UMB CS622
Decidability of Logical Theories

Wednesday, November 3, 2021



Arnoancements
« HW6 due tonight

« See plazza announcement about HW problem “plans”



Hilbert's 23 Open Problems in Math (1900)

I Can'’t prove “no” unless you first
formally define what an algorithm is!

10. Is there an algorithm determining whether a polynomial has an integer root?

Actually

to devise a Brocess according to which it can be determined in a
finite number of operations whether the equation is solvable”

23. ...

David Hilbert



A Little Bit of Computation History

1900: Hilbert’s 23 Problems “Computation” = proving things
- about mathematical statements

1928: Hilbert/Ackermann'’s “Entscheidungsproblem” (decision problem):

|s there an algorithm that can determine whether any mathematical statement
(about natural numbers? Is true or false?

1935: Alonzo Church

« Defined “algorithm” with the A-calculus

« Proved Entscheidungsproblem false by reducing it to ...

* ...determining whether 2 A-calculus programs are equivalent
« ...and then showed that it is undecidable (analogous to EQ;,)

1936: Alan Turing

« Defined “algorithm” with the Turing Machine

« Proved Entscheidungsproblem false by reducing it to ... HALT;,
* ...and then showed HALT;, is undecidable




The Language of Mathematical Statements

1. Yq3IpVz,y | p>q A (x,y>1 — zy#p) |,
2. Va,b,cn [(ajb,c>0 An>2) — a”+b"#c" ], and

3. Yq3pVa,y [p>q A (x,y>1 = (wy#p A wy#p+2)) |

Early theory of “computation”
and formal languages
research tried to find a

“program” to automatically

1. “Infinitely many prime numbers exist”
« Euclid proved true 2300 yrs ago

2. Fermat’s Last Theorem prove these kinds of
 Wiles proved true in 1994 statements true
3. Twin Prime Conjecture: “infinitely many prime pairs exist”
* Unsolved!

So there must be some parallel between “proof”’ and “computation”



The Alphabet of Mathematical Statements

« Strings In the language are drawn from the following chars:

* AV, Boolean operations
* () L1 parentheses
eV, d quantifiers

e X variables

* Ry, .., R, | Relation symbols



Formulas

A mathematical statement is well-formed, i.e., a formula, if it's:
 an atomic formula: R(x;, ..., x,)

* Q1 APy DV Py, 0O 20
- where ¢, ¢,, and ¢, are formulas B (1) A Ba (w1, 22, 3)
. Vz1 | Ri(z1) A Ra(x1, 22, x3) |
vx[¢],3x[ ¢ ]
- where ¢ is a formula Va1 3o zz | Ri(21) A Ra(21, 72, 23) |

? 4

« x's “scope” is in the following brackets
« Afree variable is a variable that is outside the scope of a quantifier

« And all Quantifiers must appear at the front of the formula
* Prenex normal form

e A sentence is a formula with no free variables



Universes, Models, and Theories

A universe is the set of values that variables can represent
« E.g, the universe of the natural numbers

« A model (M) is:
e a universe, and
 an assignment of relations to relation symbols
 E.g, the model (V<)

« The language of a model is the set of all formula that
(correctly) use the relations of the model

A theory is the set of all true sentences in a model’s language
- written Th(M)




Theorem: Th(N, +) is decidable

- In the language: V dy [(L‘ T T = y}

+ Not in the language: JyVx [33 iy - y]



A Regular Language About Addition

0 0 0 1

. Assume an alphabet Y5 = {M | [o] | [1] [1]}

0 1 0 1
« Columns representing all possible combinations of 0s and 1s

« A sequence of these columns is 3 rows of binary numbers

« We show that the following language Is regular:

B = {w € 3| the bottom row of w is the sum of the top two rows}

BIHIE R I



Addition: Proof of Regularity

B = {w € Y3| the bottom row of w is the sum of the top two rows}

 Create a DFA accepting valid additions

. Key Idea: operate on strings In reverse [ . M M M <8
e |.e,, process least significant bit first 1] Lol Lo
« This is ok because reverse closed for regular languages

oo
IS
1
—=O
| |
l%
—o
| S

* Reject whenever any column is incorrect [

1
(B ()
» Use extra state to keep track of “carries” O.
0
1




Theorem: Th(N, —I—) 1s decidable (Pressburger Arithmetic)

On input ¢ =Qx,Q,x, ...Q.x, [V ]:

1. Initially, ignore all the quantifiers Q,...Q, and construct a DFA for
a) Forevery +, construct a generalized addition DFA over alphabet:

-

b) Combine those DFAs using (all closed operations for regular languages!):

union (for v),
intersection (for A),
and complement (for =)

- Call this initial machine 4,,




Theorem: Th(N, +) is decidable

On input ¢ =Qx,Q,x, ...Q.x, [V ]:

e ... call this initial machine An DFA A, accepts i rows

(numbers) that make formula

o Q1'+1Xi+1 ann [lp ] true
Now handle quantifiers ...

2. For every 3x, create DFA A, that is like A;,,; but with one less input row
« Instead, nondeterministically guess the number for the last row

— b —_ — b o
.1 .1 bj = {071}
A/s input . . A..'s input
b |:> b 1 z € 40,1}
L b b;
Loz




Theorem: Th(N, +) is decidable

On input ¢ =Qx,Q,x, ...Q.x, [V ]:

3. For every Vx, use equality Vx.¢p = ~3x.m¢ to convert V to 3 and then use

same construction from the 3 step

After handling all the quantifiers
DFA A, accepts any string when
formula ¢ is true




Theorem: Th(N, +, x) is undecidable




Flashback. AL Lcrc is undecidable
ALLcre = {(G)| GisaCFG and L(G) = ¥*}

Proof, by contradiction
« Assume ALLqr; has a decider R. Use it to create decider for Ay

On input <M, w>:
1. Construct a PDA P that rejects sequences of M configs that accept w

2. Convert Ptoa CFG G
3. Give G to R:
* If R accepts, then M has no accepting config sequences for w, so reject
* If R rejects, then M has an accepting config sequence for w, so accept
Insight: Any machine that can validate

accepting TM config sequences must
represent an undecidable language!




Theorem: Th(N, 4, x) is undecidable

Proof sketch, by contradiction
« Assume Th(N, +, x) has a decider R. Use it to create decider for Ay

On Inlet <M, w>: This “validates” accepting
config sequences, using + and X

1. Construct a formula 3x.¢p,,,, that is true iff M accepts w

2. Give the formula to R and accept if it accepts

Insight: A TM configuration
represents a number!



thstback: LBA Configurations

« How many possible configurations does an LBA have?

g states
« g tape alphabet chars
 tape of length n

 Possible Configurations = gng"
« g" = number of possible tape configurations
« gn = all the possible head positions



Proof Sketch Th(N, +, x) is undecidable

« A sequence of TM configurations Is just a large number
* In Base-g (g = number of tape alphabet chars)

* So in formula 3x.¢,,,
« xIs a number representing a sequence of configs
* ¢y, checks”, using plus and times, that it is a valid seq that accepts w



“Checking” a TM Sequence with + and X



Analogy: Checking Digits in a Number

Example:

« Check that a given number has:
 First digit: 5
« Second digit: 4
- Third digit: 3

« Equivalent to checking that the number is 543

e 5x10x10+4 x10+3 =543

Note the required operations:
+and X!



TM Configurations

Configuration Sequence

Arateey: Checking Btetts In a Nuber—

Example:

« Check that a given number has:
 First digit: 5
« Second digit: 4
+ Third digit: 3

« Equivalent to checking that the number is 543

e 5x10x10+4x10+3 =543

25



TM Configurations

Configuration Sequence

Anrateey: Checking btetts In a Number—

Example:

« Check that a given number has:
« First digit: 5— | C;
* Second digit:4— ¢,
- Third digit: 3—

* Equivalent to checking that the number is 543

e 5Xx10xXx10+4 x10+3 =543

26



TM Configurations Configuration Sequence

Anrateey: Checking btetts In a Nuraper—

Example:

« Check that a given number has:
« Firstdigit:5—  C;
* Second digit:+4— ¢,

+ Third digit: 3—
CB

Configuration Sequence C,C,C;

« Equivalent to checking that the rumber Is543-
* SRF AT O3 =543 You can’t do check TM config

C, 9 9 C g C; CGQG; sequences without both + and x!

x by itself is insufficient (it's decidable)



Godel’s (15t) Incompleteness Theorem



Completeness

« A theory is complete If ...
- ... every sentence (i.e, true statement) in the language is provable

« For now, we just assume that a proof is some string representing
a sequence of steps

. Analogy: You can think of a sequence of configurations as a kind of
“proot” that a machine accepts some string

 Key: A proof can be validated by a decider



Godel’s (15t) Incompleteness Theorem

 Any theory that satisfies the following must be incomplete:

« Recognizable
« Undecidable
« Has the ability to “prove” true statements

 Proof is by contradiction:
* If such a theory were complete, then we could create a decider



Thm: provable statements in Th(N, +, x) is Turing-recognizable

« Recognizer P = On input ¢:
« Check all possible strings ...
* For each, try to validate whether it's a proof of ¢
« Accept if we find a proof




Thm: Some true statement in Th(N, +, x) is not provable

 Proof by contradiction: Assume all true statements provable
* Create decider for Th(N, +, x)

On input ¢:
* Run recognizer P on both ¢ and —¢

« One must be true so P will halt and accept one of them
* |f P halts and accepts ¢, then accept
« If P halts and accepts —¢, then reject




Godel’s (15t) Incompleteness Theorem

* (Very Roughly)
« Any theory that is undecidable but recognizable is incomplete.

« Compare with our previous theorem about recognizability:
« Decidable & Turing-recognizable and co-Turing-recognizable

« So any language that is undecidable but recognizable must not be
co-Turing-recognizable




Check-in Quiz 11/3

On gradescope



