UMB CS622 Polynomial Time (P)

Wednesday November 10, 2021

```
O(1) = O(yeah)
O(logn) = O(nice)
O(n) = O(k)
O(n<sup>2</sup>) = O(my)
O(2^n) = O(no)
O(n!) = O(mg)
O(n^n) = O(sh*t!)
```

Announcements

• HW7 due tonight 11:59pm EST

• HW8 out tonight

• FYI: School holiday tomorrow (Thurs)

Last Time: Polynomial Time Complexity Class (P)

P is the class of languages that are decidable in polynomial time on a deterministic single-tape Turing machine. In other words,

$$P = \bigcup_{k} TIME(n^k).$$

- Corresponds to "realistically" solvable problems:
 - Problems in P = "solvable" or "tractable"
 - Problems outside P = "unsolvable" or "intractable"

3 Problems in **P**

• A <u>Graph</u> Problem:

 $PATH = \{\langle G, s, t \rangle | G \text{ is a directed graph that has a directed path from } s \text{ to } t \}$

• A <u>Number</u> Problem:

 $RELPRIME = \{\langle x, y \rangle | x \text{ and } y \text{ are relatively prime} \}$

• A CFL Problem:

Every context-free language is a member of P

 $PATH = \{\langle G, s, t \rangle | G \text{ is a directed graph that has a directed path from } s \text{ to } t \}$

(A path is a sequence of nodes connected by edges)

- To prove that a language is in P ...
- ... we must construct a polynomial time algorithm deciding the lang
- Languages in P can still have non-polynomial (i.e., "brute force") algorithms:
 - check all possible paths, and see if any connect s to t
 - If n = # vertices, then # paths $\approx n^n$

 $PATH = \{\langle G, s, t \rangle | G \text{ is a directed graph that has a directed path from } s \text{ to } t \}$

PROOF A polynomial time algorithm M for PATH operates as follows.

M = "On input $\langle G, s, t \rangle$, where G is a directed graph with nodes s and t:

- 1. Place a mark on node s.
- 2. Repeat the following until no additional nodes are marked:
- 3. Scan all the edges of G. If an edge (a, b) is found going from a marked node a to an unmarked node b, mark node b.
- **4.** If t is marked, accept. Otherwise, reject."

of steps (worst case) (n = # nodes):

▶ Line 1: 1 step

 $PATH = \{\langle G, s, t \rangle | G \text{ is a directed graph that has a directed path from } s \text{ to } t \}$

PROOF A polynomial time algorithm M for PATH operates as follows.

M = "On input $\langle G, s, t \rangle$, where G is a directed graph with nodes s and t:

- 1. Place a mark on node s.
- 2. Repeat the following until no additional nodes are marked:
- 3. Scan all the edges of G. If an edge (a, b) is found going from a marked node a to an unmarked node b, mark node b.
- **4.** If t is marked, accept. Otherwise, reject."

- <u>Line 1</u>: **1** step
- <u>Lines 2-3 (loop)</u>:
 - ightharpoonup Steps/iteration (line 3): max # steps = max # edges = $O(n^2)$

 $PATH = \{\langle G, s, t \rangle | G \text{ is a directed graph that has a directed path from } s \text{ to } t \}$

PROOF A polynomial time algorithm M for PATH operates as follows.

M = "On input $\langle G, s, t \rangle$, where G is a directed graph with nodes s and t:

- 1. Place a mark on node s.
- 2. Repeat the following until no additional nodes are marked:
- 3. Scan all the edges of G. If an edge (a, b) is found going from a marked node a to an unmarked node b, mark node b.
- **4.** If t is marked, accept. Otherwise, reject."

- <u>Line 1</u>: **1** step
- Lines 2-3 (loop):
 - Steps/iteration (line 3): max # steps = max # edges = $O(n^2)$
 - > # iterations (line 2): loop runs at most n times

 $PATH = \{\langle G, s, t \rangle | G \text{ is a directed graph that has a directed path from } s \text{ to } t \}$

PROOF A polynomial time algorithm M for PATH operates as follows.

M = "On input $\langle G, s, t \rangle$, where G is a directed graph with nodes s and t:

- 1. Place a mark on node s.
- 2. Repeat the following until no additional nodes are marked:
- Scan all the edges of G. If an edge (a, b) is found going from a marked node a to an unmarked node b, mark node b.
- **4.** If t is marked, accept. Otherwise, reject."

- <u>Line 1</u>: **1** step
- <u>Lines 2-3 (loop)</u>:
 - Steps/iteration (line 3): max # steps = max # edges = $O(n^2)$
 - # iterations (line 2): loop runs at most n times
 - ightharpoonup Total: $O(n^3)$

 $PATH = \{\langle G, s, t \rangle | G \text{ is a directed graph that has a directed path from } s \text{ to } t \}$

PROOF A polynomial time algorithm M for PATH operates as follows.

M = "On input $\langle G, s, t \rangle$, where G is a directed graph with nodes s and t:

- 1. Place a mark on node s.
- **2.** Repeat the following until no additional nodes are marked:
- 3. Scan all the edges of G. If an edge (a, b) is found going from a marked node a to an unmarked node b, mark node b.
- **4.** If t is marked, accept. Otherwise, reject."

- <u>Line 1</u>: **1** step
- Lines 2-3 (loop):
 - Steps/iteration (line 3): max # steps = max # edges = $O(n^2)$
 - # iterations (line 2): loop runs at most n times
 - Total: $O(n^3)$
- **>** <u>Line 4</u>: **1** step

$$P = \bigcup_{k} TIME(n^k).$$

 $PATH = \{\langle G, s, t \rangle | G \text{ is a directed graph that has a directed path from } s \text{ to } t\}$

PROOF A polynomial time algorithm M for PATH operates as follows.

M = "On input $\langle G, s, t \rangle$, where G is a directed graph with nodes s and t:

- 1. Place a mark on node s.
- 2. Repeat the following until no additional nodes are marked:
- 3. Scan all the edges of G. If an edge (a, b) is found going from a marked node a to an unmarked node b, mark node b.
- **4.** If t is marked, accept. Otherwise, reject."

 $O(n^3)$

(Breadth-first search)

- <u>Line 1</u>: **1** step
- Lines 2-3 (loop):
 - Steps/iteration (line 3): max # steps = max # edges = $O(n^2)$
 - # iterations (line 2): loop runs at most n times
 - Total: $O(n^3)$
- <u>Line 4</u>: **1 step**
- $ightharpoonup Total = 1 + 1 + O(n^3) = O(n^3)$

3 Problems in **P**

• A <u>Graph</u> Problem:

 $PATH = \{\langle G, s, t \rangle | G \text{ is a directed graph that has a directed path from } s \text{ to } t \}$

• A Number Problem:

 $RELPRIME = \{\langle x, y \rangle | x \text{ and } y \text{ are relatively prime} \}$

• A <u>CFL</u> Problem:

Every context-free language is a member of P

A Number Theorem: $RELPRIME \in P$

 $RELPRIME = \{\langle x, y \rangle | x \text{ and } y \text{ are relatively prime} \}$

- Two numbers are **relatively prime** if their gcd = 1
 - gcd(x, y) = largest number that divides both x and y
 - E.g., gcd(8, 12) = 4
- Brute force exponential algorithm deciding *RELPRIME*:
 - Try all of numbers (up to x or y), see if it can divide both numbers
 - Why is this exponential?
 - HINT: What is a typical "representation" of numbers?
 - Answer: binary numbers
- A gcd algorithm that runs in poly time:
 - Euclid's algorithm

A GCD Algorithm for: $RELPRIME \in P$

 $RELPRIME = \{\langle x, y \rangle | x \text{ and } y \text{ are relatively prime} \}$

Modulo
(i.e., remainder)
cuts x (at least) in half

 $15 \mod 8 = 7$ $17 \mod 8 = 1$

Cutting x in half every step requires: log x steps

The Euclidean algorithm ${\cal E}$ is as follows.

E = "On input $\langle x, y \rangle$, where x and y are natural numbers in binary:

- 1. Repeat until y = 0:
- 2. Assign $x \leftarrow x \mod y$.
- 3. Exchange x and y.
- **4.** Output *x*."

O(*n*)

Each number is cut in half every other iteration

Total run time (assume x > y): $2\log x = 2\log 2^n = O(n)$, where n = number of binary digits in (ie length of) x

3 Problems in **P**

• A <u>Graph</u> Problem:

 $PATH = \{\langle G, s, t \rangle | G \text{ is a directed graph that has a directed path from } s \text{ to } t \}$

• A <u>Number</u> Problem:

 $RELPRIME = \{\langle x, y \rangle | x \text{ and } y \text{ are relatively prime} \}$

• A <u>CFL</u> Problem:

Every context-free language is a member of P

Prove: the context-free oval is completely contained inside the decidable oval

• I.e., Every context-free language (CFL) is also a decidable language

Proof Plan:

- To prove that a language is decidable ... we must construct a decider for it
- To show that every CFL is decidable, we show how to construct a decider for any CFL

To construct our decider, we use the following things learned in this course:

- A language is a set of strings
- A CFL L is a language that ... has a CFG (G) and a PDA (P), where:
 - $w \in L \Leftrightarrow G$ generates w, or
 - $w \in L \Leftrightarrow P$ accepts w
- A decider (M) for a CFL L is a TM such that, on input w:
 - M accepts $w \Leftrightarrow G$ generates w, or
 - M accepts $w \Leftrightarrow P$ accepts w

Review: A Decider for Any CFL (HW5)

Given any CFL L, with CFG G, the following decider M_G decides L:

```
M_G =  "On input w:
```

- **1.** Run TM S on input $\langle G, w \rangle$.
- 2. If this machine accepts, accept; if it rejects, reject."

S = "On input $\langle G, w \rangle$, where G is a CFG and w is a string:

- 1. Convert G to an equivalent grammar in Chomsky normal form.
- 2. List all derivations with 2n-1 steps, where n is the length of w; except if n=0, then instead list all derivations with one step.
- 3. If any of these derivations generate w, accept; if not, reject."

S is a decider for: $A_{CFG} = \{\langle G, w \rangle | G \text{ is a CFG that generates string } w\}$

A Decider for Any CFL: Running Time

Given any CFL L, with CFG G the following decider M_G decides L:

```
M_G =  "On input w:
```

- **1.** Run TM S on input $\langle G, w \rangle$.
- 2. If this machine accepts, accept; if it rejects, rejects

Worst case: $|R|^{2n-1}$ steps = $O(2^n)$ (R = set of rules)

```
S = "On input \langle G, w \rangle, where G is a CFG and w is a string:
```

- 1. Convert G to an equivalent grammar in Chomsky normal form.
- 2. List all derivations with 2n-1 steps, where n is the length of w; except if n=0, then instead list all derivations with one step.
- 3. If any of these derivations generate w, accept; if not, reject."

This algorithm runs in exponential time

S is a decider for: $A_{CFG} = \{\langle G, w \rangle | G \text{ is a CFG that generates string } w\}$

A CFL Theorem: Every context-free language is a member of P

• Given a CFL, we must construct a decider for it ...

• ... that runs in polynomial time

Dynamic Programming

- Keep track of partial solutions, and re-use them
- For CFG problem, instead of re-generating entire string ...
 - ... keep track of <u>substrings</u> generated by each variable Dynamic programming

S = "On input $\langle G, w \rangle$, where G is a CFG and w is a string:

- 1. Convert G to an equivalent grammar in Chomsky normal form.
- 2. List all derivations with 2n-1 steps, where n is the length of w; except if n=0, then instead list all derivations with one step.
- 3. If any of these derivations generate w, accept; if not, reject."

This <u>duplicates a lot of work</u> because many strings might have have the same first few derivations steps

- Chomsky Grammar *G*:
 - $S \rightarrow AB \mid BC$
 - $A \rightarrow BA \mid a$
 - B \rightarrow CC | b
 - $C \rightarrow AB \mid a$

- Example string: baaba
- Store every partial string and their generating variables in a table

Substring end char

		D	a	a	D	a
	b					
Substring <u>start</u> char	a					
<u>start</u> char	a					
	b					
	a					71

- Chomsky Grammar *G*:
 - $S \rightarrow AB \mid BC$
 - $A \rightarrow BA \mid a$
 - $B \rightarrow CC \mid b$
 - $C \rightarrow AB \mid a$
- Example string: baaba
- Store every partial string and their generating variables in a table

Substring end char

		b	a	a	b	a
	b	vars for "b"	vars for "ba"	vars for "baa"		
Substring start char	a		vars for "a"	vars for "aa"	vars for "aab"	
<u>start</u> char	a					
	b					
	a					72

• Chomsky Grammar G:

- B \rightarrow CC | b
- $C \rightarrow AB \mid a$
- Example string: baaba
- Store every partial string and their generating variables in a table

Substring end char

	b	vars for "b"	vars for "ba"	vars for "baa"		
string	a		vars for "a"	vars for "aa"	vars for "aab"	
string t char	a					
	b					
	a					73

Algo:

For each single char c and var A:

- If $A \rightarrow c$ is a rule, add A to table

• $S \rightarrow AB \mid BC$

• $A \rightarrow BA \mid a$

Subs start

- Chomsky Grammar *G*:
 - $S \rightarrow AB \mid BC$
 - $A \rightarrow BA \mid a$
 - $B \rightarrow CC \mid b$
 - $C \rightarrow AB \mid a$
- Example string: baaba
- Store every partial string and their generating variables in a table

Substring end char

		b	a	a	b	a
	b	В				
Substring start char	a		A,C			
start char	a			A,C		
	b				В	
	a					$A_{i}G_{4}$

Algo:

For each single char c and var A:

- If $A \rightarrow c$ is a rule, add A to table

- Chomsky Grammar *G*:
 - $S \rightarrow AB \mid BC$
 - $A \rightarrow BA \mid a$
 - $B \rightarrow CC \mid b$
 - $C \rightarrow AB \mid a$
- Example string: baaba
- Store every partial string and their get

Algo:

- For each single char c and var A:
 - If A \rightarrow c is a rule, add A to table
- For each substring s (len > 1):
 - For each split of substring s into x,y:
 - For each rule of shape A → BC:
 - Use table to check if B
 generates x and C generates y

Substring end char

		b	a	a	b	a
	b	В				
Substring start char	a		A,C			
start char	a			A,C		
	b				В	
	a					A,G ₅

- Chomsky Grammar *G*:
 - $S \rightarrow AB \mid BC$
 - $A \rightarrow BA \mid a$
 - $B \rightarrow CC \mid b$
 - $C \rightarrow AB \mid a$

- Example string: baaba
- Store every partial string and their general

Substring end char

		D	a	a	
	b	В	←		•
Substring start char	a		A,C		
start char	a			A,C	•
	b				
	a				

Algo:

- For each single char c and var A:
 - If $A \rightarrow c$ is a rule, add A to table
- For each substring s:
 - For each split of substring s into x,y:
 - For each rule of shape $A \rightarrow BC$:
 - tise table to check if R

For substring "ba", split into "b" and "a":

- For rule $S \rightarrow AB$
 - Does A generate "b" and B generate "a"?
- For rule $S \rightarrow BC$
 - Does B generate "b" and C generate "a"?
 - YES
- For rule A → BA
 - Does B generate "b" and A generate "a"?
 - YES
- For rule $B \rightarrow CC$
 - Does C generate "b" and C generate "a"?
 - NO
- For rule $C \rightarrow AB$
 - Does A generate "b" and B generate "a"?
 - NO

- Chomsky Grammar *G*:
 - $S \rightarrow AB \mid BC$
 - $A \rightarrow BA \mid a$
 - $B \rightarrow CC \mid b$
 - $C \rightarrow AB \mid a$

Subst

start

- Example string: baaba
- Store every partial string and their general

Substring end char

		D	a			a	
	b	В		S,A	←		
tring char	a			A,C			
char	a					A,C	•
	b						١.
	a						

Algo:

- For each single char c and var A:
 - If $A \rightarrow c$ is a rule, add A to table
- For each substring s:
 - For each split of substring s into x,y:
 - For each rule of shape A → BC:
 - lise table to check if R

For substring "ba", split into "b" and "a":

- For rule $S \rightarrow AB$
 - Does A generate "b" and B generate "a"?
 - NO
- For rule $S \rightarrow BC$
 - Does B generate "b" and C generate "a"?
 - YES
- For rule $A \rightarrow BA$
 - Does B generate "b" and A generate "a"?
 - YES
- For rule $B \rightarrow CC$
 - Does C generate "b" and C generate "a"?
 - NO
- For rule $C \rightarrow AB$
 - Does A generate "b" and B generate "a"?
 - NO

- Chomsky Grammar *G*:
 - $S \rightarrow AB \mid BC$
 - $A \rightarrow BA \mid a$
 - $B \rightarrow CC \mid b$
 - $C \rightarrow AB \mid a$
- Example string: baaba
- Store every partial string and their get

Algo:

For each char, var ...

- For each single char c and var A:
 - If A \rightarrow c is a rule, add A to table
- For each substring s: For each substring, split, rule ...
 - For each split of substring s into x,y:
 - For each rule of shape A \rightarrow BC:
 - Use table to check if B
 generates x and C generates y

Substring end char

		b	a	a	b	a
	b	В	S,A		If S is here, accept	→S,A,C
ıg	a		A,C	В	В	S,A,C
- 14	a			A,C	S,C	В
	b				В	S,A
	a					A,Ç ₈

Substring start char

A CFG Theorem: Every context-free language is a member of P

```
D = "On input w = w_1 \cdots w_n:
                                                           1. For w = \varepsilon, if S \to \varepsilon is a rule, accept; else, reject. [w = \varepsilon \text{ case }]
                                                           2. For i = 1 to n: O(n)
                                                                                                                                                                                                            ______ [examine each substring of length 1]
        For each:
                                                                                                                                                                                                             #vars
                                                                                          For each variable A:
        - char
                                                                                                      Test whether A \to b is a rule, where b = w_i. #vars * n = O(n)
        - var
                                                                                                       If so, place A in table(i, i).
                                                           6. For l=2 to n: O(n) _____ [ l is the length of the substring ]
For each:
                                                                                     For i = 1 to n - l + 1: O(n) be start position of the substring
- substring 7.
- split
                                                                               - rule
                                                                                                     For k = i to j - 1: O(n)
                                                                                                                                                                                                                                                                                                \underline{\hspace{0.1in} \hspace{0.1in} \hspace{0.1in
                                                     10.
                                                                                                                  For each rule A \rightarrow BC: #rules
                                                                                                                                If table(i, k) contains B and table(k + 1, j) contains
                                                     11.
                                                                                                                                C, put A in table(i, j).
                                                                                                                                                                                                                                                                      #rules * O(n) * O(n) * O(n) = O(n^3)
                                                     12. If S is in table(1, n), accept; else, reserved.
```

Total: $O(n^3)$

(This is also known as the Earley parsing algorithm)

Summary: 3 Problems in **P**

• A <u>Graph</u> Problem:

"search" problem

 $PATH = \{\langle G, s, t \rangle | G \text{ is a directed graph that has a directed path from } s \text{ to } t \}$

• A Number Problem:

 $RELPRIME = \{\langle x, y \rangle | x \text{ and } y \text{ are relatively prime} \}$

• A CFL Problem:

Every context-free language is a member of P

Search vs Verification

- <u>Search</u> problems are often unsolvable
- But, verification of search results is usually solvable

EXAMPLES

- Factoring
 - Unsolvable: Find factors of 8633
 - Solvable: Verify 89 and 97 are factors of 8633
- Passwords
 - Unsolvable: Find my umb.edu password
 - Solvable: Verify whether my umb.edu password is ...
 - "correct horse battery staple"

THROUGH 20 YEARS OF EFFORT, WE'VE SUCCESSFULLY TRAINED EVERYONE TO USE PASSWORDS THAT ARE HARD FOR HUMANS TO REMEMBER, BUT EASY FOR COMPUTERS TO GUESS.

The PATH Problem

 $PATH = \{\langle G, s, t \rangle | G \text{ is a directed graph that has a directed path from } s \text{ to } t\}$

- It's a **search** problem:
 - Exponential time (brute force) algorithm (n^n) :
 - Check all possible paths and see if any connects s and t
 - Polynomial time algorithm:
 - Do a breadth-first search (roughly), marking "seen" nodes as we go

PROOF A polynomial time algorithm M for PATH operates as follows.

M= "On input $\langle G,s,t\rangle$, where G is a directed graph with nodes s and t:

- 1. Place a mark on node s.
- 2. Repeat the following until no additional nodes are marked:
- 3. Scan all the edges of G. If an edge (a, b) is found going from a marked node a to an unmarked node b, mark node b.
- **4.** If t is marked, accept. Otherwise, reject."

Verifying a *PATH*

 $PATH = \{\langle G, s, t \rangle | G \text{ is a directed graph that has a directed path from } s \text{ to } t \}$

The **verification** problem:

- Given some path p in G, check that it is a path from s to t
- Let *m* = longest possible path = # edges in *G*

NOTE: extra argument *p*

<u>Verifier</u> V = On input < G, s, t, p>, where p is some set of edges:

- 1. Check some edge in p has "from" node s; mark and set it as "current" edge
 - Max steps = O(m)
- 2. Loop: While there remains unmarked edges in p:
 - 1. Find the "next" edge in p, whose "from" node is the "to" node of "current" edge
 - 2. If found, then mark that edge and set it as "current", else reject
 - Each loop iteration: O(m)
 - # loops: *O*(*m*)
 - Total looping time = $O(m^2)$
- 3. Check "current" edge has "to" node t; if yes accept, else reject
- Total time = $O(m) + O(m^2) = O(m^2)$ = polynomial in m

PATH can be <u>verified</u> in polynomial time

Verifiers, Formally

 $PATH = \{ \langle G, s, t \rangle | G \text{ is a directed graph that has a directed path from } s \text{ to } t \}$

A *verifier* for a language A is an algorithm V, where

 $A = \{w | V \text{ accepts } \langle w, c \rangle \text{ for some string } c \}$

extra argument: can be any string that helps to find a result in poly time (is often just a result itself)

certificate, or proof

We measure the time of a verifier only in terms of the length of w, so a **polynomial time verifier** runs in polynomial time in the length of w. A language A is **polynomially verifiable** if it has a polynomial time verifier.

- NOTE: a cert c must be at most length n^k , where n = length of w
 - Why?

So PATH is polynomially verifiable

The *HAMPATH* Problem

 $HAMPATH = \{\langle G, s, t \rangle | G \text{ is a directed graph}$ with a Hamiltonian path from s to $t\}$

• A Hamiltonian path goes through every node in the graph

- The Search problem:
 - Exponential time (brute force) algorithm:
 - Check all possible paths and see if any connect s and t using all nodes
 - Polynomial time algorithm:
 - We don't know if there is one!!!
- The Verification problem:
 - Still $O(m^2)$!
 - HAMPATH is polynomially verifiable, but not polynomially decidable 89

The class **NP**

DEFINITION

NP is the class of languages that have polynomial time verifiers.

- PATH is in NP, and P
- HAMPATH is in NP, but it's not known whether it's in P

NP = <u>Nondeterministic</u> polynomial time

NP is the class of languages that have polynomial time verifiers.

THEOREM

A language is in NP iff it is decided by some nondeterministic polynomial time Turing machine.

- \Rightarrow If a language is in NP, then it has a non-deterministic poly time decider
- We know: If a lang L is in NP, then it has a poly time verifier V
- Need to: create NTM deciding *L*:

On input *w* =

- Nondeterministically run V with w and all possible poly length certificates c
- \leftarrow If a language has a non-deterministic poly time decider, then it is in **NP**
- We know: L has NTM decider N,
- Need to: show L is in NP, i.e., create polytime verifier V:

On input <*w*, *c*> =

- Convert N to deterministic TM, and run it on w, but take only one computation path
- Let certificate c dictate which computation path to follow

Certificate *c* specifies a path

NP

 $\mathbf{NTIME}(t(n)) = \{L \mid L \text{ is a language decided by an } O(t(n)) \text{ time nondeterministic Turing machine} \}.$

$$NP = \bigcup_k NTIME(n^k)$$

NP = <u>Nondeterministic</u> polynomial time

NP vs P

Let $t: \mathcal{N} \longrightarrow \mathcal{R}^+$ be a function. Define the **time complexity class**, $\mathbf{TIME}(t(n))$, to be the collection of all languages that are decidable by an O(t(n)) time Turing machine.

P is the class of languages that are decidable in polynomial time on a deterministic single-tape Turing machine. In other words,

$$P = \bigcup_{k} TIME(n^k).$$

P = <u>Deterministic</u> polynomial time

NTIME $(t(n)) = \{L | L \text{ is a language decided by an } O(t(n)) \text{ time nondeterministic Turing machine} \}.$

$$NP = \bigcup_k NTIME(n^k)$$

NP = <u>Nondeterministic</u> polynomial time

More **NP** Problems

- $CLIQUE = \{ \langle G, k \rangle | G \text{ is an undirected graph with a } k\text{-clique} \}$
 - · A clique is a subgraph where every two nodes are connected
 - A *k*-clique contains *k* nodes

• $SUBSET ext{-}SUM = \{\langle S,t \rangle | \ S = \{x_1,\ldots,x_k\}, \ \text{and for some}$ $\{y_1,\ldots,y_l\} \subseteq \{x_1,\ldots,x_k\}, \ \text{we have} \ \Sigma y_i = t\}$

Theorem: CLIQUE is in NP

 $CLIQUE = \{\langle G, k \rangle | G \text{ is an undirected graph with a } k\text{-clique}\}$

PROOF IDEA The clique is the certificate.

Let n = # nodes in G

c is at most n

PROOF The following is a verifier V for CLIQUE.

V = "On input $\langle \langle G, k \rangle, c \rangle$:

- 1. Test whether c is a subgraph with k nodes in G.
- **2.** Test whether G contains all edges connecting nodes in c.
- 3. If both pass, accept; otherwise, reject."

For each node in c, check whether it's in $G: O(n^2)$

For each pair of nodes in c, check whether there's an edge in G: $O(n^2)$

A *verifier* for a language A is an algorithm V, where

 $A = \{w | V \text{ accepts } \langle w, c \rangle \text{ for some string } c\}.$

We measure the time of a verifier only in terms of the length of w, so a **polynomial time verifier** runs in polynomial time in the length of w. A language A is **polynomially verifiable** if it has a polynomial time verifier.

NP is the class of languages that have polynomial time verifiers.

Proof 2: *CLIQUE* is in NP

 $CLIQUE = \{\langle G, k \rangle | G \text{ is an undirected graph with a } k\text{-clique} \}$

```
N = "On input \langle G, k \rangle, where G is a graph:

Nondeterministically select a subset c of k nodes of G.
Test whether G contains all edges connecting nodes in c. O(n²)
If yes, accept; otherwise, reject."
```

To prove a lang *L* is in **NP**, create <u>either</u> a:

- Deterministic poly time verifier
- Nondeterministic poly time decider

THEOREM

A language is in NP iff it is decided by some nondeterministic polynomial time Turing machine.

More **NP** Problems

- $CLIQUE = \{ \langle G, k \rangle | G \text{ is an undirected graph with a } k\text{-clique} \}$
 - A clique is a subgraph where every two nodes are connected
 - A *k*-clique contains *k* nodes

- $SUBSET ext{-}SUM = \{\langle S,t \rangle | \ S = \{x_1,\ldots,x_k\}, \ \text{and for some}$ $\{y_1,\ldots,y_l\} \subseteq \{x_1,\ldots,x_k\}, \ \text{we have} \ \Sigma y_i = t\}$
 - Some subset of a set of numbers S must sum to some total t
 - e.g., $\langle \{4, 11, 16, 21, 27\}, 25 \rangle \in SUBSET-SUM$

Theorem: SUBSET-SUM is in NP

SUBSET-SUM =
$$\{\langle S, t \rangle | S = \{x_1, \dots, x_k\}$$
, and for some $\{y_1, \dots, y_l\} \subseteq \{x_1, \dots, x_k\}$, we have $\Sigma y_i = t\}$

PROOF IDEA The subset is the certificate.

To prove a lang is in **NP**, create <u>either</u>:

- **Deterministic** poly time **verifier**
- Nondeterministic poly time decider

PROOF The following is a verifier V for SUBSET-SUM.

V = "On input $\langle \langle S, t \rangle, c \rangle$:

Runtime?

- 1. Test whether c is a collection of numbers that sum to t.
- **2.** Test whether S contains all the numbers in c.
- **3.** If both pass, accept; otherwise, reject."

Proof 2: SUBSET-SUM is in NP

SUBSET-SUM =
$$\{\langle S, t \rangle | S = \{x_1, \dots, x_k\}$$
, and for some $\{y_1, \dots, y_l\} \subseteq \{x_1, \dots, x_k\}$, we have $\Sigma y_i = t\}$

To prove a lang is in **NP**, create <u>either</u>:

- Deterministic poly time verifier
- Nondeterministic poly time decider

ALTERNATIVE PROOF We can also prove this theorem by giving a nondeterministic polynomial time Turing machine for *SUBSET-SUM* as follows.

N = "On input $\langle S, t \rangle$:

- 1. Nondeterministically select a subset c of the numbers in S.
- 2. Test whether c is a collection of numbers that sum to t.
- **3.** If the test passes, accept; otherwise, reject."

Runtime?

$$COMPOSITES = \{x | x = pq, \text{ for integers } p, q > 1\}$$

- A composite number is <u>not</u> prime
- COMPOSITES is polynomially verifiable
 - i.e., it's in NP
 - i.e., factorability is in NP
- A certificate could be:
 - Some factor that is not 1
- Checking existence of factors (or not, i.e., testing primality) ...
 - ... is also poly time
 - But only discovered recently (2002)!

One of the Greatest unsolved

HW Question: Does P = NP?

How do you prove an algorithm <u>doesn't</u> have a poly time algorithm? (in general it's hard to prove that something <u>doesn't</u> exist)

Implications if P = NP

- Every problem with a "brute force" solution also has an efficient solution
- I.e., "unsolvable" problems are "solvable"
- <u>BAD</u>:
 - Cryptography needs unsolvable problems
 - Near perfect AI learning, recognition
- <u>GOOD</u>: Optimization problems are solved
 - Optimal resource allocation could fix all the world's (food, energy, space ...) problems?

Who doesn't like niche NP jokes?

Progress on whether P = NP?

Some, but still not close

By Lance Fortnow

Communications of the ACM, September 2009, Vol. 52 No. 9, Pages 78-86
10.1145/1562164.1562186

- One important concept discovered:
 - NP-Completeness

NP-Completeness

Must look at all langs, can't just look at a single lang

DEFINITION

A language B is NP-complete if it satisfies two conditions:

- B is in NP, and easy
- 2. every A in NP is polynomial time reducible to B.

• How does this help the **P** = **NP** problem? What's this?

THEOREM

If B is NP-complete and $B \in P$, then P = NP.

hard????

Check-in Quiz 11/10

On gradescope