UMBC(CS622

Undecidability \

Wednesday, October 20, 2021

‘ Turing-recognizable

decidable

context-free

%/{/{0«/{0@%@/{5&’

« HW 5 due Sun 10/24 11:59pm

last [ine; Decidable Algorithms About Regular Languages

Remember:
. . . TMs = programs
* Apra = {(B,w)| B is a DFA that accepts input string w} | Creating TM = programming
Previous theorems = library

o Anra = {(B,w)| B is an NFA that accepts input string w}

o Arex = {(R,w)| R is a regular expression that generates string w }

o Eppa = {(A)| AisaDFAand L(A) = 0}

_ “Things like even software verification, this has been the Holy Grail of computer science
'-L',“";T‘ " for many decades but now in some very key areas, for example, driver verification we're
' -:? ® EQ DFA — { <A} B> ‘ A and B arc DFAS and L (A) - L (B) } building tools that can do actual proof about the software and how it works in order to

guarantee the reliability” Bill Gates, April 18, 2002. Keynote address at WinHec

last [ine: Decidable Algorithms CFLs

e Acrc = {(G,w)| G is a CFG that generates string w}

* Convert grammar to Chomsky Normal Form
« Then check all possible derivations of length 2|w]| - 1 steps

next o FCpg = {<G>| GG 1s a CFG and L(G) — @}

Thm: FEckg is a decidable language
Ecrg = {(G)| Gisa CFG and L(G) = 0}

Recall:
EDFA — {<A>‘ A iS d DFA and L(A) — @}

T = “On input (A), where A is a DFA:
1. Mark the start state of A.
2. Repeat until no new states get marked:
3. Mark any state that has a transition coming into it from any
state that is already marked.
4. If no accept state is marked, accept; otherwise, reject.”

“Reachability” (of accept state from start state) algorithm

Thm: FEckg is a decidable language
Ecrg = {(G)| Gisa CFG and L(G) = 0}

Now create decider that calculates reachability for grammar G

« Except go backwards, start from terminals, to avoid looping
If loop marks at least 1 variable on

R = “On input <G> where G is a CFG: each iteration, then it eventually
’ _ h terminates because there are finite
1. Mark all terminal Symbols in G. variables; else loop terminates

Termination argument?

Thm: EQcrg Is a decidable language? g
EQcrc = {(G, H)| G and H are CFGs and L(G) = L(H)}

Recall: FQpra = {(A,B)| Aand B are DFAs and L(A) = L(B)}
* Used Symmetric Difference

@ L(C) = 0 iff L(A) = L(B)

« where C = complement, union, intersection of machines 4 and B

« Can't do this for CFLs!
* Intersection and complement are not closed for CFLs!!!

Intersection of CFLs Is Not Closed!

Proof (by contradiction), Assume intersection is closed for CFLS
 Then intersection of these CFLs should be a CFL:

A={a"p"c"|m,n > 0}

B ={a"b"c™|m,n > 0}
* ButAnB={a"b"c"|n >0}

e ...which is not a CFL! (So we have a contradiction)

Complement of a CFL I1s not Closed!

* If CFLs closed under complement:

if G; and G5 context-free

L(Gl) and L(G2) COHtCXt-fI’GG From the assumption

L (Gl) U L(Gl) context-free [union of CFLs is closed

L(Gl) U L(Gl) context-free | From the assumption
L(Gl) f L(Gg) context-free DeMorgan’s Law!

But intersection is not closed for CFLS (prev slide)

Thm: EFQcec 1S a decidable language?
EQcec = {(G,H)| Gand H are CFGs and L(G) = L(H)}
 No! ?

o i

* There’s no algorithm to decide whether two grammars are equivalent!

« It's not recognizable either!

Summary of Decidable Algorithms for CFLs

e Acrc = {(G,w)| G is a CFG that generates string w}

* Convert grammar to Chomsky Normal Form
« Then check all possible derivations of length 2|w]| - 1 steps

. ECFG — {<G>| GG is a CFG and L(G) — @}

« Compute “reachability” of start variable from terminals

e EQcre =1{(G,H)| G and H are CFGs and L(G) = L(H)}

« We couldn’t prove that this is decidable!
* (So you cant use this theorem when creating another decider)

The Limits of Turing Machines?

« TMs represent all possible “computations”
e |.e, any (Python, Java, ...) program you write is a TM

« So what is not computable? |.e., what's here?

« A way to test the limit of a computational model is to
see what it can compute about computational models KNOW YOUR PARADOXES!

* Thought: Is there an algorithm to determine \ A\ INTHE EVENT OF ROGUEA
whether a TM is an algorithm? 1.STAND STILL

N 2.REMAIN CALM
\ 3.SCREAM:
\
\

“THIS STATEMENT IS FALSE!"
“NEW MISSION: REFUSE THIS MISSION!”

Hmmm

“DOES A SET OF ALL SETS CONTAIN ITSELF?*

I I EPEHTURE —

IS ATM 1s undecidable 0707
Atm = {(M,w)| M is a TM and M accepts w}

Thm: Aty is Turing-recognizable
Atm = {(M,w)| M i1sa TM and M accepts w}

U = “On input (M, w), where M is a TM and w is a string:
1. Simulate M on input w.

2. If M ever enters its accept state, accept; if M ever enters its
reject state, reject.”

U = Extended delta “run” function for TMs
« Computer that can simulate other computers
* |.e,, “The Universal Turing Machine”
* Problem: U loops when M loops

Thm: Aty is undecidable
Atm = {(M,w)| M i1sa TM and M accepts w}

. 777

&

Kinds of Functions (a fn maps DoMAIN - RANGE)

. Injective, a.k.a. “one-to-one”
« Every element in DoMAIN has a unique mapping {

 How to remember:
« Entire DoMAIN is mapped “in” to the RANGE

* Surjective, a.ka, “onto”
« Every element in RANGE is mapped to

« How to remember:
« “Sur” = “over” (eg, survey); DoMAIN is mapped “over” the RANGE

O @\ O)

N

b
<

° Bijective, a.k.a., “correspondence” or “one-to-one correspondence”
* Is both injective and surjective
« Unique pairing of every element in DoMAIN and RANGE

e e B
> 0 W o

Countability

« A setis “countable” if it is:
* Finite
 Or, there exists a bijection between the set and the natural numbers

* This set has the same size as the set of natural numbers
 This is called “countably infinite”

Exercise: Which set is larger?

 The set of:

 Natural numbers, or
 Even numbers?

* They are the same size! Both are countably infinite
* Bijection:

n f(n) =2n
1 2
2 4
3 6

Exercise: Which set is larger?

* The set of:

 Natural numbers N, or
-+ Positive rational numbers? Q = {Z|m,n € N'}

* They are the same size! Both are countably infinite

[

But these don’t get mapped to:
(not a bijection)

Exercise: Which set is larger?

 The set of:

 Natural numbers N, or
+ Positive rational numbers? Q = {Z|m,n € N'}

* They are the same size! Both are countably infinite

Another mapping:
(it's a bijection bc
every fraction has a
unique mapping)

Exercise: Which set is larger?

* The set of:
 Natural numbers, or N
* Real numbers? R

« There are more real numbers. It is uncountably infinite.

Proof, by contradiction:

« But we show that in any given mapping,
« Some real number is not mapped to ...

« E.g,a number that has different digits at each position:

1...

r = 0. 464

« This number cannot be included in mapping ...
* ... S0 we have a contradiction!

e.g.:

This is called
“diagonalization’

« Assume a bijection between natural and real numbers exists.
« This means that every real number should get mapped to.

?

0.50000. ..

n f(n)

1 3.,14159...
2 | 55.85555. ..
3 0.19345. ..
4

Georg Cantor

 Invented set theory

« Came up with countable infinity in 1873

« And uncountability:

Vovr S7nvA 7

Vo vov...
BUT THERE'S NOTHING
LARGER THAN THAT...
\S THERE?

A formative day for Georg Cantor.

« And how to show uncountability with “diagonalization” technique

Diagonalization with Turing Machines

Diagonal: Result of Giving a TM its own Encoding as Input

\ (My) (My) (M;3)

All TM Encodings

(My) (D)
——— M, | accept reject accept reject accept
1> | accept accept accept accept accept
Ms | reject reject reject reject reject
All TMs,_!Il/[4 accept accept reject reject accept What
should
happen
_ _ - here?
T reject reject accept accept :
construct .| TM D can't exist! It must both
oppoSIET! -] accept and reject!

3 Easy Steps!

Thm: Aty is undecidable
Atm = {(M,w)| M i1sa TM and M accepts w}

Proof by contradiction:
1. Assume A, Is decidable. Then there exists a decider:

accept 1t M accepts w
H((M, w)) = { g

reject it M does not accept w

2. If H exists, then we can create an “opposite” machine:
D = “On input (M), where M is a TM:

Frrc;m(’)chg 1. Run H oninput (M, (M)).<— Result of giving a TM itself as input
viou
P slide 2. Output the opposite of what H outputs. That is, it H accepts,

reject; and if H rejects, accept.”

3 Easy Steps!

Thm: Aty is undecidable
Atv = {(M,w)| M isa TM and M accepts w}

Proof by contradiction:
1. Assume A, Is decidable. Then there exists a decider:

H((M, w)) accept it M accepts w
b w — . .
reject it M does not accept w

2. If H exists, then we can create an “opposite” machine:

D = t (M), where M is a TM:
AR e 1. Run H on1m).
previous , o
slide 2. Output the opposite of what That is, it H accepts,

reject; and if H rejects, accept.”

3. But D does not exist! Contradiction! So assumption is false.

Fasier Undecidability Proofs

« We proved Amv = {(M,w)| M isaTMand M accepts w} yndecidable ...

. ... by contradiction ...

. ... specifically, showing that its decider could be used to
Implement an impossible decider “D"!

« Coming up with “D” was hard (needed to invent diagonalization)

(M) (Mz) (Ms) (Msy) --- (D)
My | accept reject accept reject accept
M, | accept accept accept accept accept
Msj | reject reject reject reject o reject
”n My | accepl accepl reject reject accept

- But then we more easily reduced Atwm to the “D” *

D reject reject accepl accept

» Now we can also reduce problems to Atm!

l.e., “Algorithm to determine if a TM is an algorithm”?

The Halting Problem

HALT vy = {(M,w)| M isa TM and M halts on input w}
Thm: HA LT\ 1s undecidable
Proof, by contradiction:

« Assume HALTtm has decider R; use it to create decider for At :

THE HALTING PROBLEM IS EASY TO SOLVE.
IF THE PROGRAM RUNS TOO LONG, T TAKE

THIS STICK AND BEAT THE COMPUTER
UNTIL IT STOPS, T

 But A, Is undecidable and has no decider!

What if Alan Turing had been an engineer?

The Halting Problem

HALT vy = {(M,w)| M isa TM and M halts on input w}
Thm: HA LT\ 1s undecidable
Proof, by contradiction:

« Assume HALTtm has decider R; use it to create decider for At :

S = “On input (M, w), an encoding of a TM M and a string w:
1. Run TM R on input (M, w).
2. If R rejects, reject. This means M loops on input w
3. If R accepts, simulate M on w until it halts.«<{ This step always halts
4. It M has accepted, accept; it M has rejected, reject.”

The Halting Problem

HALT vy = {(M,w)| M isa TM and M halts on input w}

Thm: HA LT\ is undecidable
Proof, by contradiction:

« Assume HALTtm has decider R; use it to create decider for At :

“On input (M, w), an encoding of a TM M and a string w:
on input (M, w).

2. If R rejects, reject:
3. If R accepts, simulate M on w

* But 4., Is undecidable!
* |.e, this decider that we just created cannot exist! So HALT 1\ is undecidable

Fasier Undecidability Proofs

In general, to prove the undecidability of a language:
« Use proof by contradiction:

« Assume the language is decidable,
e Show that its decider can be used to create a decider for ...
e ... a known undecidable language ...

e ... which doesn’t have a decider!

next

Summary: The Limits of Algorithms

Apra = {(B,w)| B is a DFA that accepts input string w }
Acec = {(G,w)| G is a CFG that generates string w}
Atm = {(M,w)| M is a TM and M accepts w}

EDFA — {<A>‘ A iS a DFA and L(A) = @}

Ecre = {(G)

* Erm = {(M)

Gis a CFG and L(G) = 0}

M isaTM and L(M) = 0}

Decidable
Decidable
Undecidable
Decidable
Decidable
Undecidable

Reducibility: Moditying the TM

Thm: Etm 1s undecidable

Proof, by contradiction:
« Assume Et1m has decider R; use to create Aty decider:

S — “On i1nm

First, construct M,

. Run R on mput (M

. If R accepts, reject (because it means (M) doesn't accept [_w
- 1t R I'EjﬁCtS, then|accept

Erm = {(M)| M isaTM and L(M) = 0}

t (M, w), an encoding of a TM M and a string w:

Note: M, is only used as arg to R; we never run it!

——d

((M) accepts W)

\—¢

e Idea: Wrap (M) in a new TM that can only accept w:

M; = “On input x:
1. Ifz # w, reject.
2. Ifx = w, run M on input w and accept if M does.”

Reducibility: Moditying the TM

Thm: E7m 1s undecidable

Erm = {(M)| M isaTM and L(M) = 0}

Proof, by contradiction: This decider R cannot exist!

e Assume ETM

First, construct M,

has decider R; use to create Aty decider:
t (M, w), an encoding of a TM M and a string w:

. kun /v on mput

(M
. It R accepts, reject (because it means taccept _w _

- if R rejects, thenlaccepd ((M) accepts W —

A

e I[dea: Wrap (M) in a new TM that can only accept w:

M; = “On input x:
1. Ifz # w, reject.
2. Ifx = w, run M on input w and accept if M does.”

One more, modify M: REGULARTy is undecidable

REGULARtm = {(M)| M isaTM and L(M) is a regular language}
Proof, by contradiction:
e Assume REGULAR+twm has decider R; use to create Aty decider:

S = “On input (M, w), an encoding of a TM M and a string w:
o| First, construct M, (??)

e Run R on mput (M

2

o [t R accepts, accept; it R rejects, reject
\ A\

Want: L(M,) =
« regular, if M accepts w
« nonregular, if M does not accept w

Thm: REGULARTy is undecidable (continued)

REGULARtm = {(M)| M isaTM and L(M) is a regular language}

: Always accept strings 0n1»
]\/[2 = “On 1nput T L(M,) = nonregular, so far

1. If x has the form 01", accept.
2. If x does not have this form, run M on input w|and

accept 1t M accepts w.” | IfMacceptsw,
accept everything else,

if M does not accept w, M, accepts all strings (regular lang) so L(M,) = ¥* = regular

All strings }

o Want: L(M,) = D/
0%l « regular, if M accepts w

« nonregular, if M does not accept w

if M accepts w, M, accepts this non-regular lang

next

Summary: The Limits of Algorithms

Apra = {(B,w)| B is a DFA that accepts input string w }
Acre = {(G,w)| G is a CFG that generates string w}
Atm = {(M,w)| M is a TM and M accepts w}

Epra = {(A)| Aisa DFA and L(A) = 0}

Ecrc = {(G)| Gis aCFG and L(G) = 0}

needs

Erm = {(M)| MisaTMand L(M) = 0} ¢

EQpea = {(A, B)| Aand B are DFAsand L(A) = L(B)}

EQcrc = {(G, H)| G and H are CFGs and L(G) = L(H)}

EQ+y = {(My, My)| My and My are TMs and L(M;) = L(M>,)}

Decidable
Decidable
Undecidable
Decidable
Decidable
Undecidable
Decidable
Undecidable
Undecidable

Reduce to something else: EQty is undecidable

EQ+y = {(M;, M3)| My and M5 are TMs and L(M;) = L(Ms)}
Proof, by contradiction: Erp = {0M)] Miis a TMand L(M) = 0}
« Assume EQ+, has decider R; use to create Zsy decider:

S = “On input (M), where M is a TM:
1. Run R on input (M, M;), where M; is a TM that rejects all
inputs.
2. It R accepts, accept; it R rejects, reject.”

Reduce to something else: EQ+y is undecidable

EQ+y = {(M;, M3)| My and M5 are TMs and L(M;) = L(Ms)}
Proof, by contradiction: FErp = (0] MisaTMand L(M) = 0}
« Assume EQ+, has decider R; use to create Zsy decider:

ut (M), where M is a TM:
1. Run Roni M), where M; is a TM that rejects all

inputs.
2. If R accepts, accept; it R rejects, reject.”

e But F1\ Is undecidable!

summary

* Apra = {(B,w)| B is a DFA that accepts input string w } Decidable
« Acre = {(G,w)| G is a CFG that generates string w } Decidable
o Atm = {(M,w)| M isa TM and M accepts w} Undecidable

Epea = {(A)| AisaDFAand L(A) =0} | There’s no algorithm | Decidable
to compute anything

* Ecre = {(G)| Gisa CFG and L(G) = 0} about Decidable
Turing Machines, _
* Bty = {(M)| M isaTMand L(M) = 0} .e. about general | Undecidable
programs!
* EQppa = {(A,B)| Aand B are DFAs and L(A) = L(BJ} Decidable
* EQcrc = {(G,H)| G and H are CFGs and L(G) = L(H)} Undecidable

EQ+y = {(My, My)| My and My are TMs and L(M;) = L(M>,)} Undecidable

Also Undecidable ...

today | * REGULARy,, = {<M>| M isa TM and L(M) is a regular language}
 CONTEXTFREE), = {<M>|MisaTMand L(M) is a CFL}
* DECIDABLE, = {<M> | M is a TM and L(M) is a decidable language}
* FINITE;,, = {<M>| MisaTM and L(M) is a finite language}

Rice’s Theorem

+ | ANYTHING,,, = {<M> | M is a TM and “anything” about L(M)} |

Turing Unrecognizable?

Is there anything out here?

Atwm

' Turing-recognizable

decidable

context-free

Where do these go?

Erv = {{M)| M isaTMand L(M) = (0}
EQcrc = {(G,H)| G and H are CFGs and L(G) = L(H)}
EQ+y = {(My, My)| My and M, are TMs and L(M;) = L(M>)}

Thm: Some langs are not Turing-recognizable

Proof: requires 2 lemmas

« Lemma 1: The set of all languages is uncountable

« Proof: Show there is a bijection with another uncountable set ...
... The set of all infinite binary sequences

e Lemma 2: The set of all TMs is countable

* Therefore, some language Is not recognized by a TM

103

Mapping a Language to a Binary Sequence

All Possible Strings |
o >>=1{¢ 0 1, 00, 01, 10, 11, 000, 001, ---
ome Language o
(subset of above) A = { 0, 00, 01, 000, 001,
Its (unique) (XA = 0 1 0 1 1 0 0 1 1
Binary Sequence

Each digit represents one possible string:
- 1 if lang has that string,
- 0 otherwise

Thm: Some langs are not Turing-recognizable

Proof: requires 2 lemmas

« Lemma 1: The set of all languages is uncountable

« Proof: Show there is a bijection with another uncountable set ...

... The set of all infinite binary sequences
> Now just prove set of infinite binary sequences is uncountable (diagonalization)

« Lemma 2: The set of all TMs is countable
« Because every TM M can be encoded as a string <M>
« And set of all strings is countable

* Therefore, some language is not recognized by a TM =

Co-Turing-Recognizability

* A language is co-Turing-recognizable if ...
e ... It Is the complement of a Turing-recognizable language.

Thm: Decidable <& Recognizable & co-Recognizable

107

Thm: Decidable < Recognizable & co-Recognizable

= If a language is decidable, then it is recognizable and co-recognizable

« Decidable => Recognizable:
« Adecideris arecognizer, bc decidable langs are a subset of recognizable langs

« Decidable => Co-Recognizable:
 To create co-decider from a decider ... switch reject/accept of all inputs
« A co-decider is a co-recognizer, for same reason as above

< If a language is recognizable and co-recognizable, then it is decidable

Thm: Decidable < Recognizable & co-Recognizable

= If a language is decidable, then it is recognizable and co-recognizable
« Decidable => Recognizable:
« Adecideris arecognizer, bc decidable langs are a subset of recognizable langs

« Decidable => Co-Recognizable:
 To create co-decider from a decider ... switch reject/accept of all inputs
« A co-decider is a co-recognizer, for same reason as above

< If a language is recognizable and co-recognizable, then it is decidable
 Let M, = recognizer for the language,
- and M, = recognizer for its complement

e Decider M:

* Run 1steponM,,
* Run 1step on M,,
« Repeat, until one machine accepts. If it's M,, accept. If it's M,, reject

Termination Arg: Either M, or M, must accept and halt, so M halts and is a decider

A Turing-unrecognizable language

« We've proved:

At is Turing-recognizable

A+m 1s undecidable

e SO:

Atwm is not Turing-recognizable

« Because: recognizable & co-recognizable implies decidable

Is there anything out here?

ATm Arm

' Turing-recognizable

decidable

context-free

regular

Check-in Quiz 10/20

On gradescope

