UMB CS622

Polynomial Time (P)
Wednesday November 10, 2021

Aunoancements
« HW7 due tonight 11:59pm EST
« HW8 out tonight

* FYIl: School holiday tomorrow (Thurs)

last Tine: POlynomial Time Complexity Class (P)

P is the class of languages that are decidable in polynomial time on
a deterministic single-tape 'Turing machine. In other words,

P = | TIME(n").
k

 Corresponds to “realistically” solvable problems:
 Problems in P = “solvable” or “tractable”
 Problems outside P = “unsolvable” or “intractable”

Let t: N—R™ be a function. Define the time complexity class,
TIME(t(n)), to be the collection of all languages that are decid-
able by an O(t(n)) time Turing machine.

3 Problems in P

* A Graph Problem:
PATH = {(G, s,t)| G is a directed graph that has a directed path from s to ¢}

* ANumber Problem:
RELPRIME = {{x,y)| = and y are relatively prime}

A CFL Problem:

Every context-free language is a member of P

52

A Graph Theorem: PATH € P

PATH = {(G, s,t)| G is a directed graph that has a directed path from s to ¢}

(A path is a sequence of
nodes connected by edges)

« To prove that a language i1sin P ...

e ... we must construct a polynomial time algorithm deciding the lang

 Languages in P can still have non-polynomial (i.e., "brute force”) algorithms:
« check all possible paths, and see if any connectstot
 If n=# vertices, then # paths = n”

A Graph Theorem: PATH € P

PATH = {(G, s,t)| G is a directed graph that has a directed path from s to ¢}

PROOF A polynomial time algorithm M for PATH operates as follows.

M = “On input (G, s, t), where G is a directed graph with nodes s and ¢:
1. Place a mark on node s.
2. Repeat the following until no additional nodes are marked:

3. Scan all the edges of G. If an edge (a, b) is found going from
a marked node a to an unmarked node b, mark node b.

4. Iftis marked, accept. Otherwise, reject.”

of steps (worst case) (n = # nodes):
> Line 1: 1 step

A Graph Theorem: PATH € P

PATH = {(G, s,t)| G is a directed graph that has a directed path from s to ¢}

PROOF A polynomial time algorithm M for PATH operates as follows.

M = “On input (G, s, t), where G is a directed graph with nodes s and t:
1. Place a mark on node s.
2. Repeat the following until no additional nodes are marked:

3. Scan all the edges of G. If an edge (a, b) is found going from
a marked node a to an unmarked node b, mark node b.

4. Iftis marked, accept. Otherwise, reject.”

of steps (worst case) (n = # nodes):
e Line 1: 1 step

e Lines 2-3 (loop):
> Steps/iteration (line 3): max # steps = max # edges = 0(n?)

A Graph Theorem: PATH € P

PATH = {(G, s,t)| G is a directed graph that has a directed path from s to ¢}

PROOF A polynomial time algorithm M for PATH operates as follows.

M = “On input (G, s, t), where G is a directed graph with nodes s and t:
1. Place a mark on node s.
2. Repeat the following until no additional nodes are marked:

3. Scan all the edges of G. If an edge (a, b) is found going from
a marked node a to an unmarked node b, mark node b.

4. Iftis marked, accept. Otherwise, reject.”

of steps (worst case) (n = # nodes):
e Line 1: 1 step

e Lines 2-3 (loop):
- Steps/iteration (line 3): max # steps = max # edges = 0(n?)
> #t iterations (line 2): loop runs at most n times

A Graph Theorem: PATH € P

PATH = {(G, s,t)| G is a directed graph that has a directed path from s to ¢}

PROOF A polynomial time algorithm M for PATH operates as follows.

M = “On input (G, s, t), where G is a directed graph with nodes s and t:
1. Place a mark on node s.
2. Repeat the following until no additional nodes are marked:

3. Scan all the edges of G. If an edge (a, b) is found going from
a marked node a to an unmarked node b, mark node b.

4. Iftis marked, accept. Otherwise, reject.”

of steps (worst case) (n = # nodes):
e Line 1: 1 step

e Lines 2-3 (loop):
- Steps/iteration (line 3): max # steps = max # edges = 0(n?)
- f#iterations (line 2): loop runs at most n times
> Total: O(n?)

A Graph Theorem: PATH € P

PATH = {(G, s,t)| G is a directed graph that has a directed path from s to ¢}

PROOF A polynomial time algorithm M for PATH operates as follows.

M = “On input (G, s, t), where G is a directed graph with nodes s and t:
1. Place a mark on node s.
2. Repeat the following until no additional nodes are marked:

3. Scan all the edges of G. If an edge (a, b) is found going from
a marked node a to an unmarked node b, mark node b.

4. Iftis marked, accept. Otherwise, reject.”

of steps (worst case) (n = # nodes):
e Line 1: 1 step

e Lines 2-3 (loop):

- Steps/iteration (line 3): max # steps = max # edges = 0(n?)
- f#iterations (line 2): loop runs at most n times
« Total: O(n?)

> Line 4: 1 step

P is the class of languages that are decidable in polynomial time on
a deterministic single-tape Turing machine. In other words,

A Graph Theorem: PATH € P

P = | TIME(n*).
k

PATH = {(G, s,t)| G is a directed graph that has a directed path from s to ¢}

PROOF A polynomial time algorithm M for PATH operates as follows.

M = “On input (G, s, t), where G is a directed graph with nodes s and t:
1. Place a mark on node s.
2. Repeat the following until no additional nodes are marked:

3. Scan all the edges of G. If an edge (a, b) is found going from
a marked node a to an unmarked node b, mark node b.

4. Iftis marked, accept. Otherwise, reject.”

of steps (worst case) (n = # nodes):
e Line 1:/1 step

e Lines 2-3 (loop):

- Steps/iteration (line 3): max # steps = max # edges = 0(n?)
- f#iterations (line 2): loop runs at most n times
« Total: O(n?)

* Line 4:1 step
»Total =1+ 1+ 0(n3)H0(n?

0O(n?)

(Breadth-first search)

3 Problems in P

* A Graph Problem:
PATH = {(G, s,t)| G is a directed graph that has a directed path from s to ¢}

* ANumber Problem:
RELPRIME = {{x,y)| = and y are relatively prime}

A CFL Problem:

Every context-free language is a member of P

A Number Theorem: RELPRIME c P

RELPRIME = {{x,y)| = and y are relatively prime}

« Two numbers are relatively prime if their gcd =1
« gcd(x,y) = largest number that divides both x and y
« Eg,gcd(8,12)=4

 Brute force exponential algorithm deciding RELPRIME:

Try all of numbers (up to x or y), see if it can divide both numbers
Why is this exponential?

HINT: What is a typical “representation” of numbers?

Answer: binary numbers

A gcd algorithm that runs in poly time:
 Euclid’s algorithm

A GCD Algorithm for: RELPRIME < P

RELPRIME = {{x,y)| = and y are relatively prime}

Modulo
(i.e., remainder) The Euclidean algorithm E'is as follows. 0(")

cuts x (at least) in half E =%On input (x, y), where x and y are natural numbers in binary:
I~ _Repeat until y = 0:

15 m0d8i7 2 Assign z < x mod y. Each number is
17mod8=1 :
3. Exchange z and y. cut in half every
4. Output z.” other iteration

Cutting x in half
every step requires:
log x steps

Total run time (assume x> y): 2log x = 2log2" 4 0(n),
where n = number of binary digits in (ie length of) x

3 Problems in P

* A Graph Problem:
PATH = {(G, s,t)| G is a directed graph that has a directed path from s to ¢}

* ANumber Problem:
RELPRIME = {{x,y)| = and y are relatively prime}

A CFL Problem:

Every context-free language is a member of P

64

Feview: HW5, Problem 4-1

Prove: the context-free oval is completely contained inside the decidable oval
* |.e., Every context-free language (CFL) is also a decidable language

Proof Plan:
« To prove that a language is decidable ... we must construct a decider for it
« To show that every CFL is decidable, we show how to construct a decider for any CFL

To construct our decider, we use the following things learned in this course:
« A language is a set of strings

« ACFL L is a language that ... has a CFG (G) and a PDA (P), where:
e WELG generates w, Or
* weEL < Pacceptsw

A decider (M) for a CFL L is a TM such that, on input w:
e M accepts w6 generates w, Or
- M accepts w P accepts w

feview: A Decider for Any CFL (HW5)

Given any CFL L, with CFG G, the following decider M, decides L:

Mg = “On input w:

1. Run TM S on input (G, w).
2. 1s machine accepts, accept; if it rejects, reject.”

S“= “On input (G, w), where G is a CFG and w is a string:
1. Convert G to an equivalent grammar in Chomsky normal form.

2. Listall derivations with 2n — 1 steps, where n is the length of w;
except if n = 0, then instead list all derivations with one step.

3. If any of these derivations generate w, accept; if not, reject.”

Sis a decider for: Acrc = {(G,w)| G is a CFG that generates string w }

66

A Decider for Any CFL: Running Time

Given any CFL L, with CFG G the following decider M, decides L:

Mg = “On mnput w:
I. Run TM S on input (G, w).

2. If this machine accepts, accept; if it rejects, rejec Worst case:

|R|?™1 steps = 0(2")
(R = set of rules)

S = “On input (G, w), where G is a CFG and w is a string:
1. Convert G to an equivalent grammar in Chomsky normal form.

2. Listall derivations with 2n — 1 steps, where n is the length of w;
except if n = 0, then instead list all derivations with one step.

3. Ifany of these derivations generate w, accept; if not, reject.”

This algorithm runs in exponential time
Sis a decider for: Acrc = {(G,w)| G i1s a CFG that generates string w }

A CFL Theorem: Every context-free language is a member of P

* Given a CFL, we must construct a decider for it ...

e ... that runs in polynomial time

Dynamic Programming

« Keep track of partial solutions, and re-use them

* For CFG problem, instead of re-generating entire string ...
* ... keep track of substrings generated by each variable ' Dynamic programming

S = “On input (G, w), where G is a CFG and w is a string:
1. Convert G to an equivalent grammar in Chomsky normal form.

2. Listall derivations with 2n — 1 steps, where n is the length of w;
except if n = 0, thien instead list all derivations with one step.

3. If any of these derivations generate w, accept; if not, reject.”

This duplicates a lot of work because many strings
might have have the same first few derivations steps

CFL Dynamic Programming Example

e Chomsky Grammar G:
« S> AB|BC
« A>BA]Ja
- B>CC|b
« C>AB|a
« Example string: baaba

 Store every partial string and their generating variables in a table
Substring end char

Substring
start char

QO T 9 Qv T

Al

CFL Dynamic Programming Example

e Chomsky Grammar G:
« S> AB|BC
« A>BA]Ja
- B>CC|b
« C>AB|a
« Example string: baaba

 Store every partial string and their generating variables in a table
Substring end char

vars for “b” vars for “ba” vars for “baa”

“u_n

Substring vars for “a vars for “aa” vars for “aab”

start char

QO T 9 Qv T

72

CFL Dynamic Programming Example

e Chomsky Grammar G: Algo:
. S> AB|BC - For each single char c and var A:
+ ADBA|a - IfA->cisarule, add A to table
« B>CC|b
« C>AB]|a

« Example string: baaba

 Store every partial string and their generating variables in a table
Substring end char

vars for “b” vars for “ba” vars for “baa”

“u_n

Substring vars for “a vars for “aa” vars for “aab”

start char

QO T 9 Qv T

73

CFL Dynamic Programming Example

e Chomsky Grammar G: Algo:
. S> AB|BC - For each single char c and var A:

- A>BA|a - IfA->cisarule, add A to table

« B>CC|b
« C>AB|a

« Example string: baaba

 Store every partial string and their generating variables in a table
Substring end char

Substring AC

start char AC

QO T 9 Qv T

A} G4

CFL Dynamic Programming Example

« Chomsky Grammar G: Algo:
« S AB| BC - Foreach single char c and var A:
- A>BA|a - IfA%usa.rule,addAtotable
« B> CClb - Foreach substrings (len>1):
- For each split of substring s into x,y:
C ek - For each rule of shape A > BC:
« Example string: baaba - Use table to check if B
. Store every partial string and their gdre e o ooncrates xand C generates y

Substring
start char

Substring end char

O T Q9 Qv T

AC
AC

A} C75

CFL Dynamic Programming Example

e Chomsky Grammar G:

« S> AB|BC
« A>BA]Ja
« B2>CC|b
« C>AB|a

« Example string: baaba

« Store every partial string and their géreroers

Substring
start char

O O 9 Q9 T

Algo:

- For each single char c and var A:
- IfA->cisarule, add A to table
- For each substring s:

- For each split of substring s into x,y:

For each rule of shape A - BC:

- ISP 1anie 10 check IT K

A

Substring end char

AC

AC|’

For substring “ba”, split into “b” and “a”:
For rule S> AB

NO
For rule S = BC

YES
For rule A > BA

Does B generate “b” and A generate

YES
For rule B> CC

NO
For rule C > AB

Does A generate “b” and B generate

NO

Does A generate “b” and B generate

Does B generate “b” and C generate “a”?

Does C generate “b” and C generate “a”?

CFL Dynamic Programming Example

e Chomsky Grammar G:

« S> AB|BC
« A>BA]Ja
« B2>CC|b
« C>AB|a

« Example string: baaba

« Store every partial string and their géreroers

Substring
start char

O O 9 Q9 T

Algo:

- For each single char c and var A:
- IfA->cisarule, add A to table
- For each substring s:

- For each split of substring s into x,y:

For each rule of shape A - BC:

- ISP 1anie 10 check IT K

A

Substring end char

A,C

AC|’

For substring “ba”, split into “b” and “a”:
For rule S> AB

NO
For rule S = BC

YES
For rule A > BA

Does B generate “b” and A generate

YES
For rule B> CC

NO
For rule C > AB

Does A generate “b” and B generate

NO

Does A generate “b” and B generate

Does B generate “b” and C generate “a”?

Does C generate “b” and C generate “a”?

CFL Dynamic Programming Example

e Chomsky Grammar G:

« S> AB|BC
« A>BA]Ja
« B2>CC|b
« C>AB|a

« Example string: baaba

« Store every partial string and their ge

Substring
start char

Algo. For each char, var ...
- For each single char c and var A:
- IfA->cisarule, add A to table

- For each su bstring S: For each substring, split, rule ...

- For each split of substring s into x,y:
- For each rule of shape A - BC:
- Use table to check if B

generates x and C generatesy

ww—m‘v

Substring end char

QO T 9 Qv T

A,C

If Sis here, accept ——>S,AC

B B S,A,C
AC S,C B
B S,A

A} GS

A CFG Theorem: Every context-free language is a member of P

D =“Oninput w = wy - - Wy:

1. Forw = eg,if S — e is arule, accept; else, reject. [w = e case]

12. Fori=1ton: O(n) [examine each substring of length 1 |
For each: _
_char |3. For each variable A: | #vars
- var 4. Test whether A — b is a rule, where b = w;. #vars * n = 0(,1)
| 5. If so, place A in table(i,).
For each: |0- Forl =2 ton: 0(n) [is the length of the substring |
- substring | 7. Fori=1ton — [+ 1:| O(n) e start position of the substring |
- split 8. Letj=7¢+1-1. [is the end position of the substring |
- rule 9. Fork=itoj—1: | O(n) [& is the split position |
10. For each rule A — BC: #rules
11. If table(i, k) contains B and table(k + 1, j) contains

C, put A in table(i, 7). % - " _ B
12. If S'isin table(1,n), accept; else, Tube-l”UIBS O(H) 0(’1) | 0(") 0(")

Total:|0(n3)
(This is also known as the Earley parsing algorithm)

Summary: 3 Problems in P

“search” problem

* A Graph Problem:
PATH = {(G, s,t)| G is a directed graph that has a directed path from s to ¢}

* ANumber Problem:
RELPRIME = {{x,y)| = and y are relatively prime}

A CFL Problem:

Every context-free language is a member of P

Search vs Verification

« Search problems are often unsolvable
« But, verification of search results is usually solvable

EXAMPLES — -
) T oo - - -:Lr?:sfqrm T"é@?&ﬁfﬂfﬁﬁﬁéﬁ
(NoN-GIBBER™SH) ommER D THE Os WAS A ZERG?
 Factoring | R R |= | e
- Unsolvable: Find factors of 8633 IrQubddord3d || osmeya ||=° " X}
- \Veri PS> comn EREEHELE
« Solvable: Verify 89 and 97 are factors of 8633 (C‘“ s NS || o s

» Passwords
« Unsolvable: Find my umb. edu password

 Solvable : Verify whether my umb.edu password is ...

correct horse battery staple || 22777227
L - I ..‘. _ _;?__I:L_.__:..l_'_'__ — r_T__' T 1 opood

. FoUR RaDOM. -~
COMMON WORDS

~HH BITS OF ENTROPY
oooonooono

1 oonooooooono
2“:5% YEARS AT

7 1600 GUESSES/seC

DIFFIcOLTY TO GUESS:

DIFFICULTY To REMEMBER:
YOUVE ALREADY

HARD

MEMORIZED |IT

 “correct horse battery staple”

THROUGH 20 YEARS CF EFFORT, WEVE SUCCESSFULLY TRAINED
EVERYONE TO USE PASSWORDS THAT ARE HARD FOR HUMANS

To REMEMBER, BUT EASY FOR COMPUTERS To GUESS.

The PATH Problem

PATH = {(G, s,t)| G is a directed graph that has a directed path from s to ¢}

* It's a search problem:
- Exponential time (brute force) algorithm (n"):
« Check all possible paths and see if any connectssand t

« Polynomial time algorithm:
Do a breadth-first search (roughly), marking “seen” nodes as we go

PROOF A polynomial time algorithm M for PATH operates as follows.

M = “On input (G, s, t), where G is a directed graph with nodes s and t:
1. Place a mark on node s.
2. Repeat the following until no additional nodes are marked:

3. Scan all the edges of G. If an edge (a, b) is found going from
a marked node a to an unmarked node b, mark node b.

4. Iftis marked, accept. Otherwise, reject.”

Verifying a PATH

PATH = {(G, s,t)| G is a directed graph that has a directed path from s to ¢}

The verification problem:
« Given some path p in G, check that it is a path fromsto t

« Let m = longest possible path = # edges in G
NOTE: extra argument p

Verifier V= 0n input <G, s, t, p>, where p is some set of edges:

1. Check some edge in p has “from” node s; mark and set it as “current” edge
* Max steps = O(m)
2. Loop: While there remains unmarked edges in p:
1. Find the “next” edge in p, whose “from” node is the “to” node of “current” edge
2. If found, then mark that edge and set it as “current”, else reject
« Each loop iteration: O(m)

* #loops: O(m)
- Total looping time = O(m?)

3. Check “current” edge has “to” node t; if yes accept, else reject

. o PATH can be verified
* Total time = O(m) + O(m?) 51 O(m?)|= polynomial in m in polynomial time

Verifiers, Formally

PATH = {(G, s,t)| G 1s a directed graph that has a directed path from s to ¢}
|

extra argument:
can be any string that helps
to find a result in poly time
(is often just a result itself)

A = {w| V accepts (w, ¢) for some string ¢ certificate, or proof

A verifier for a language A is an ‘flgorithm V, where

We measure the time of a verifier only in terms of the length of w,
so a polynomial time verifier runs in polynomial time in the length

of w. A language A is polynomially verifiable if it has a polynomial
time verifier.

* NOTE: a cert c must be at most length n%, where n = length of w
« Why?

So PATH is polynomially verifiable

The HAMPATH Problem

HAMPATH = {(G, s,t)| G 1s a directed graph
with a Hamiltonian path from s to ¢}

« A Hamiltonian path goes through every node in the graph

S t

* The Search problem: o=

- Exponential time (brute force) algorithm:
« Check all possible paths and see if any connect s and ¢ using all nodes
« Polynomial time algorithm:

« We don't know if there is one!!!
 The Verification problem:
. Still O(m?)!
« HAMPATH is polynomially verifiable, but not polynomially decidable

The class NP

DEFINITION

NP is the class of languages that have polynomial time verifiers.

e PATH IS In NP, and P
« HAMPATH is in NP, but it's not known whether it's in P

NP = Nondeterministic polynomial time

NP is the class of languages that have polynomial time verifiers.

TH EOREM ...

A language is in NP iff it is decided by some nondeterministic polynomial time

Turing machine.

= If a language is in NP, then it has a non-deterministic poly time decider

« We know: If a lang L is in NP, then it has a poly time verifier V

» Need to: create NTM deciding L:

loninputw= |
B Nondeterministically run V with w and all possible poly length certificates ¢

&< If a language has a non-deterministic poly time decider, then it is in NP

« We know: L has NTM decider N,

* Need to: show L is in NP, i.e., create polytime verifier V:

Certificate ¢
specifies a path

On input <w, ¢> =
« Convert N to deterministic TM, and run it on w, but take only one computation path
 Let certificate ¢ dictate which computation path to follow

92

NP

NTIME(@#(n)) = {L| L is a language decided by an O(¢(n)) time

nondeterministic Turing machine}.

NP = J, NTIME(n")

NP = Nondeterministic polynomial time

Let t: N—R™" be a function. Define the time complexity class,
NP VS P TIME(t(n)), to be the collection of all languages that are decid-
able by an O(t(n)) time Turing machine.

P is the class of languages that are decidable in polynomial time on
a deterministic single-tape Turing machine. In other words,

P = JTIME(n*).
k

P = Deterministic polynomial time

NTIME(@#(n)) = {L| L is a language decided by an O(¢(n)) time

nondeterministic Turing machine}.

NP = |J, NTIME(n*)

NP = Nondeterministic polynomial time

More NP Problems

e CLIQUE = {(G, k)| G is an undirected graph with a k-clique}
« A clique is a subgraph where every two nodes are connected

()

« A k-clique contains k nodes ¢

O

()

@)

o SUBSET-SUM = {(S,t)| S = {x1,..., 7.}, and for some
{yt, ..y} Sz, ..

., Tk}, we have Yy, = t}

Q-
\

Theorem: CLIQUE is in NP Y

CLIQUE = {(G, k)| G is an undirected graph with a k-clique}

PROOF IDEA The clique is the certificate.

Let n=# nodesin G

PROOF The following is a verifier V' for CLIQUE. cisatmostn

V =“On input ((G, k), c): For each node in ¢, check
1. Test whether c is a subgraph with k£ nodes in G.| whether it's in G: O(n?)

2. 'Test whether G contains all edges connecting nodes in c.| for each pair of nodes in c,

3. If both pass, accept; otherwise, reject.” check whether there's an
edge in G: O(n?)

A verifier for a language A is an algorithm V, where
A = {w| V accepts (w, ¢) for some string c}.

We measure the time of a verifier only in terms of the length of w,
so a polynomial time verifier runs in polynomial time in the length

of w. A language A is polynomially verifiable if it has a polynomial
TR veriﬁe%.u 8 poy y vertf PO NP is the class of languages that have polynomial time verifiers.

Proof 2: CLIQUE is in NP JM

CLIQUE = {(G, k)| G is an undirected graph with a k-clique}

— ——— — — — — — — — —

_ &(Vn . . |
N = “On input (G, k), where G is a graph: “try all subgraphs’

1. Nondeterministically select a subset ¢ of £ nodes of G. —,
2. 'lest whether GG contains all edges connecting nodes in c. | 0(n?)

. . "
| 3. Ifyes, accept; otherwise, reject. |

— — — — — — — — —— — —

To prove a lang L is in NP, create either a:
- Deterministic poly time verifier
- Nondeterministic poly time decider

THEOREM ---

A language is in NP iff it is decided by some nondeterministic polynomial time
Turing machine.

More NP Problems

e CLIQUE = {(G, k)| G 1s an undirected graph with a k-clique}
* A clique is a subgraph where every two nodes are connected

* A k-clique contains k nodes <t T

/////
O @,

o SUBSET-SUM = {(S,t)| S ={x1,...,xr}, and for some

{vyi,... ui} C{z1,..., 2}, we have Xy; =t}

« Some subset of a set of numbers S must sum to some total ¢

* e.8, ({

4,

11, 16,

21

.27}, 25) € SUBSET-SUM

98

Theorem: SUBSET-SUM is in NP

SUBSET-SUM = {(S,t)| S = {z1,..., 7}, and for some
{ylﬁ"'7yl} g {I:[}'-*;Ik}: we hﬂve Eyt :f}

PROOF IDEA The subsetis the certificate.

To prove a lang is in NP, create either: PROOF The following is a verifier V for SUBSET-SUM. ——
- Deterministic poly time verifier V = “On input (S,), c): Runtime?
- DLEOIE LI [Pl e Gt e 1. Test whether ¢ is a collection of numbers that sum to ¢.

2. Test whether S contains all the numbers in c.
3. Ifboth pass, accept; otherwise, reject.”

99

Proof 2: SUBSET-SUM is in NP

SUBSET-SUM = {(S,t)| S = {z1,...,xx}, and for some
,..., T}, we have Xy; = t}

To prove a lang is in NP, create either:
- Deterministic poly time verifier
- Nondeterministic poly time decider

r

1.

3.

ALTERNATIVE PROOF We can also prove this theorem by giving a nonde-
terministic polynomial time Turing machine for SUBSET-SUM as follows.

N = “On input (5, t):

Nondeterministically select a subset ¢ of the numbers in S.

Runtime?

2. ‘Test whether c is a collection of numbers that sum to ¢.
If the test passes, accept; otherwise, reject.”

. 101)

COMPOSITES = {z| x = pq, for integers p,q > 1}

« A composite number is not prime

« COMPOSITES is polynomially verifiable
e i.e, it'sin NP
* |.e, factorability is in NP

A certificate could be:
« Some factor that is not 1

» Checking existence of factors (or not, i.e., testing primality) ...
* ...1s also poly time
» But only discovered recently (2002)!

One of the Greatest unsolved

B Question: Does P = NP?

PATH

/ NP
2

\

???/ CLIOUE
/ HAMPATH
COMPOSITES

How do you prove an algorithm doesn’t have a poly time algorithm?
(in general it's hard to prove that something doesn't exist)

Implications if P = NP

Every problem with a “brute force” solution
also has an efficient solution

.e., “unsolvable” problems are “solvable”

BAD:

» Cryptography needs unsolvable problems
« Near perfect Al learning, recognition

GOOD: Optimization problems are solved

« Optimal resource allocation could fix all the
world’s (food, energy, space ...) problems?

Who doesn't like niche NP jokes?

AN ENGINEER, A PUYSICIST,

AND A MATHEMATICIAN ARE
ROOMMATES AND ARE
MQVING TO A NEW PLACE.

AS THE MOVER PULLS UP, THE
MATHEMATICIAN WORRIES
THERE I1SN'T ENOQUGH ROOM.

THE MOVER REASSURES THEM.

THE ENGINEER SAYS...

I BEEN AT THIS 30 YEARS.

I CAN LOOK AT ANY AMOUNT
OF STUFE AND INSTANTLY
TELL YA IF 1T CAN FIT IN THE
MOVING BING.

\V 0 THE;ROO':/T

IT'S OBVIOUS |T CAN FIT.
ANYTHING THAT DOESN'T GO
IN THE BINS CAN BE TAPED

g

THE PUYSICIST GAYS..

THE MATHEMATICIAN SAYS..

IT'S OBVIOLS IT CAN FIT. IF
T WERE THE DENSITY OF A
NEUTRON STAR, QUR STUFF
WOQULD BE THE &GIZE OF A
BASEBALL

Progress on whether P=NP 7

* Some, but still not close

b 2 NP The Status of the P Versus NP Problem

By Lance Fortnow
Scott Aaronson® Communications of the ACM, September 2009, Vol. 52 No. 9, Pages 78-86
10.1145/1562164.1562186

« One important concept discovered:
 NP-Completeness

NP-Completeness

Must look at DEFINITION

all langs, can't
just look at a

single lang 1. Bisin NP, and | easy
2. every A in NP is polynomial time reduciblesto B.| hard????

A language B is NP-complete it it satisties two conditions:

* How does this help the P = NP problem? | what's this?

THEOREM = e s

It B is NP-complete and B € P, then P = NP.

Check-in Quiz 11/10

On gradescope

