UMB CS622 Decidability of Logical Theories

Wednesday, November 3, 2021

Announcements

• HW6 due tonight

• See piazza announcement about HW problem "plans"

Hilbert's 23 Open Problems in Math (1900)

- 1. ... Can't prove "no" unless you first formally define what an **algorithm** is!
- 10. Is there an <u>algorithm</u> determining whether a polynomial has an integer root? <u>Actually</u>:
 - "to devise a process according to which it can be determined in a finite number of operations whether the equation is solvable"

23. ...

A Little Bit of Computation History

1900: Hilbert's 23 Problems

"Computation" = proving things about mathematical statements

1928: Hilbert/Ackermann's "Entscheidungsproblem" (decision problem):

Is there an <u>algorithm</u> that can determine whether any mathematical statement (about natural numbers) is true or false?

1935: Alonzo Church

- Defined "algorithm" with the λ -calculus
- Proved Entscheidungsproblem false by reducing it to ...
- ... determining whether 2 λ-calculus programs are equivalent
- ... and then showed that it is undecidable (analogous to EQ_{TM})

<u>1936</u>: Alan Turing

- Defined "algorithm" with the Turing Machine
- Proved Entscheidungsproblem false by reducing it to ... $HALT_{TM}$
- ... and then showed $HALT_{TM}$ is undecidable

The Language of Mathematical Statements

1.
$$\forall q \exists p \forall x,y \ [p>q \land (x,y>1 \rightarrow xy\neq p)],$$

2.
$$\forall a,b,c,n \ [(a,b,c>0 \land n>2) \to a^n+b^n\neq c^n \]$$
, and

3.
$$\forall q \exists p \forall x,y \ [p>q \land (x,y>1 \rightarrow (xy\neq p \land xy\neq p+2))]$$

- 1. "Infinitely many prime numbers exist"
 - Euclid proved true 2300 yrs ago
- 2. Fermat's Last Theorem
 - Wiles proved true in 1994

Early theory of "computation"
and formal languages
research tried to find a
"program" to <u>automatically</u>
prove these kinds of
statements true

- 3. Twin Prime Conjecture: "infinitely many prime pairs exist"
 - Unsolved!

The Alphabet of Mathematical Statements

• Strings in the language are drawn from the following chars:

- ♠ ∧, ∨, ¬Boolean operations
- (,), [,] parentheses
- ∀,∃ quantifiers
- *x* variables
- R_1 , ..., R_k Relation symbols

Formulas

- A mathematical statement is <u>well-formed</u>, i.e., a **formula**, if it's:
 - an atomic formula: $R_i(x_1, ..., x_k)$
 - $\phi_1 \wedge \phi_2$, $\phi_1 \vee \phi_2$, or $\neg \phi$
 - where ϕ , ϕ_1 , and ϕ_2 are formulas
 - $\forall x [\phi], \exists x [\phi]$
 - where ϕ is a formula
 - x's "scope" is in the following brackets
 - A free variable is a variable that is outside the scope of a quantifier
 - And all Quantifiers must appear at the front of the formula
 - Prenex normal form
- A sentence is a formula with no free variables

$$\begin{vmatrix}
R_1(x_1) \land R_2(x_1, x_2, x_3) \\
\forall x_1 \left[R_1(x_1) \land R_2(x_1, x_2, x_3) \right] \\
\forall x_1 \exists x_2 \exists x_3 \left[R_1(x_1) \land R_2(x_1, x_2, x_3) \right]
\end{vmatrix}$$

Universes, Models, and Theories

- A universe is the set of values that variables can represent
 - E.g., the universe of the natural numbers
- A model (\mathcal{M}) is:
 - a universe, and
 - an assignment of relations to relation symbols
 - E.g., the model (\mathcal{N}, \leq)
- The language of a model is the set of all formula that (correctly) use the relations of the model
- A **theory** is the set of all <u>true sentences</u> in a model's language
 - written $\mathrm{Th}(\mathcal{M})$

Theorem: Th(\mathcal{N} , +) is decidable

• In the language: $\forall x\,\exists y\,\left[\,x+x=y\,\right]$

• Not in the language: $\exists y \forall x \ [x+x=y]$

A Regular Language About Addition

- Assume an alphabet $\Sigma_3 = \left\{ \left[\begin{smallmatrix} 0 \\ 0 \\ 0 \end{smallmatrix} \right], \left[\begin{smallmatrix} 0 \\ 1 \\ 0 \end{smallmatrix} \right], \left[\begin{smallmatrix} 0 \\ 1 \\ 0 \end{smallmatrix} \right], \ldots, \left[\begin{smallmatrix} 1 \\ 1 \\ 1 \end{smallmatrix} \right] \right\}$
 - Columns representing all possible combinations of 0s and 1s
- A sequence of these columns is 3 rows of binary numbers
- We show that the following language is regular:

 $B = \{w \in \Sigma_3^* | \text{ the bottom row of } w \text{ is the sum of the top two rows} \}$

$$\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \in B \qquad \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \not\in B$$

Addition: Proof of Regularity

 $B = \{w \in \Sigma_3^* | \text{ the bottom row of } w \text{ is the sum of the top two rows} \}$

MSB

- Create a DFA accepting valid additions
- Key idea: operate on strings in reverse
 - i.e., process least significant bit first
 - This is ok because reverse closed for regular languages
- Reject whenever any column is incorrect
- Use extra state to keep track of "carries"

Theorem: $Th(\mathcal{N}, +)$ is decidable (Pressburger Arithmetic)

On input $\phi = Q_1 x_1 Q_2 x_2 ... Q_n x_n [\psi]$:

- 1. Initially, ignore all the quantifiers $Q_1...Q_n$ and construct a DFA for ψ
 - a) For every +, construct a generalized addition DFA over alphabet:

$$\Sigma_{i} = \left\{ \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ \vdots \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ \vdots \\ 1 \\ 1 \end{bmatrix}, \dots, \begin{bmatrix} 1 \\ \vdots \\ 1 \\ 1 \end{bmatrix} \right\}$$

- b) Combine those DFAs using (all closed operations for regular languages!):
 - union (for ∨),
 - intersection (for ∧),
 - and complement (for ¬)
- Call this initial machine $oldsymbol{A_n}$

Theorem: Th(\mathcal{N} , +) is decidable

On input $\phi = Q_1 x_1 Q_2 x_2 ... Q_n x_n [\psi]$:

ullet ... call this initial machine A_n

DFA A_i accepts i rows (numbers) that make formula $Q_{i+1}x_{i+1} \dots Q_nx_n [\psi]$ true

Now handle quantifiers ...

- 2. For every $\exists x_i$, create DFA A_i that is like A_{i+1} but with one less input row
 - Instead, nondeterministically guess the number for the last row

A_i's input
$$\begin{bmatrix} b_1 \\ \vdots \\ b_{i-1} \\ b_i \end{bmatrix} \quad \blacktriangleright \quad \begin{bmatrix} b_1 \\ \vdots \\ b_{i-1} \\ b_i \end{bmatrix}$$
 A_{i+1}'s input
$$z \in \{0,1\}$$

Theorem: Th(\mathcal{N} , +) is decidable

On input $\phi = Q_1 x_1 Q_2 x_2 ... Q_n x_n [\psi]$:

• ...

After handling all the quantifiers DFA A_o accepts any string when formula ϕ is true

3. For every $\forall x_i$, use equality $\forall x.\phi = \neg \exists x. \neg \phi$ to convert \forall to \exists and then use same construction from the \exists step

Theorem: Th($\mathcal{N}, +, \times$) is undecidable

Flashback: ALL_{CFG} is undecidable

$$ALL_{\mathsf{CFG}} = \{ \langle G \rangle | \ G \text{ is a CFG and } L(G) = \Sigma^* \}$$

Proof, by contradiction

• Assume ALL_{CFG} has a decider R. Use it to create decider for A_{TM} :

On input <*M*, *w*>:

- 1. Construct a PDA P that rejects sequences of M configs that accept w
- 2. Convert *P* to a CFG *G*
- 3. Give *G* to *R*:
 - If R accepts, then M has <u>no accepting</u> config sequences for w, so reject
 - If R rejects, then M has an accepting config sequence for w, so accept

Insight: Any machine that can validate accepting TM config sequences must represent an undecidable language!

Theorem: Th($\mathcal{N}, +, \times$) is undecidable

Proof sketch, by contradiction

• Assume $Th(\mathcal{N}, +, \times)$ has a decider R. Use it to create decider for A_{TM} :

```
On input <M, w>:

This "validates" accepting config sequences, using + and ×
```

- 1. Construct a formula $\exists x. \phi_{M,w}$ that is true iff M accepts w
- 2. Give the formula to *R* and accept if it accepts

Insight: A TM configuration represents a number!

Flashback: LBA Configurations

- How many possible configurations does an LBA have?
 - *q* states
 - g tape alphabet chars
 - tape of length *n*
- Possible Configurations = qngⁿ
 - g^n = number of possible tape configurations
 - qn = all the possible head positions

Proof Sketch $Th(\mathcal{N}, +, \times)$ is undecidable

- A sequence of TM configurations is just a large number
 - In Base-g (g = number of tape alphabet chars)
- So in formula $\exists x. \phi_{M,w}$
 - x is a number representing a sequence of configs
 - $\phi_{M,w}$ "checks", using plus and times, that it is a valid seq that accepts w

"Checking" a TM Sequence with + and ×

W

Example:

- Check that a given number has:
 - First digit: 5
 - Second digit: 4
 - Third digit: 3
- Equivalent to checking that the number is 543
 - $5 \times 10 \times 10 + 4 \times 10 + 3 = 543$

Note the required operations: + and ×!

Example:

- Check that a given number has:
 - First digit: 5
 - Second digit: 4
 - Third digit: 3
- Equivalent to checking that the number is 543
 - $5 \times 10 \times 10 + 4 \times 10 + 3 = 543$

Example:

- Check that a given number has:
 - First digit: C_1
 - Second digit: C_2
 - Third digit: $\frac{c_2}{c_3}$
- Equivalent to checking that the number is 543
 - $5 \times 10 \times 10 + 4 \times 10 + 3 = 543$

Example:

Check that a given number has:

```
• First digit: C_1
```

• Second digit: $\frac{4}{C_2}$

• Third digit: $\frac{3}{C_3}$

Configuration Sequence

 $C_1C_2C_3$

• Equivalent to checking that the number is 543

•
$$5 \times 10 \times 10 + 4 \times 10 + 3 = 543$$

 C_1

g

g

 C_2

g

 C_3

 $C_1C_2C_3$

You can't do check TM config sequences without both + and ×!

x by itself is insufficient (it's decidable)

Gödel's (1st) Incompleteness Theorem

Completeness

- A theory is **complete** if ...
- ... every sentence (i.e., true statement) in the language is provable
- For now, we just assume that a proof is some string representing a sequence of steps
 - Analogy: You can think of a sequence of configurations as a kind of "proof" that a machine accepts some string
- <u>Key</u>: A proof can be validated by a decider

Godel's (1st) Incompleteness Theorem

- Any theory that satisfies the following must be incomplete:
 - Recognizable
 - Undecidable
 - Has the ability to "prove" true statements
- Proof is by contradiction:
 - If such a theory were complete, then we could create a decider

Thm: provable statements in $Th(\mathcal{N}, +, \times)$ is Turing-recognizable

- Recognizer $P = On input \phi$:
 - Check all possible strings ...
 - For each, try to validate whether it's a proof of ϕ
 - Accept if we find a proof

Thm: Some true statement in $Th(\mathcal{N}, +, \times)$ is not provable

- Proof by contradiction: Assume all true statements provable
- Create decider for $Th(\mathcal{N}, +, \times)$

On input ϕ :

- Run recognizer *P* on both ϕ and $\neg \phi$
- One must be true so P will halt and accept one of them
 - If P halts and accepts ϕ , then accept
 - If *P* halts and accepts $\neg \phi$, then reject

Godel's (1st) Incompleteness Theorem

- (Very Roughly)
 - Any theory that is <u>undecidable but recognizable</u> is incomplete.
- Compare with our previous theorem about recognizability:
 - Decidable \Leftrightarrow Turing-recognizable and co-Turing-recognizable
 - So any language that is <u>undecidable but recognizable</u> must not be co-Turing-recognizable

Check-in Quiz 11/3

On gradescope