple (V, X, R, S), where

1. V is a finite set called the variables,
2. ¥ is a finite set, disjoint from V, called the terminals,
3. R is a finite set of rules, with each rule being a variable and a

D e r | Va t | O n S . F O r' r r I a ly string of variables and terminals, and
* 4. S € V is the start variable.

Let G = (V.X, R, S)
Single-step Extended Derivation

QAB?\;O{,YB Base case: CE?;CE

Where: Recursive case:

i f terminals
0515 & (V U Z)* garcljnvgjrioables =
e If a= [/ and —
> 5 5 =

A € V/ < variable

A—>’}/€R Rule -Then:a%’}/



A context-free grammar is a 4-tuple (V, X, R, S), where

1. V is a finite set called the variables,
2. ¥ is a finite set, disjoint from V, called the terminals,
3. R is a finite set of rules, with each rule being a variable and a

FO rm a l D efl n |t| O n Of a C F |_ string of variables and terminals, and

4. S € V is the start variable.

G=(V,X,R,S)

L(G)—{wez*\S%w}

Any language that can be generated by some
context-free grammar is called a context-free language



Flashback; {0™1™ | n > 0}

« Pumping Lemma says it's not a regular language

* |t's a context-free language!
* Proof?
« Come up with CFG describing it ...
* It's similar to:

A — 0A1
A— B L(Gy)is {0™#1"| n > 0}
B —% €



L={0"1" | n > 0}

rules of G-
Proof of Correctness A5 041 | £
Correctness statement: w € L if and only if A = w
G
:>iwaLthenA:;>w
Base case w = ¢ :if e € L then A = ¢ true, due to rule A — ¢

G

CifA%wthenwEL



Note the parts ofthg proof: I — {Onln | n > 0}
 Clearand precise correctness statement

« All cases covered (= and «, base and inductive cases) rules of G

P rO Of Of CO ‘ « Every step logically follows from previous A — 0A1 | £
« Every step has a justification
« Uses the given facts (IH, etc)

Correctness statement: w € L if and only if A % w

:>iwaLthenA:;>w

Inductive case w = Ox1 o4l =~

strings not in L!)

IH: ifxELthenA%:z:
Need to prove: if Ox1 € L then A :;> Ox1

if 0z1 € L then x € L (def of L) and A :Zg x (by IH)

if A :;> 2 then A :;> Ox1, by def of :;> and rule A — 0A1

Therefore: if 021 € L then A = 0x1

G
—if A= wthen we L
HW4 &



A String Can Have Multiple Derivations

(EXPR) — (EXPR)+(TERM) | (TERM)

(TERM) — (TER
(FACTOR) — (
String to generate:a +a X a
* EXPR=
* EXPR + TERM =
* EXPR + TERM x FACTOR =
* EXPR + TERM xa =

RIGHTMOST DERIVATION

M) x(FACTOR) | (FACTOR)
(EXPR)) | a

* EXPR=

* EXPR + TERM =

* TERM + TERM =

* FACTOR + TERM =

*a + TERM

LEFTMOST DERIVATION



Derivations and Parse Trees

A= 0A1 = 00A11 = 000A111 = 0008111 = 000#111

A derivation may also be represented as a parse tree

A

|
A

|
A

o

O 0 0 # 1 1 1



Multiple Derivations, Single Parse Tree

Leftmost deriviation Rightmost deriviation
* EXPR => * EXPR =>
« EXPR + TERM =>  EXPR + TERM =>
* TERM + TERM => e EXPR + TERM x FACTOR =>
» FACTOR + TERM => o » EXPR + TERM x a=>
e a + TERM / (TERM)
(TERM) \
/ A Parse Tree
Since the “meaning” | (FACTOR) (FACTOR) “milz?\/r? IS ng”
(i.e., parse tr.ee) is same, / to a string
by convention we just
use leftmost derivation a a




Ambiguity

grammar G’:
(EXPR) — (EXPR)+(EXPR) | (EXPR)x (EXPR) | ((EXPR)) | a

Same string,
Different derivation,
and different parse tree!

(EXPR) (EXPR)

/ N\ /

(EXPR) (EXPR) (EXPR) (EXPR)

e N )
(EXPR) | (EXPR) (EXPR) | (EXPR)
( \ / \

a + a X a a + a X a



Ambiguity

A string w is derived ambiguously in context-free grammar G if
it has two or more different leftmost derivations. Grammar G is
ambiguous it it generates some string ambiguously.

An ambiguous grammar can give
a string multiple meanings!
(why is this bad?)



Real-life Ambiguity (“Dangling” else)

« What is the result of this C program?
« if (1) if (0) printf("a"); else printf("2");

if (1) if (1)
if (0) if (0)
printf("a"); VS printf("a");
else else
printf("2"); printf("2");

Ambiguous grammars are confusing. In a language,
a string (program) should have only one meaning.

Problem is, there's no guaranteed way to create an
unambiguous grammar (so language designers must be careful)



Designing Grammars : Basics

* Think about what you want to “link” together

e £.g., XML
« ELEMENT - <TAG>CONTENT</TAG>
« Start and end tags are “linked”

» Start with small grammars and then combine (just like FSMs)



Designing Grammars: Building Up

» Start with small grammars and then combine (just like FSMs)

- To create a grammar for the language {0™1"|n >0}U{1"0"|n >0}

* First create grammar for lang {Oﬂ'ln\ n = 0} :

Sl — 0511 ‘ 5,
« Then create grammar for lang {1"0™| n > 0} :
So — 1550 ‘ €
* Then combine: ¢ _ S1 | S5 A7 = “or = union
Sl N 0811 | e (combines 2 rules

with same left side)

SQ — 1SQO|€



Closed Operations on CFLs

» Start with small grammars and then combine (just like FSMs)
 “Or": S — 51|52
» “Concatenate”™ S — 5155

- “Repetition”:  S" — §'S; | €



In-class exercise: Designing grammars

alphabet X 1s {0,1}

{w| w starts and ends with the same symbol }

e S->0C0 | 1C'1 | € “string starts/ends with same symbol, middle can be anything”

e ('->CC | € “all possible terminals, repeated (ie, all possible strings)”

cC->0]1

“all possible terminals”



Check-in Quiz 9/29

On gradescope



