UMB (CS622

Decidability

Monday, October 18, 2021

Turing-recognizable

decidable

context-free

Arnouncements
e HW4 In

* HWS out
* Due Sun 10/24 11:59pm

Correctness of this Diagram?

Turing-recognizable

decidable

context-free

HW4, Problem 5 proved
that “regular” circle is
correctly inside
“context-free” circle

regular
In HW5, you'll prove the rest

Turing Machines and Algorithms

« Turing Machines can express any “computation”
* |.e,, a Turing Machine models (Python, Java) programs!

Remember:
TMs = programs

« 2 classes of Turing Machines

« Recognizers may loop forever
Today | ¢ Deciders always halt

ALGORITHMS

» Deciders = Algorithms . S
« l.e, an algorithm is any program that always halts “'“" \‘

Algorithms (Decidable Problems)
for Regular Languages

0: Q X ¥—>Q is the transition function

taskback: RUNNING @ DFA “Program”

Define the extended transition function: §: Q x &* — Q

Base case: (g, ¢) = ¢

First char Last chars

Remember:
TMs = programs

Recursive case: 0(q, a1wrest) = 0(8(q, a1), Wyest)

Single transition step

A function DFAaccepts(B,w) that
returns TRUE if DFA B accepts string w

9
- Define “current” state g, ... = Start state q,
- For each input char g, ...

- Define Qnext = 6(chrrent' ai)

- Set qcurl:ent = qnext.
- Return TRUE If g, IS @n accept state

Could you implement this as a program? | =)

The language of DFAaccepts

Function DFAaccepts(B,w)
returns TRUE if DFA B accepts string w

Apea = {(B,w)| B 1s a DFA that accepts input string w }

But a language is a set of strings?

Interlude: Encoding Things into Strings

« ATuring machine’s input Is always a string

« So anything we want to give to TM must be encoded as string

Notation: <SOMETHING> = string encoding for SOMETHING
* A tuple combines multiple encodings, e.g., <B, W> (om prevslide)

Example: Possible string encoding for a DFA?

55

nnnnnnnnnnnn

Interlude: Informal TMs and Encodings

An informal TM description:
1. Doesn’t need to describe exactly how input string is encoded

2. Assumes input is a “valid” encoding
 Invalid encodings are automatically rejected

The language of DFAaccepts

Apea = {(B,w)| B is a DFA that accepts input string w }

Turing-recognizable

 DFAaccepts is a Turing machine

« But Is it a decider or recognizer?
 |l.e, Is it an algorithm?

« To show it's an algo, need to prove:

decidable

® o o
context-free

Apra 1s a decidable language

How to prove that a language I1s decidable?

 Create a Turing machine that decides that language!

Remember:

A decider is Turing Machine that always halts
« |.e, for any input, either accepts or rejects it.

How to Design Deciders

 If TMs = Programs ...
... then Creating a TM = Programming

« £.g, If HW asks “Show that lang L is decidable” ...

* .. you must create a TM that decides L; to do this ...
» ... think of how to write a (halting) program that does what you want

Thm: Apga is a decidable language

Apea = {(B,w)| B is a DFA that accepts input string w }

Decider for Appa :

M = “On input (B, w), where B is a DFA and w is a string:
1. Simulate B on input w.

2. [If the simulation ends in an accept state, accept. If it ends in a

nonaccepting state, reject.”
Where “Simulate” =

 Define “current” state q_,.... = Start state q, Remember:

* For each input char x ... TMs = programs
- Define gyey = 6(qeurrent X) Creating TM = programming
- Set Qcurrent = Gnext

Termination Argument: This is a decider (i.e., it always halts) because the
Input Is always finite, so the loop always terminates

Deciders must also have a termination argument:
Explains how every step in the TM halts (we typically only care about loops)

Thm: Anea is a decidable language
Anea = {(B, w)| B 1s an NFA that accepts input string w}

Decider for AnEga :

(tashback: NF A->DF A

Have: N = (Q,X,0,qo, F)
Want to: constructa DFA M = (Q', X, 0', qo’, F")

1. Q' = P(Q).

;o Could you implement this
2. For R € @ and a € %, conversion algorithm as a program?
6 (R,a) = L 6(r,a)

reR This is a Turing Machine
3. qo' = {qo}

4. F' = {R € @Q'| R contains an accept state of N}

Thm: Anea is a decidable language
Anea = {(B, w)| B 1s an NFA that accepts input string w}

Decider for Anga : i

Creating TM = programming

N = “On input (B, w), where B is an NFA and w is a string:—=1 Previous theorems = library
1. Convert NFA B to an equivalent DFA (', usingthe procedure
NFA—-DFA

2. Run TM M on input (C,w). (M is Ay, decider from prev slide)
3. If M accepts, accept; otherwise, reject.”

Termination argument: This is a decider (i.e., it always halts) because:
- Step 1 always halts bc there's a finite number of states in an NFA
- Step 2 always halts because M is a decider

How to Design Deciders, Part 2

* |If TMs = Programs ...
... then Creating a TM = Programming

« E.g,if HW asks “Show that lang L is decidable” ...
« ..you must create a TM that decides L; to do this ...
e ...think of how to write a (halting) program that does what you want

Hint:
* Previous theorems are a “library” of reusable TMs

« When creating a TM, try to use these theorems to help you
« Just like you use libraries when programming!

« E.g, “Library” for DFAs:
« NFA>DFA, RegEXpr-NFA,
e union, intersect, star, decode, reverse
« Deciders for: Apga, Anpar Arpxs -

18

Thm: Arex is a decidable language

Arex = {(R,w)| R is a regular expression that generates string w }

Decider:

P = “On input (R, w), where R is a regular expression and w is a string:

1. Convert regular expression R to an equivalent NFA A by using
the procedure RegExpr->NFA

Reg EX P r->NFA Does this conversion

always halt?

R is a regular expression it R 1s

1. a for some a in the alphabet ¥, _"Q—a’@

2’ * E? @ N Construction of N to recognize A1 o A
3. (), =0 gpa— e
Ogl| |to . .18

4. (R1 U R5y), where R; and Ry a | - 00| [€

5. (Ry© R2), where Ry and Ry a1 | . *O%E expre;ione o .

6./(R7), where R; is a regular exj o, 8 ol =0
Yes, because recursive . —) . ©
call only happens on L)

“smaller” reg exprs

Thm: Arex is a decidable language

Arex = {(R,w)| R is a regular expression that generates string w }

Decider:

P = “On input (R, w), where R is a regular expression and w is a string:
1. Convert regular expression R to an equivalent NFA A by using
the procedure RegExpr->NFA
2. RunTM N on input <A, w)‘ (from prev slide)
3. If N accepts, accept; if N rejects, reject.”

Termination Argument: This is a decider because:

- Step 1 always halts because converting a reg expr to NFA is done recursively,
where the reg expr gets smaller at each step, eventually reaching the base case

- Step 2 always halts because N is a decider

Remember:
TMs = programs

DFA TMs Recap (So Far) Creating TM = programming

Previous theorems = library

e Apra = {(B,w)| B is a DFA that accepts input string w }
« Deciding TM implements extended DFA 6

o Anra = {(B,w)| B is an NFA that accepts input string w}
« Deciding TM uses NFA->DFA + DFA decider

o Arex = {(R,w)| R is a regular expression that generates string w }
« Deciding TM uses RegExpr->NFA + NFA->DFA + DFA decider

thastback: \Why study computers formally?

2. To predict what programs will do
 (without running them!

{n)
1f the number n 1s a
// 1f the ct

RANSOMWARE ATTACK

YOUR FILES HAVE BEEN ENCRYPTED

Not possible in general! But ...

Predicting What Some Programs Will Do ...

What if we look at weaker computation models
... like DFAs and regular languages!

Thm: Epra is a decidable language

Epra = {(A)| Aisa DFAand L(A) =

Decider:

T = “On input (A), where A is a DFA:
1. Mark the start state of A.
2. Repeat until no new states get marked:
3. Mark any state that has a transition coming into it from any
state that is already marked.
4. If no accept state is marked, accept; otherwise, reject.”

Loop marks at least 1
state on each iteration,
and there are finite states

0}

Termination argument?

.e., this is a “reachability” algorithm ...
... check if accept states are “reachable” from start state

ThMm: EQpga is a decidable language
EQpea = {(A, B)| Aand B are DFAs and L(A) = L(B)}

l.e., Can we compute whether
two (DFA) programs are

Trick: Use Symmetric Difference “equivient"?

(A “holy grail” of computer science)

27

Symmetric Difference

L(A)

‘

L(B)

L(C) = (L(A) mm) U (

L(C) = 0 iff L(A)

ThMm: EQpga is a decidable language
EQpea = {(A, B)| Aand B are DFAs and L(A) = L(B)}

NOTE: This only works because: negation,
l.e., set complement, and intersection is

Construct decider using 2 parts: closed for regular languages
1. Symmetric Difference algo: L(C) = (L(A) N L(B)) U (L(A) N L(B))
« Construct C = Union, intersection, negation of machines 4 and B

2. Decider T (from “library”) for: Epra = {(A)| AisaDFAand L(A) = 0}
* Because L(C) = 0 iff L(A) = L(B)

F = “On input (A, B), where A and B are DFAs:
1. Construct DFA C as described.
2. Run TM T deciding Epra on input (C).
3. It T accepts, accept. It T rejects, reject.”

Summary: Decidable DFA Langs (e, atgorithms)

e Apra = {(B,w)| B is a DFA that accepts input string w }

o Anra = {(B,w)| B is an NFA that accepts input string w}

o Arex = {(R,w)| R is a regular expression that generates string w }

e Epra = {(A)| AisaDFAand L(A) = 0} Remember:
TMs = programs

Creating TM = programming
e EQpra = {(A,B)| Aand B are DFAs and L(A) = L(B)} Previous theorems = library

Predicting What Some Programs Will Do ...

@ microsoft.com/en-us/research/project/slam/

SLAM is a project for checking that software satisfies critical behavioral properties of the interfaces it uses and to aid software
engineers in designing interfaces and software that ensure reliable and correct functioning. Static Driver Verifier is a tool in the
Windows Driver Development Kit that uses the SLAM verification engine.

“Things like even software verification, this has been the Holy Grail of computer science
for many decades but now in some very key areas, for example, driver verification we're
building tools that can do actual proof about the software and how it works in order to
guarantee the reliability” Bill Gates, April 18, 2002. Keynote address at WinHec

z, Or

2002 ¥ N
i=node-xl); | ++ V5 Pocs end() moue;{ \ ur computer. If you do
itiom in all open applice
Static Driver Verifier Research Platform README continue _

Overview of Static Driver Verifier Research Platform

Static Driver Verifier (SDV) is a compile-time static verification

Research Platform (SDVRP) is an extension to SDV that allows MOdel CheCklng

e Support additional frameworks (or APIs) and write custq From Wikipedia, the free encyclopedia

* Experiment with the model checking step. In computer science, model checking or property checking is a method for checking whether a
finite-state model of a system meets a given specification (also known as correctness). This is typically

=g —

Algorithms (Decidable Problems)
for Context-Free Languages (CFLs)

Thm: Acrg is a decidable language
Acrc = {(G,w)| G is a CFG that generates string w }

 This a is very practically important problem ...

e ... equivalent to:
* Is there an algorithm to parse a programming language with grammar G?

A Decider for this problem could ... ?

- But this might never halt
« Eg,whatifthereisarulelike:S—>0SorS—S
« This TM would be a recognizer but not a decider

Idea: can the TM stop checking after some length?

* |l.e, s there upper bound on the number of derivation steps?

Chomsky Normal Form

Noam Chomsky

« He (sort of) invented
this course too!

Turing-recognizable

decidable

context-free

Chomsky Normal Form

A context-free grammar is in Chomsky normal form it every rule is
of the form Variables only

A — BC 2 kinds of rules

A—a :
Terminals only

where a is any terminal and A, B, and C' are any variables—except
that B and C' may not be the start variable. In addition, we permit
the rule S — &, where S is the start variable.

Chomsky Normal Form: Number of Steps

To generate a string of length n:
n - 1 steps: to generate n variables
+ n steps: to turn each variable into a terminal
Total: Z2n - 1 steps

(A finite number of steps) Chomsky normal form

A — B(C' | Use n-1 times
A — a Use n times

Thm: Every CFG has a Chomsky Normal Form

Chomsky normal form

1. Add new start variable S, that does not appear on any RHS A — BC
* l.e, add rule S, > S, where Sis old start var A—a

SQ—>S
jjgﬁﬁ,’aB o> S — ASA|aB
A— B|S

B —ble B ble

Thm: Every CFG has a Chomsky Normal Form

Chomsky normal form

1. Add new start variable S, that does not appear on any RHS A — BC
* l.e.,add rule S, > S, where S is old start var A—a

2. Remove all “empty” rules of the form A > ¢
« A must not be the start variable
« Then for every rule with 4 on RHS, add new rule with A deleted
« Eg,IfR> uAvisarule,add R> uv
« Must cover all combinations if A appears more than once in a RHS
« E.g., if R> uAvAw is a rule, add 3 rules: R = uvAw, R 2 uAvw, R > uvw

So — S So — S
S — ASA|aB|a S — ASA|aB|a|SA|AS|S
A= BlSle N\ A B|S
B — b N Then, add B — b \ Then, add
\ First, remove Then, remove 41

Thm: Every CFG has a Chomsky Normal Form

Chomsky normal form
1. Add new start variable S, that does not appear on any RHS A — BC

* l.e, add rule S, > S, where S is old start var A—a
2. Remove all “empty” rules of the form A > ¢
« A must not be the start variable
« Then for every rule with A on RHS, add new rule with A deleted
« Eg,IfR> uAvisarule,add R> uv
« Must cover all combinations if A appears more than once in a RHS
« E.g., If R> uAvAw s a rule, add 3 rules: R 2 uvAw, R = udvw, R -> uvw
3. Remove all “unit” rules of the form A 2B
* Then, for every rule B> u,add rule A > u
Sy = S Sy — S ASA |aB|a|SA | AS So — ASA|aB|a|SA| AS
S — ASA|aB|a|SA|AS S — ASW |aB|a| SA| AS 5 — ASA|aB|a|S5A|AS
A B|S A— S.b|ASA|aB|a|SA|AS
A= 55 / B —b B — Db \
B — b Remove, no add
(same variable) Remove, then add S RHSs to S, Remove, then add SRHSsto 4 |

Thm: Every CFG has a Chomsky Normal Form

Chomsky normal form

1. Add new start variable S, that does not appear on any RHS A — BC
* l.e, add rule S, > S, where S is old start var A—a

2. Remove all “empty” rules of the form A > ¢
« A must not be the start variable
« Then for every rule with A on RHS, add new rule with A deleted j : fsjsljfa;”fﬁsljils
« Eg,IfR> uAvisarule,add R > uv B b
« Must cover all combinations if A appears more than once in a RHS 1

Sy — ASA|aB|a|SA|AS

« E.g., If R> uAvAw s a rule, add 3 rules: R 2 uvAw, R = udvw, R -> uvw

3. Remove all “unit” rules of the form A 2B

o Th.en, for every ru.le B> u,add rule A > u Sg : jﬁi ; gg I Z gi I jg
4. Split up rules with RHS longer than length2 | A4 — v | AA, |UB|a|SA| AS
« E.g.,,A> wxyzbecomesA > wB,B> xC,C~> yz Ay — SA

5. Replace all terminals on RHS with new rule U—a
* E.g., forabove,add W>w,X>xY>y,Z>z b —b

Thm: Acrg is a decidable language

Acre = {(G, w)| G is a CFG that generates string w }
Proof: create the decider:

S = “On input (G, w), where G is a CFG and w is a string:
1. Convert G to an equivalent grammar in Chomsky normal form.

Termination argument?

Thm: FEckg is a decidable language
Ecrg = {(G)| GisaCFGand L(G) = 0}

Recall:
EDFA — {<A>‘ A iS d DFA and L(A) — @}

T = “On input (A), where A is a DFA:
1. Mark the start state of A.
2. Repeat until no new states get marked:
3. Mark any state that has a transition coming into it from any
state that is already marked.
4. If no accept state is marked, accept; otherwise, reject.”

“Reachability” (of accept state from start state) algorithm

Thm: FEckg is a decidable language
Ecrg = {(G)| Gisa CFG and L(G) = 0}

 Create decider that calculates reachability for grammar G
« Except go backwards, start from terminals, to avoid looping

R = “On input (G), where G 1s a CFG:
1. Mark all terminal symbols in G.

Termination argument?

Thm: EQcrg IS @ decidable language? g
EQcrec = {(G, H)| G and H are CFGs and L(G) = L(H))}

Recall: FQpra = {(A,B)| Aand B are DFAs and L(A) = L(B)}
* Used Symmetric Difference

@ L(C) = 0 iff L(A) = L(B)

« where C = complement, union, intersection of machines 4 and B

« Can't do this for CFLs!
* Intersection and complement are not closed for CFLs!!!

Intersection of CFLs Is Not Closed!

* |If closed, then intersection of these CFLs should be a CFL:
A= {a™b"c"|m,n > 0}
B ={a"b"c"|m,n > 0}

*ButAnB={a"b"c"|n > 0}

e Not a CFL!

Complement of a CFL I1s not Closed!

* If CFLs closed under complement:

if G; and G5 context-free

L(G1) and L(G3) context-free
L(G1)UL(G1) context-free

L(G1) U L(G1) context-free
L(G1)N L(G2) context-free |PeMorsan's

Law!

Thm: EFQcec 1S a decidable language?

EQcec = {(G,H)| Gand H are CFGs and L(G) = L(H)}

* No!
* You cannot decide whether two grammars represent the same lang!

« It's not recognizable either!
 (We don't know how to prove this yet)

Decidability of CFGs Recap

e Acrc = {(G,w)| G is a CFG that generates string w}

* Convert grammar to Chomsky Normal Form
« Then check all possible derivations of length 2|w]| - 1 steps

. ECFG — {<G>| GG is a CFG and L(G) — @}

« Compute “reachability” of start variable from terminals

e EQcre =1{(G,H)| G and H are CFGs and L(G) = L(H)}

« We couldn’t prove that this is decidable!
* (So you cant use this theorem when creating another decider)

The Limits of Turing Machines?

« So TMs can express any “computation”
* |.e, any (Python, Java, ...) program you write is a Turing Machine

« So why do we focus on TMs that process other machines?

« Because we also want to study the limits of computation

« And a good way to test the limit of a computational model is to see what it
can compute about other computational models ...

* So what are the limits of TMs? |.e., what's here?
* Or out here?

MNewt tine: A1\ 1s undecidable 277
Atm = {(M,w)| M is a TM and M accepts w}

Check-in Quiz 10/18

On gradescope

