Deterministic CFLs, PDAs, and Parsing

Wednesday, October 6, 2021

(AN UNMATHED LEFT PPRENTHESIS

(REATES AN UNRESOLVED TENSION
THAT WILL STRY WITH You ALL DAY.

%/{/{0«/{0@%@/{5&’

« Reminder: no class next Monday 10/11

« HW4 due Sunday 10/17 11:59pm
« second Sunday from today

(AN UNMATCHED LEFT PARENTHES(S
CREATES AN UNRESOLVED TENSION
THAT WILL STRY WITH YoU ALL DAY.

Prewisty: CFLS, CFGS, and Parse Trees

Generating strings:

start with start variable, A
Apply rules to get a string }\1
(and parse tree) ‘
A
A — 0A1)
A— B g
|

B O 0O O # 1 1 1

A= 0A1 = 00A11 = 0004111 = 0008111 = 000#111

Today: GENErating vs Parsing

Generating strings:

start with start variable, A
then apply rules to get a }‘1
string and parse tree | In practice, the
“‘1 opposite is more interesting:
A — 0A1 A start with a string,
A — B g then parse it into parse tree
|
b —# O O O # 1 1 1

A= 0A1 = 00A11 = 0004111 = 0008111 = 000#111

Generating vs Parsing

e In practice, parsing a string is more important than generating one

 E.g., a compiler first parses source code into a parse tree
e (Actually, any program with string inputs must first parse it)

» But a compiler / parser (algorithm) must be deterministic
» The PDAs we've seen are non-deterministic (like NFAs)

* So: to model parsers, we need a Deterministic PDA (DPDA)

last tiwe: (NONdeterministic) PDA

S — alb|b
T — Tale

€,5—b

(OOt
g, [—a e, e—1T
O l

e,5—b This PDA nondeterministically
e, 1—e “tries all grammar rules at once”

a,a—€

b,b—e A parser implementation
can't do this!

DPDA: Formal Definition

The language of a DPDA is called a deterministic context-free language.

A deterministic pushdown automaton is a 6-tuple (Q, >, 1", 9, qo, F),

where @, ¥, I, and F are all finite sets, and A pushdown automaton is a 6-tuple

1. Q is the set of states, 1. @ is the set of states,
2. Y is the input alphabet,
3. I' is the stack alphabet,
4.0: Q x X xT.— (Q x I.) U {0} is the transition function
5. qo € @ is the start state, and 6
6. F' C @ is the set of accept states.

2. ¥ is the input alphabet,

3. T is the stack alphabet,

4. 5: Q x 3. xI.—P(Q x T,)
5. qo € Q is the start state, and

. F' C @Q is the set of accept states.

Difference: DPDA has only one possible action for any given
g state, input, and stack op (similar to DFA vs NFA)

This must take into account ¢ reads or stack ops!
E.g., if 8(q, a, X) is valid, then §(q, &, X) must not be

DPDAs are Not Equivalent to PDAS!

R—S|T
S — aSb | ab
T — aTbb | abb

Parsing is deriving reversed:
Should use S rule S S

start with string, end with parse tree

aaabbb — aaSbb
b

2 | When parsing reaches this input position,
which rule should it use, S or T?

Should use T rule _

A Don’t know which rule to use because
aa@bbbb — aalbbbb we can’t see rest of the input!

A PDA non-deterministically “tries all rules” (abandons failed attempts) but a DPDA gets only one try!

PDAs recognize CFLs, but a DPDA only recognizes DCFLs! (a subset of CFLs)

Subclasses of CFLs

Unambiguous Grammars Ambiguous
Grammars
DCFLs 5 AALON\ LRK)

Programming (
language parsers /
compilers are ideally

in here

LALR(1)

SLR

LR(0)

All CFLS

114

Compiler Stages

(5 4+ 3) ; ..

A program string (chars) (e.g., a :

Performed by
Regular expressions
and DFAs!

Program “words”
(e.g., ID(a) ASSIGN LPAREN NUM(5) PLUS NUM(3) RPAREN SEMI ...)

117

A Lexer Implementation

%4

/* C Declarations: */

#include "tokens.h" /*definitions of IF, ID, NUM, ... ¥/
#include "errormsg.h"

union {int ival; string sval; double fval;} yylval;
int charPos=1;

#define ADJ (EM_tokPos=charPos, charPos+=yyleng)
%) A “lex” tool translates

/* Lex Definitions: */ this to a (C program)
digi 0- : :
tgits [0-9]+ implementation of a lexer

)
GRC)

/* Regular Expressions and Actions: */

Regular
expressions!

if {ADJ; return IF;}
la-z] [a-z0-9]* {ADJ; yylval.sval=String(yytext) ;
return ID;}
{digits} {ADJ; yylval.ival=atoi (yytext) ;
return NUM; }
({digits}"."[0-9]*) | ([0-9]*"."{digits}) {ADJ;

yylval.fval=atof (yytext) ;
return REAL; }
(n__n [a—z] *n\nn) | (n " | n\nn | "\t")+ {ADJ'-}
{ADJ; EM error("illegal character");}
118

Compiler Stages

A program (chars)(eg,a : = (5 + 3) ; ..)

Performed by
Regular expressions

and DFAs! Program “words”
(e.g., ID(a) ASSIGN LPAREN NUM(5) PLUS NUM(3) RPAREN SEMI)
DCFLs and DPDAs Parser

AssignStm Abstract Syntax tree (AST), i.e., a parse tree!

a OpExp

e

NumExp Plus NumExp

5 3
119

A Parser Implementation

%{

int yylex(void) ;
void yyerror (char *s) { EM error (EM tokPos, "%s", s); }
%)

Stoken ID WHILE BEGIN END DO IF THEN ELSE SEMI ASSIGN
$start prog
%

o\D

A “yvacc” tool translates
rog: stmlist . thisto a (C program)
Just write the CFG! — Implementation of a parser

stm :” ID ASSIGN ID

| WHILE ID DO stm

| BEGIN stmlist END

| IF ID THEN stm

| IF ID THEN stm ELSE stm

stmlist : stm

| stmlist SEMI stm 0

Parsing

R—S|T
S — aSb | ab
T — aTbb | abb

aaabbb — aaSbb
aD ao D

A parser must be able to choose one correct rule, when reading input left-to-right

aaabbbbbb — aaTbbbb

LL parsing

“You're the Parser” Game:

o | = [eft_to_right Guess which rule applies?
* L = leftmost derivation

S — if E then S else S i:?nSdL
S — begin § L |
Int £
S — prin E — num = num

1f 2 = 3 begin print 1; print 2; end else print O

1

LL parsing

o L = left-to-right
e L = l[eftmost derivation

S — if E then S else S i:?nSdL
S — begin § L |
S int £
— prin F — num = num

1f 2 = 3 begin print 1; print 2; end else print O

LL parsing

o L = left-to-right
e L = l[eftmost derivation

L d
S — if E then S else S e
S — begin S L ’
S int £
— b E — num = num

1f 2 = 3 begin print 1; print 2; end else print O

1

LL parsing

o L = left-to-right
e L = l[eftmost derivation

L d
§ — 5 dren § eke e
. L —: SL
S — begin S L
Int £
S —>[prn E — num = num

1f 2 = 3 begin print 1; print 2; end else print O

“Prefix” languages (like Scheme/Lisp) are easily parsed with LL parsers

LR parsing

S—S5: S E — id
e L = left-to-right S—i1d := E E — num
* R = rightmost derivation * S > print (L)© E — E + E

a := 7;
f - c+ d:=54+6 4

When parse is here, can’t determine whether it’s an assign or a plus

Need to save input somewhere, like a stack: this is a job for a (D)PDA!!

Stack Input

1 a :=7 ; b:=c+ (d:=5+6,d) $
1 1d4 /t :=7 ; b:=c+ (d:=5+6,d4d) $
1 1dg : =4 7 ; b:=c+ (d:=5+6,4d) $
1 1dg4 : = numjg i b:=c+ (d:=5+6,d) $
11d4 :=¢ Eqq i b:=c+ (d:=5+6, d) $
1 92 ;i b:=c+ (d:=5+6 , 4d) $

Action

shift

shift

shift

reduce E — num

reduce S — id:=FE

shift 127

LR parsing

o L = left-to-right
* R = rightmost derivation

Stack

1
1 1d4

Lidy

] 1d4
1 1dg
152

-\

O 0O O OO0 O

QO Q0 00 a0 Qn

S—>S5: 85
S—>1d=E

S — print (L)

+ + + + + 4+

Qo Q0 Q

Input

ur o1 Ul 01 U1 U

+ + + + + +

O O O O O Ov

TR O TN O TRy O TRy O Ty o F

— e e S S o

E — i1d
E — num
EFE— FE + E

o o5 5 O 8 O

Action

shift

shift

shift

reduce E — num

reduce S — id:=FE

shift 128

LR parsing
S—S5: S E — id
e L = left-to-right S—>i1d:= FE E — num
* R = rightmost derivation S —>print(L) E — E + E

Stack Input Action

1 a :=7 ; b:=c+ (d:=5+6,d) $ shift

1 1d4 :=7 ; b:=c+ (d:=5+6,d4d) $ shift

1 id4 1=6 7 ;b :=c+ (d:=5+6,4d) $ shift

1 1d4 :=¢ numlg/t i b:=c+ (d:=5+6,d) $ reduce E — num

1 id4 1 =6 Ell ; b :=c+ (d :=5 + 6 , d) $ reduce S — 1d:=E

192 i b:=c+ (d:=5+6,4d) $ shift 129

LR parsing

o L = left-to-right
* R = rightmost derivation

Stack

1

1 1d4

11d4 :=¢

1 1dg : =g numyg
11dg :=¢ Eq)

1 52

a :=7 : b :
Can determine
(rightmost) rule | |

; b o
ﬁb t=
T b o=

QO Q0 00 a0 Qn

S—S5: 8§
S—>1d=E

S — print (L)

+ + + + + 4+

Qo Q0 Q

Input

ur o1 Ul 01 U1 U

+ + + + + +

O O O O O Ov

TR O TN O TRy O TRy O Ty o F

— e e S S o

E — 1d
E — num
EFE— FE + E

o o5 5 O 8 O

Action

shift

shift

shift

reduce E — num

reduce S — 1d: =E

shift 130

LR parsing
S—>S§5: S E — id
o | = [eft-t()-right S—i1d:= E E — num
* R = rightmost derivation * S > print (L)¢ E — E + E

Stack Input Action

1 a :=7 ; b:=c+ (d:=5+6,d) $ shift

1 1d4 :=7 ; b:=c+ (d:=5+6,d4d) $ shift

11dg4 :=¢ Candetermine = ¢ + (d :=5 +6 , d) $ shift

| 1d4 :=¢ numyq (rightmost)rule - ¢ + (d :=5 +6 , d) $ reduce E — num

1 id4 1 =6 Ell ; b :=c+ (d :=5 + 6 , d) $ reduce S — 1d:=E

192 ﬁ b :=c+ (d:=5+6,d) § shift 131

LR parsing
S—>§8; 8§ E — 1d
e L = left-to-right S—>i1d:= FE E — num

* R = rightmost derivation S —>print(L) E — E + E

Stack Input Action

1 a :=7 ; b:=c+ (d:=5+6,d) $ shift

1 1d4 =7 ; b:=c+ (d:=5+6,d) % shift

1 id4 1=6 7 ; b:=c+ (d:=5+6,4d) $ shift

1 1dg :=¢ numy ;i b :=c+ (d:=5+6 , d) $ reduce E — num

1 id4 1 =6 Ell ; b :=c+ (d :=5 + 6 , d) $ reduce S — 1d:=E

192 i b:=c+ (d:=54+6,4d) $ shift 132

To learn more, take a Compilers Class!

Unambiguous Grammars

L(k)

LL(1)

LR(k)
LR(1)

l

Ambiguous
Grammars

T

A program (string of chars)

Lexer
(DFAs / NFASs)

Program “words”

Parser
(DPDAS)

Abstract Syntax tree (AST)

Need computation that goes beyond CFLs

133

Non-CFLs

tastteek, PUumMping Lemma for Reg Langs

« The Pumping Lemma describes how strings repeat

 Regular language strings can (only) repeat using Kleene pattern
« But the substrings are independent! -

Repeating pattern y:’\/ :
* A non-regular language: .' e rfpsat
{On1n| n 2z 0} Before repeat ’r ':
Kleene star can’t express this pattern: i
2"d part depends on (length of) 15t part _______|Independent /

 How do CFLs repeat?

Repetition and Dependency in CFLs

Parts before/after repetition point are linked

Repetition ‘é — 041 {On#1ﬂ| n > 0}
A— B

B — # /}‘1\ repetition

an
A
/| N\

=
e
O 0 0 # 1 1 1
A= 0A1 = 00411 = 000A111 = 0008111 = 000#111

NFA can take loop transition

How Do Strings in CFLS Repeat? /el mm

_\

g

I r
‘
v

» Strings in regular languages repeat states

- /

e Strings In CFLs repeat subtrees in the parse tree

This subtree can be repeated
ny number of times

R a
z
/ R\
=
U v €T y 2

R
u v / \\ 1 z
v T Y

Linked parts

Pumping Lemma for CFLS

Pumping lemma for context-free languages If A is a context-free language,
then there is a number p (the pumping length) where, if s is any string in A of
length at least »_then < maw he diwvided into five pieces s = uvzyz satistying the

ke Now there are two pumpable parts.
conditions But they must be pumped together! 8
1. for each i > 0, wvtzy'z € A, FNN
2. |vy| > 0, and
3. “U:By| < p. Pumping lemma If A is a regular : meer p (the
pumping length) where if s is any stri] =7/ " hen s may be

divided into three pieces, s = 2y, satisfying the following conditions:

1. for each i > 0, zy'z € A,
2. |y| > 0, and
3. [zy| < p.

Non CFL example: D = {ww| w € {0,1}*}

Previously: D is nonregular: unpumpable counterexample s: 0P10P1
Now: this s can be pumped according to CFL pumping lemma:

01 01
r— —

rmm—— —
000---000 O 1 O 000---0001
N, e o o o e e

u () €Z Yy e
Pumping v and y (together) produces string still in D

e CFL Pumping Lemma conditions: 1. for each i > 0, uv'zy'z € A,

This doesn’t prove that the language is a CFL! 2. |vy| > 0, and
It only means that the attempt to prove that 3. |vzy| < p.
the language is not a CFL failed.

Non CFL example: D = {ww| w € {0,1}*}

« Choose another string s:

If vyx is contained in first or second half, then
any pumping will break the match

e W

0P1PQOP1P
\e— —

So vyx must straddle the middle x
But any pumping still breaks the match because order is wrong

e CFL Pumping Lemma conditions: 1. foreachi > 0, uv'zy'z € A,
2. |vy| > 0, and

This language is not a CFL! 3. Juzy| < p.

CFL Pumping Lemma i1s Welird?
?227?
Pumping lemma for context-free languages If A is a context-free language,

then there is a number p (the pumping length) where, if s is any string in A of
length at least p, then s may be divided into five pieces s = uvzyz satistying the

conditions
1. for each ¢ > 0, wvtazy'z € A,
2. |vy| > 0, and
3. Jvxy| < p.

Fwiew: REgular Language Pumping Lemma

* The pumping length p for a language L Is ...

-~ the # of states in Eamso s 1 et s b g e
th at I_a N g ua g e' S N F A! divided into three pieces, s = xyz, satistying the following conditions:

1. for each i > 0, zy‘z € A,
2. |y| > 0, and
3. |zy| < p.

-

* If string length > # of states, Repestd st
then some state must repeat | .{
\

« If a state is repeated once, then it can repeat multiple times

Repeating Pattern in CFL Strings?,

 When are we guaranteed to have a
repeated subtree?
« When height of parse tree > # of rules!

Subtrees!

* Let k=# of rules
and b = longest rule RHS length

* Then the length string where we know v
there's a repeat Is bk Don't care] on't care
* |.e, pumping length = bk 7?7?27 |

Pumping lemma for context-free languages If A is a context-free language,
then there is ajnumber p (the pumping length) where, if s is any string in A of

H

length at least p, then s may be divided into five pieces s = uvzyz satisfying the
conditions

1. for each i > 0, uv'zyiz € A,

2. |vy| > 0, and

3. vay| < p. Pumping Length could be too short!

Pumping lemma for context-free languages If A is a context-free language,
then there is a number p (the pumping length) where, if s is any string in A of
length at least p, then s may be divided into five pieces s = wvzyz satistying the

A Pumpable Non-CFL? oo s

2. |vy| > 0, and
3. |vay| < p.

e CFL Pumping Lemma says: Example:
« “All CFLs are pumpable’ L=1{ab/ckd' [i=0orj=Fk=1)
« So if we find a non-pumpable
language ... it's not a CFL! For any counterexample,
split into uvxyz where,

, « v="first char
 Pumping Lemma does not say: . z=remaining chars

e “All nonCFLs are not pumpable’ cu=x=y=¢

: o
(statement != it's inverse) e Ifthere are as ...

. 38[2‘{3‘5}%%&%@,%‘5 rﬁ%‘ﬁf‘égﬂ‘;} 26 * ...It's pumpable bc # of as is arbitrary

e There there are no as

« ... It's pumpable bc # of other chars is
arbitrary

This language is pumpable ... but not a CFL!
(can't come up with a CFG) 145

Ogden’s Lemma (generalizes pumping lemma)

Ogden’s lemma is: If L is a CFL, then there is a constant n, such that if z|
is any string of length at least n in L, in which we select at least n positions to
be distinguished, then we can write z = uvwxy, such that:

|
Says that every long enough
1. vwz has at most n distinguished positions. segment must be pumpable

2. vx has at least one distinguished position.

3. For all i, ww'wz'y is in L.

Example:
I — {aibjc’“dl i=0orj=4k=1) This language is not a CFL because
it doesn't satisfy Ogden’s Lemma

Counterexample: ab”cd"

 n “distinguished” positions must include non-a character
« Impossible to pump no matter which n chars are chosen

A Practical Non-CFL

XML

e ELEMENT - <TAG>CONTENT</TAG>
« Where TAG is any string

« XML also looks like this non-CFL: D = {ww| w € {0,1}*}

* This means XML is not context-free!
« Note: HTML is context-free because ...
e ...there are only a finite number of tags,
« so they can be embedded into a finite number of rules.

e In practice:
« XML is parsed as a CFL, with a CFG
« Then matching tags checked in a 2" pass with a more powerful machine ...

Mewt Tine: A MOre Powerful Machine ...

M accepts its input if it is in language: B = {w#w| w € {0,1}*}

My = “On input string w: Infinite memory, initially starts with input

1. Zig-zag across the tape to corresponding positions on either
sidefot the # symbol to check whether these positions contain
the same symbol. If they do not, or if no # is found, reject.
Cross off symbols as they are checked to keep track of which
symbols correspond.

Can move to, and read/write
from, arbitrary memory locations

In-class quiz 10/6

See gradescope

150

