UMB CS622

Turing Machines (TMs)

Wednesday, October 13, 2021

Arnoancements
« HW4 due Sun 10/17 11:59pm

 HW3 grades returned

CS622 S0 Far
e Turing Machines (TMs) @

» Infinite tape (memory), arbitrary read/write
« Expresses any “computation”

* PDAs: recognize context-free languages
4 oaq® INfinite stack (memory), push/pop only /
A— B e« Can’t express arbitrary dependency, decidable

B — # *
e.g, {ww| w € {0301} i // context-free
* DFAs / NFAs: recognize regular langs Algorithms: A
. Finite states (memory) regular special class of
halting TMs

Turing-recognizable

« Can’t express dependency
e.g., {0"1"|n > 0}

&

OO e)

Alan Turing

* First to formalize the models of computation we're studying
* |.e., he invented this course

« Worked as codebreaker during WW2

T
e —

« Also studied Artificial Intelligence o

e The Turing Test

TURING TEST EXTRA CREDIT:

CONVINCE THE EXAMINER
THAT HE'S A COMPUTER.

YOU KNOW, YOU MAKE
SOME REALLY GOOD POINTS.
[

Finite Automata vs Turing Machines

« Turing Machines can read and write to arbitrary “tape” cells
« Tape Initially contains input string

input | | Empty tape locations

o States
* The tape Is infinite l

head al|b abrl_l LJ u‘-é
« Each step: “head” can move left or right

« A Turing Machine can accept/reject at any time

Call a language Turing-recognizable if some Turing machine
recognizes It.

This is an informal TM description
One “step” =

Turing Machine Example muttiple transitions

input
M accepts inputs in language B = {w#w| w € {0,1}*} |
| | —
M, = “On input string w: head 011000#011000u ...

1. Zig-zag across the tape to corresponding positions on either
side of the # symbol to check whether these positions contain
the same symbol. If they do not, or if no # is found, reject.
Cross off symbols as they are checked to keep track of which
symbols correspond.

“Cross off” =

“_n

write “x” char

Turing Machine Example

M, accepts inputs in language B = {w#w| w € {0,1}*}

. . * j
M; = “On input string w: “Cross off” = write “x" char 011000#011000u ...

1. Zig-zag across the tape to corresponding positions on either
side of the # symbol to check whether these positions contain
the same symbol. If they do not, or if no # is found, reject.
Cross off symbols as they are checked to keep track of which
symbols correspond.

“Cross off” =

“_n

write “x” char

Y
x11000#011000uw ...

Turing Machine Example

M, accepts inputs in language B = {w#w| w € {0,1}*}

M; = “On input string w: “Cross off” = write “x" char 011000#011000u ...
T i 1t ' ~
1. Zlg zag across the tape to corresponding positions on elthfzr T N0 00%£011000u ...
side of the # symbol to check whether these positions contain —
the same symbol. If they do not, or if no # is found, reject. x11000#x11000u ...

Cross off symbols as they are checked to keep track of which
symbols correspond.

“Cross off” =

“_n

write “x” char

Turing Machine Example

M, accepts inputs in language B = {w#w| w € {0,1}*}

. . oy
M, = “On input string w: “zag” to start 011000#011000

1. Zig-zag across the tape to corresponding positions on either

Y
. .. . x11000#011000
side of the # symbol to check whether these positions contain

—

the same symbol. If they do not, or if no # is found, reject. x11000#x11000
Cross off symbols as they are checked to keep track of which I

x11000#x11000
symbols correspond.

“Cross off” =

“_n

write “x” char

Turing Machine Example

M, accepts inputs in language B = {w#w| w € {0,1}*}

. . B
M, = “On input string w: Continue crossing off 011000#0
1. Zig-zag across the tape to corresponding positions on either B
. .. . x11000#0
side of the # symbol to check whether these positions contain —
the same symbol. If they do not, or if no # is found, reject. x11000#x
Cross off symbols as they are checked to keep track of which Nii10004
symbols correspond. 8 :)
“Cross off” = xx1000#x

“_n

write “x” char

1000

1000

1000

1000

1000

...

...

I

uo...

Turing Machine Example

M, accepts inputs in language B = {w#w| w € {0,1}*}

M = “On input string w:

1. Zig-zag across the tape to corresponding positions on either
side of the # symbol to check whether these positions contain
the same symbol. If they do not, or if no # is found, reject.
Cross off symbols as they are checked to keep track of which
symbols correspond.

2. When all symbols to the left of the # have been crossed off,
check for any remaining symbols to the right of the #. If any
symbols remain, reject; otherwise, accept.”

—
011000#0

B
x11000#0

xllO()O#_gc

—)¢(11000#X

@1000#}:

!

X X X XXX #X

Turing Machine Example

M, accepts inputs in language B = {w#w| w € {0,1}*}

M = “On input string w: 01
1. Zig-zag across the tape to corresponding positions on either B
. .. . x 1
side of the # symbol to check whether these positions contain
the same symbol. If they do not, or if no # is found, reject. x 1

Cross off symbols as they are checked to keep track of which —
symbols correspond.

2. When all symbols to the left of the # have been crossed off, x X
check for any remaining symbols to the right of the #. If any
symbols remain, reject; otherwise, accept.”

O# 01

O# 01

Ou ...

Ou ...

Xu ...

accept

Turing Machines: Formal Definition

A Turing machine is a 7-tuple, (Q, %, I, 9, qo, Gaccept, Greject), Where
Q, 2, I are all finite sets and

1. @ is the set of states,

. 2 is the input alphabet not containing the blank symbol 1
. I is the tape alphabet, where u = T"and ¥ C T,

6: Q x I'—@Q xI' x {L.R} is the transition function,

do € Cvread o write re MOVe

. Qaccept € @ 15 the accept state, and

. Greject € @ 1s the reject state, where greject 7 Gaccept-

B = {w#w| w € {0,1}*}

Formal Turing Machine Example

Read char (0 or 1), cross it off, move head R(ight)

’

01 O0OO0O#011000uw ..

oy

x 1 OO0OO0O#011000wu

x 1 000#—}¢(11000|_|

?{1 O0O0O#x11000wu

x—jc O0O0O#x11000uw ..
Y

X X XXX H#HEXXXXXXU ..
accept

A Turing machine is a 7-tuple, (Q, X,I', 6, qo, Gaccept, Greject), Where
Q, X, T are all finite sets and
1. @ is the set of states,
¥ is the input alphabet not containing the blank symbol v,
I" is the tape alphabet, where u € "'and X C T,
0: Q xI'—@Q x T x {L., R} is the transition function,
go € read es| write | move
Gaccepr € @ 15 the accept state, and

SN I

Grejece € @ 15 the reject state, where grejece # Gaceept-

B = {w#w| w € {0,1}*}

Formal Turing Machine Example

011000#011000uw ..

—
x11000#011000u ... 'z
x11000#%110000u ..

}(—11000#X11000u... 0,1—>R

xx1000#x11000uw ..
v

X X XX XX HEXXXXXXU ...
accept x—R ‘@ @ @’ x—R

A Turing machine is a 7-tuple, (Q, X, T, 8, g0, Gaccept, Greject), Where Cross off ‘i})

Q, 3, T are all finite sets and \"{;\ Oorl /"'s;/z
1. @ is the set of states,
2. ¥ is the input alphabet not containing the blank symbol v, @. 0,1,x—1,
3. I' is the tape alphabet, where u € 'and ¥ C T,
4. 6: Q xI'—Q xI'" x {L.,R} is the transition function, #—1
5. qo € read | write | move \
6. Gaccepr € @ 1s the accept state, and x—R qr . 0 ,1—>L
7. Greject € @ 1s the reject state, where grejece 7 Gaccept-

B = {w#w| w € {0,1}*}

Formal Turing Machine Example

xx1000#x11000uw ..
v

X X XX XXHEXXXXX XU ..

accept x—R ‘@ @ @’ x—R

A Turing machine is a 7-tuple, (Q, X,I', 6, qo, Gaccept, Greject), Where
Q, X, T are all finite sets and

1. @ is the set of states,

2. ¥ is the input alphabet not containing the blank symbol v, “Zag” Left @. 0,1,x—1,
3. I is the tape alphabet, where u € I'and 3 C T, to last x

4. 5: Q x '—Q x I x {L.R} is the transition function, #—1

5. 90 € read ksl write | move

6. Gaccepr € @ 1s the accept state, and \ x—R qr 0, 1—L

7.

Grejece € @ 15 the reject state, where grejece # Gaceept-

B = {w#w| w € {0,1}*}

Formal Turing Machine Example

Read char (0 or 1), cross it off, move head R(ight)

’

01 O0OO0O#011000uw ..

Y

x 1 OO0OO0O#011000wu

x 1 000#—}¢(11000|_|

?{1 O0O0O#x11000wu

x—jc O0O0O#x11000uw ..
Y

X X XXX XH#EXXXXX XU ..
accept

A Turing machine is a 7-tuple, (Q, X,I', 6, qo, Gaccept, Greject), Where
Q, X, T are all finite sets and
1. @ is the set of states,
¥ is the input alphabet not containing the blank symbol v,
I" is the tape alphabet, where u € "'and X C T,
0: Q xI'—@Q x T x {L., R} is the transition function,
go € read es| write | move
Gaccepr € @ 15 the accept state, and

SN I

Grejece € @ 15 the reject state, where grejece # Gaceept-

Formal Turing Machine Example

’

01 O0OO0O#011000uw ..
Y

x 1 O0OO0O#01 1000w ...
x 1 000#—}¢(11000|_|..
?{1 O0O0O#x11000uw ...
X—}‘L{ OOOﬁXllOOOu..

v Ty
X X XXX XH#EXXXXX XU ..

accept

A Turing machine is a 7-tuple, (Q, X,I', 6, qo, Gaccept, Greject), Where
Q, X, T are all finite sets and
1. @ is the set of states,
¥ is the input alphabet not containing the blank symbol v,
I" is the tape alphabet, where u € "'and X C T,
0: Q xI'—@Q x T x {L., R} is the transition function,
go € read es| write | move
Gaccepr € @ 15 the accept state, and

SN I

Grejece € @ 15 the reject state, where grejece # Gaceept-

\ X—>R

B = {w#w| w € {0,1}*}

Accept if all
crossed out

Reject state not shown
Any transition not shown

goes 1o reject state

Turing Machine: Informal Description

» M accepts if inputisin language B = {w#w| w € {0,1}*}

M; = “On input string w:

1. Zig-zag across the tape to corresponding positions on either
side of the # symbol to check whether these positions contain
the same symbol. If they Ao=e oot s found, reject.
Cross off symbols as thes’ We will (mostly) \n track of which

bol d. stick to informal
TR TR descriptions of

2. When all symbols to Turing machines, _>n crossed off,
check for any remaining & like this one At of the #. If any
symbols remain, reject; otherwise;—.ccept.”

TM Informal Description: Caveats

« TM informal descriptions are not a “do whatever” card
« They must still communicate the formal tuple

* Input must be a string, written with chars from finite alphabet

« An informal “step” represents a finite # of formal transitions
* |t cannot run forever
« E.g, can't say “try all numbers” as a “step”

Non-halting Turing Machines (TMs) <®

* A DFA, NFA, or PDA always halts
- Because the (finite) input is always read exactly once

« But a Turing Machine can run forever
« E.g, the head can move back and forth in a loop

* Thus, there are two classes of Turing Machines:
« Arecognizer is a Turing Machine that may run forever
A decider is a Turing Machine that always halts.

Call a language Turing-recognizable if some Turing machine Call a language Turing-decidable or simply decidable if some
recognizes it. Turing machine decides it.

Formal Definition of an “Algorithm”

« An algorithm is equivalent to a Turing-decidable Language

Turing-recognizable

decidable

context-free

Turing Machine Variants

THUS, FOR ANY NONDETERMINISTIC TURING
MACHINE M THAT RUNS IN SOME POLYNOMIAL
TIME p(r), WE CAN DEVISE AN ALGORITHM

THAT TAKES AN INPUT «w OF LENGTH n AND
PRODUCES Ep,... THE RUNNING TIME 1S O¢P*n)
ON A MULTITAPE DETERMINISTIC TURING
MACHINE AND,..

WTF, MAN, I JUST
WANTED To LEARN
How To PROGRAM
VIDEO GAMES.

Y
O(1]0 0| u
1. Multi-tape TMs | \/ ,
a|ada|a|u
Y
b|la|u
Deterministic Nondeterministic
computation computation
o . Q: start (.}f—\
2. Non-deterministic TMs (Y
L. : ![1.
L reject -(1
R

« accept or reject

* accept

We will prove that
these TM variations
are equivalent to
deterministic,
single-tape
machines

Reminder: Equivalence of Machines

« Two machines are equivalent when ...

. ... they recognize the same language

Theorem: Single-tape TM < Multi-tape TM

= If a single-tape TM recognizes a language,
then a multi-tape TM recognizes the language
* A single-tape TM Is equivalent to ...
e .. a multi-tape TM that only uses one of Its tapes
 DONE!

< If a multi-tape TM recognizes a language,
then a single-tape TM recognizes the language

e Convert multi-tape TM to single-tape TM

Multi-tape TM =» Single-tape TM

Idea: Use delimiter (#) on single-tape to simulate multiple tapes
« Add “dotted” version of every char to simulate multiple heads

¥

O|11(0(1(O0|u]...
M !
dalalal|luUJ] ...
e
bla]|u
S + n ° °
#01010#_aaa#baiu

Theorem: Single-tape TM < Multi-tape TM

= If a single-tape TM recognizes a language,
then a multi-tape TM recognizes the language

* Asingle-tape TM Is equivalent to ...
.. a multi-tape TM that only uses one of Its tapes

< If a multi-tape TM recognizes a language,
then a single-tape TM recognizes the language

« Convert multi-tape TM to single-tape TM

Non-Deterministic Turing Machines?

Flashback: DEFAS VS NFAS

A finite automaton is a S-tuple (Q, X, 6, qo, F'), where

1. @ is a finite set called the szates,

2. Y is a finite set called the alphabet, -
Nondeterministic

3. 5: Q X Z—>Q iS the Wﬂnsz.tionﬁln(:tion, transition produces set Of
4. qo € Q is the start state, and possible next states
5. F C Q is the set of accept states. A nondeterministic finite automaton
is a S-tuple (Q, %, 9, qo, F'), where
vs 1. Q is a finite set of states,

2. Y is a finite alphabet,

3.0: Q x X.—P(Q) is the transition function,
4. qo € @ is the start state, and

5. F C @ is the set of accept states.

Femember: TUNINE Machine Formal Definition

A Turing machine is a 7-tuple, (Q,X,I', 0, qo, Gaccept, Greject), Where
Q, X, I are all finite sets and

1. Q is the set of states,

. 2 1s the input alphabet not containing the blank symbol L,
. I is the tape alphabet, where u € 'and ¥ C T,

.0:Q xI'—Q xT' x {L, R} is the transition function,

. o € @ 1s the start state,

« Qaccept € @ 15 the accept state, and

N O\ B WIN

. Qreject € () 1s the reject state, where greject 7 Gaccept-

ndeterm\“‘st‘c. . L
NON . emser: TUTING Machine Formal Definition

Nondeterministic |
A Turing Machine |1S 2 7'mplea (Q: E: Il 5: d0s Qaccepts qreject)a where
(2, X, I are all finite sets and
1. Q is the set of states,
. 2 1s the input alphabet not containing the blank symbol L,
. I is the tape alphabet, where u € 'and ¥ C T,

=P G=F R I 5: Q x T—P(Q x T x {L,R})

. o € @ 1s the start state,
« Qaccept € @ 15 the accept state, and

N O\ B WIN

. Qreject € () 1s the reject state, where greject 7 Gaccept-

Thm: Deterministic TM < Non-det. TM

= If a deterministic TM recognizes a language,
then a nondeterministic TM recognizes the language
* To convert Deterministic TM - Non-deterministic TM ...

... change Deterministic TM delta fn output to a one-element set
e (just like conversion of DFA to NFA)

* DONE!

< If a nondeterministic TM recognizes a language,
then a deterministic TM recognizes the language

e To convert Non-deterministic TM = Deterministic TM ...
° ?7?7?

Lwiew: NONdeterminism

Deterministic Nondeterministic
computation computation

o start .

Q star (N

(i\: 'T In nondeterministic
;

. computation, every

(
é. : (1 step can branch into
Q.

Y a set of states
reject (1
: What is a “state”

.. '\ fora TM?
(

- accept or reject §: Q X F—)P(Q X ' % {L,}.R})

tastick PDA Configurations (IDs)

- A configuration (or ID) is a snapshot of a PDA’s computation

- A configuration (or ID) (g, w, y) has three components:
g =the current state
w = the remaining input string
y = the stack contents

TM Configuration (ID) = 7?7

control

—

L

A Turing machine is a 7-tuple, (Q, 2,1, 9, qo, Gaccepts Greject), Where
Q, X, T are all finite sets and

1.

S R o

Q is the set of states,

¥ is the input alphabet not containing the blank symbol .,
I" is the tape alphabet, where u € I'and ¥ C T,

0: Q@ x '—Q x I" x {L, R} is the transition function,

go € @ is the start state,

Gaccept € @ 1s the accept state, and

Greject € @ 1s the reject state, where greject 7 accept-

TM Configuration = State + Head + Tape

States

O =
—
—
O
o
-
++
o
=
SN
o
o
o
C

- —
S x11000#011000u ...<] Configafter1step
configuration

x11000#x11000uw ... Conﬁgafterzsteps
x11000#x11000uw ...

xx1000#x1 1000w ...
oy

X X X X XXH#EXXXXX XU ...
accept

TM Configuration = State + Head + Tape

q7
101151111uuu3...
10119701111
Textual
representation 1st char after state is
of “configuration” current head position

(use this in HW)

“Running” an Input String on a TM

M = (Q, E; F; 5; q05 Qaccept QTejGCt)

Single-step " Extended
(Right) aqiaB F axqgsf * Base Case
0t € O write IF Ifor any 1D [

d(q,a) = (g2,%X,R)

x eI Bel” _
readh 0 o f « Recursive Case

(Left) abgraf = agbxp I E Jlif there exists some ID K

if §(q1,a) = (g2, %, L) such that I - K and K F J
Fdge cases: qiaff F qaxfB its(g.a) = (@ xL)

aqr F acgey i@ = (2. R)

Nondeterminism in TMs

Deterministic Nondeterministic
computation computation

e Start
¢ 1011q7o111),\
1011¢701111

. : { l

® 1011¢;01111

For TMs, each J
node is a reject o)'
configuration

: R

* accept or reject * accept

b k£ Ak Ak— £k

Nondeterministic TM = Deterministic |1stway

Nondeterministic

» Simulate NTM with Det. TM: computation
* Det. TM keeps multiple configs single tape (1

* Like how single-tape TM simulates multi-tape
AN Y
[J [[

* Then run all configs, in parallel
 |.e, 1step on one config, 1 step on the next, ...

1011¢,01111 #1011g,01111

. ' ' figis foun .
Accept If any accepting config Is found - y),
. Important: Deterministic TM | :
' o keeps all configs *
« Why must we step configs in parallel? at each step on 1

one tape) accept

Interlude: Running TMs inside other TMs

Exercise:
 Given TMs M, and M,, create TM M that accepts if either M, or M, accept

Possible solution #1:

) reject accept accept
* M=on mPUt X . accept reject accept
* Run M, on x, accept if M, accepts
« Run M, on x, accept if M, accepts x

Note: This solution would be ok if
we knew M, and M, were deciders
(which halt on all inputs)

Interlude: Running TMs inside other TMs

Exercise:

« Given TMs M, and M,, create TM M that accepts if either M, or M, accept

Possible solution #1:

« M =o0n input x,
« Run M, on x, accept if M, accepts
* Run M, on x, accept if M, accepts

Possible solution #2;

* M=o0ninputx,
« Run M, and M, on x in parallel, i.e.,
« Run M, on x for 1 step, accept if M, accepts
« Run M, on x for 1 step, accept if M, accepts
« Repeat

reject
accept
accept
loops

accept
reject
loops
accept

accept
accept
accept
loops

M MM

reject
accept
accept
loops

accept
reject
loops
accept

accept
accept
accept
accept

V]

V]

52

Nondeterministic TM = Deterministic |2 way

Nondeterministic
« Simulate NTM with Det. TM: computation
 Number the nodes at each step 1,
« Deterministically check every tree path, ‘(1
in breadth-first order [j\
* 1 1] 2

. 1-1 : ‘
()

(Sipser)

R

* accept

Nondeterministic TM = Deterministic |2 way

Nondeterministic
« Simulate NTM with Det. TM: computation
 Number the nodes at each step 1
- Deterministically check every tree path, ‘(\,
in b1readth-f|rst order {;\v : *
* 1023 4

1 Y
reject '[\'

(Sipser)

R

* accept

Nondeterministic TM = Deterministic |2 way

Nondeterministic
« Simulate NTM with Det. TM: computation
 Number the nodes at each step 15
« Deterministically check every tree path, ‘(1
in breadth-first order {1 \; NN
* 1 VAR 4

12 Y
. 1-1-1 | V/\r

reject

(Sipser)

R

* accept

Nondeterministic TM = Deterministic |2 way

(Sipser)
Always has input, Needs 3 tapes
never changes
Y
0|/0[1]|0|u| ... Inputtape
Used to run each path (re-copy
D v input here when checking a path)
x [x|#|0|1|x|u| ... simulation tape
Tracks which node we
v are on, e.g., 1-1-2, etc.

1(2(3|3(2|3|1(2|1]|1|3|u|... addresstape

Nondeterministic TM <& Deterministic TM

=> If a deterministic TM recognizes a language,
then a nondeterministic TM recognizes the language
« To convert Deterministic TM = Non-deterministic TM ...

.. change Deterministic TM delta fn output to a one-element set
e (just like conversion of DFA to NFA)

<= If a nondeterministic TM recognizes a language,
then a deterministic TM recognizes the language

e Convert Nondeterministic TM = Deterministic TM m

Conclusion: These are All Equivalent TMs!

 Single-tape Turing Machine
« Multi-tape Turing Machine

* Non-deterministic Turing Machine

Check-in Quiz 10/13

On gradescope

