UMB CS 622

NP-Completeness
Monday, November 15, 2021 e

EMBEDDING NP-(OMPLETE PROBLEMS IN RESTAURANT ORDERS

WED LIKE EXACTLY $15. 05

WORTH OF APPETIZERS, PLEASE.
<« APPENZERS —— | - EXACTLY? UM
MIXED FRUIT 2.15 HERE, THESE PAPERS ON THE KNAPSACK )

PROBLEM MIGHT HELP YOU OUT.
FRENCH FRIES 275 \ LISTEN, T HAVE Six OTHER
IDE 5ALAD 235 TABLES TO GET TO—
~AS FAST AS POSSIRLE, OF (OURSE. WANT
HOT WINGS 5.55; SOMETHING ON TRAVELING SALESNAN? /

MozzaREup STIRS 420

5.80 \\
MR PATE 5 ﬁ—-%ob%{

— SANDWICHES ~— ‘]

L BT




Arnoancements
« HW8 due Wed 11:59pm

e Good HW discussions on Piazza



last Tine: \NETITIETS, FOrmally

PATH = {(G, s,t)| G 1s a directed graph that has a directed path from s to ¢}
|

An alternate way to define a extra argument:

decidable language can be any string that helps
to find a result in poly time
(is often just a result itself)

A verifier for a language A is an ‘flgorithm V, where
A = {w| V accepts (w, ¢) for some string cL. certificate, or proof

We measure the time of a verifier only in terms of the length of w,
so a polynomial time verifier runs in polynomial time in the length

of w. A language A is polynomially verifiable if it has a polynomial
time verifier.

 Cert c has length at most n*, where n = length of w



Last Tive: THe class NP

DEFINITION

NP is the class of languages that have polynomial time verifiers. 2 ways to Sh.OV.V that
a language Is In NP

T EIEGREIM e unaussumessasansaseas s ass ansa anaa s s s aun s ansan s | AR AR R R an R mnma e

A language is in NP iff it is decided by some nondeterministic polynomial time
Turing machine.



Last Tive: NP Problems

e CLIQUE = {(G, k)| G 1s an undirected graph with a k-clique}
* A clique is a subgraph where every two nodes are connected

* A k-clique contains k nodes <t i T

set

sum O @

o« SUBSET-SUM = {(S,t)| S ={x1,...,xr}, and for some

subset

—{y1,...,u} CH{z1,..., 21}, we have Xy; = t}—

sum

« Some subset of a set of numbers S must sum to a total ¢

- eg, ({4,

11,16,]21

.27}, 25) € SUBSET-SUM

14



Theorem: SUBSET-SUM is in NP

SUBSET-SUM = {(S,t)| S = {z1,..., 7}, and for some
{ylﬁ"'7yl} g {I:[}'-*;Ik}: we hﬂve Eyt :f}

PROOF IDEA The subsetis the certificate.

To prove a lang is in NP, create either:
- Deterministic poly time verifier
- Nondeterministic poly time decider

PROOF The following is a verifier V for SUBSET-SUM.
V' = “On input ((S, 1), ¢):

1. Test whether ¢ is a collection of numbers that sum to ¢.

2. Test whether S contains all the numbers in c.
3. Ifboth pass, accept; otherwise, reject.”

Does this run
in poly time?

115




Proof 2:  SUBSET-SUM is in NP

SUBSET-SUM = {<8t>| S = {3;1’ L :-Tk:}, and for some
{y1’°"79£} g {I]_T"°JI,E.;}: we hﬂVE Eyt :f}

To prove a lang is in NP, create either:
- Deterministic poly time verifier
- Nondeterministic poly time decider

r S

| ALTERNATIVE PROOF  We can also prove this theorem by giving a nonde-
terministic polynomial time Turing machine for SUBSET-SUM as follows. I

| N =“On input (S,1): |

Nondeterministically 1. Nondeterministically select a subset ¢ of the numbers in S. ?nOSZS] ,Ijn:l;r;

runs the verifier many 2. ’Test whether c is a collection of numbers that sum to ¢. |
times in parallel 3. If the test passes, accept; otherwise, reject.”

. "}




Last [ime: NP VS P

P The class of languages that have a deterministic poly time decider

.e., the class of languages that can be solved “quickly”
« We want search problems to be in here ... but they often are not

NP The class of languages that have a deterministic poly time verifier

Also, the class of languages that have a nondeterministic poly time decider

.e., the class of language that can be verified “quickly”
« Search problems, even those not in P, are often in here




One of the Greatest unsolved

B Question: Does P = NP?

o
chizgaybe wiy/ge CLIQUE

d tomofrow 27,

/  HAMPATH
, d/'scol/ere ) COMPOSITES

Proving P # NP is hard: how do you prove that an algorithm

won't ever have a poly time solution?
(in general, it's hard to prove that something doesn't exist)




Not Much Progress on whether P=NP 7

The Status of the P Versus NP Problem

By Lance Fortnow o
Communications of the ACM, September 2009, Vol. 52 No. 9, Pages 78-86 : 3
10.1145/1562164.1562186

LANCE FORTNOW

« One important concept:
 NP-Completeness

119



NP-Completeness

DEFINITION

A language B is NP-complete it it satisfies two conditions:

1S 1 eas
Must prove for all 1. Bisin NP, and y

langs, not just a 2. every A in NP is polynomial time reduciblesto B.| hard????
single language

« How does this help the P = NP problem? | what's this?

THEOREM = e s

It B is NP-complete and B € P, then P = NP.



tastback: Mapping Reducibility

Language A is mapping reducible to language B, written A <., B,
if there is a computable function f: ¥* — ¥* where for every w,

Arm = {{M,w)| M isa TM and M acce

w e A< f(w) € B. IMPORTANT: “if and only if” ...

The function f is called the reduction from A to B| To show mapping reducibility:

1. create computable fn

... Means

2. and then show forward direction
3. and reverse direction
(or contrapositive of forward direction)

A <m

B

A function f: ¥X*— X" is a computable function if some Turing
machine M, on every input w, halts with just f(w) on its tape.



Polynomial Time Mapping Reducibility

Language A is mapping reducible to language B, written A <., B,
if there is a computable function f: ¥*— ¥* where for every w,

w e A<+ f(w) € B.
The function f is called the reduction from A to B.

Language A is polynomial time mapping reducible, or simply poly-
nomial time reducible, to language B, written A <p B, if a polyno-
mial time computable function f: >*— >* exists, where for every
w,

weE A <— f(w) c B. Don't forget: “if and only if” ...

The function f is called the polynomial time reduction of A to B.

oly time oly time
A function f: X*— X*is agcomputable function 1Psome Turmg
machine M, on every input w, halts with just f(w) on its tape



Flastback If A <., B and B is decidable, then A is decidable.

Has a decider

PROOF We let M be the decider for B and f be the reduction from A to B.
We describe a decider NV for A as follows.

N = “On input w:
1. Compute f(w).
decides| 2. Run M on input f(w) and output whatever M outputs.”

decides

This proof only works because of the if-and-only-if requirement

Language A is mapping reducible to language B, written A <., B,
if there is a computable function f: ¥* — 3%, where for every w,

we A<= f(w) € B,

The function f is called the reduction from A to B.




e ¥ c¥
Thm: IfA gml_)B and B rs—deetrdable; then A 1s-deetdable-

PROOF We let M be the decider for B and f be the reduction from A to B.
We describe a decider IV for A as follows.

N = “On input w:
1. Compute f(w).
2. Run M on input f(w) and output whatever M outputs.”

Language A is mapping reducible to language B, written A <., B,
if there is a computable function f: ¥* — 2*, where for every w,

we A<= f(w) € B.

The function f is called the reduction from A to B.




c? c?¥
Thm: IfA gml_)B and B rsdeetdable; then A 1is-deeidable:

oly time oly time
PROOF Welet M be tht—"-Adecider for B and f be th%educdon from A to B.
We describe &lecider N for A as follows.
poly time

“On input w:

N =
1. Compute f(w).
2. Run ﬂ/{ on input f(w) and output whatever M outputs.”

f
poly time |
Language A igynapping reducible to language B, written A <, B,
; if there is a computable function f: ¥* — 3%, where for every w,
* ° 127
The function f is called the reduction from A to B.




Theorem: 3SAT is polynomial time reducible to CLIQUE.




last Chase:  CLIQUE 1s in NP j/ QCE Q
CLIQUE = {(G, k)| G is an undirected graph with a k-clique}

PROOF IDEA 'The clique is the certificate.

PROOF The following is a verifier V' for CLIQUE.

V = “On mput ((G, k), c):
1. Test whether c is a subgraph with & nodes in G.
2. 'Test whether G contains all edges connecting nodes in c.
3. If both pass, accept; otherwise, reject.”

132



Theorem: 3SAT is polynomial time reducible to CLIQUE.




Boolean Formulas

Value TRUE or FALSE (or 1 or 0) TRUE, FALSE

136



Boolean Formulas

Value TRUE or FALSE (or 1 or 0) TRUE, FALSE
Variable Represents a Boolean value X, Y, Z

137



Boolean Formulas

Value TRUE or FALSE (or 1 or 0) TRUE, FALSE
Variable Represents a Boolean value X, Y, Z
Operation Combines Boolean variables AND, OR, NOT (A, V, and —)

138



Boolean Formulas

Value TRUE or FALSE (or 1 or 0) TRUE, FALSE
Variable Represents a Boolean value X, Y, Z
Operation Combines Boolean variables AND, OR, NOT (A, V, and —)

Formula ¢ Combines vars and operations (TAyY) V (xAZ)

139



Boolean Satisfiability

* A Boolean formula is satisfiable if ...

. ... there is some assigsnment of TRUE or FALSE (1 or 0) to its
variables that makes the entire formula TRUE

e |Is (TAy) V (zAZ) satisfiable?
* Yes
 x = FALSE,

y = TRUE,
7z = FALSE



The Boolean Satisfiability Problem

SAT = {(¢)| ¢ is a satisfiable Boolean formula}
Theorem: SAT is in NP:

e Let n = the number of variables in the formula

Verifier:

On input <¢, c>, where c is a possible assignment of variables in ¢ to values:
« Accept If ¢ satisfies ¢

Running Time: O(n)

Non-deterministic Decider: I
On input <¢>, where ¢ is a boolean formula:

* Non-deterministically try all possible assignments in parallel

« Accept If any satisfy ¢ }

‘Running Time: Checking each assignment takes time 0O(n)




Theorem: 3SAT is polynomial time reducible to CLIQUE.




More Boolean Formulas

Value TRUE or FALSE (or 1 or 0) TRUE, FALSE
Variable Represents a Boolean value X, Y, Z
Operation Combines Boolean variables AND, OR, NOT (A, V, and —)

Formula ¢ Combines vars and operations (T N 'y) V (:1: N E)

143



More Boolean Formulas

Value TRUE or FALSE (or 1 or 0) TRUE, FALSE
Variable Represents a Boolean value X, Y, Z
Operation Combines Boolean variables AND, OR, NOT (A, V, and —)
Formula ¢ Combines vars and operations (TAyYy) V (xAZ)

Literal A var or a negated var T Or T.

144



More Boolean Formulas

Value TRUE or FALSE (or 1 or 0) TRUE, FALSE
Variable Represents a Boolean value X, Y, Z
Operation Combines Boolean variables AND, OR, NOT (A, V, and —)
Formula ¢ Combines vars and operations (TAyYy) V (xNZ)
Literal A var or a negated var T Or T.

Clause Literals ORed together (:1'31 VIoVIzV 334)

145



More Boolean Formulas

Value TRUE or FALSE (or 1 or 0) TRUE, FALSE
Variable Represents a Boolean value X, Y, Z
Operation Combines Boolean variables AND, OR, NOT (A, V, and —)
Formula ¢ Combines vars and operations (TAyYy) V (xNZ)
Literal A var or a negated var T Or T.
Clause Literals ORed together (:1'31 VIaVI3V 334)
Conjunctive Normal Form (CNF) Clauses ANDed together (1 VZ2 VT3 V) A (23 VT5 V 26)

A =AND = “Conjunction”
V= OR ="“Disjunction”
- = NOT = “Negation”

146




More Boolean Formulas

" hmoolean | s | campe

Value TRUE or FALSE (or 1 or 0) TRUE, FALSE
Variable Represents a Boolean value X, Y, Z
Operation Combines Boolean variables AND, OR, NOT (A, V, and —)
Formula ¢ Combines vars and operations (TAyYy) V (xAZ)
Literal A var or a negated var T Or T.
Clause Literals ORed together (:1'31 VIaVI3V 334)
Conjunctive Normal Form (CNF) Clauses ANDed together (1 VZ2 VT3 V) A (23 VT5 V 26)
3CNF Formula Three literals in each clause  (z1 V@ vas) A (23 VIS Vag) A (a3 VTGV ag)

A =AND = “Conjunction”
V= OR ="“Disjunction”
- = NOT = “Negation”

147




The 3SAT Problem

3SAT = {(¢)| ¢ is a satistiable 3cnf-formula}



Theorem: SAT Is Poly Time Reducible to 3SAT

SAT = {(®)| ¢ is a satisfiable Boolean formula} e * 3SAT = {{(¢)| ¢ is a satishable 3cnf-formula}

To show poly time mapping reducibility:
1. create computable fn f,
2. show that it runs in poly time,
3. then show forward direction of mapping red.,
= if ¢ € SAT, then f{¢p) € 3SAT
4. and reverse direction
& if fl¢p) € 3SAT, then ¢ € SAT
(or contrapositive of forward direction)
& (alternative) if ¢ & SAT, then f(¢p) & 3SAT




Theorem: SAT Is Poly Time Reducible to 3SAT

A B
;
SAT = {(¢)| ¢ is a satisfiable Boolean formul%SAT = {(¢)| ¢ is a satisfiable 3cnf-formula}
f

— T
. .

Need: poly time computable fn converting a Boolean formula ¢ to 3CNF:

1. Convert ¢ to CNF (an AND of OR clauses)

a) Use DeMorgan’s Law to push negations onto literals
2(PVQ) <= (-P)A(-Q) (PAQ) <= (-P)V(-Q)

b) Distribute ORs to get ANDs outside of parens
(PV(QAR)) = (PVQ)A(PVR)| om)

2. Convert to 3CNF by adding new variables
(ayVasVasVay) < (@1VaxVz)A(ZVasVay)

Remaining step: show
iff relation holds ...

O(n)

O(n)

... easy for formula
conversion: each
step is already a

known “law”



heorem: 3SAT is polynomial time reducible to CLIQUE.

3SAT = {(¢)| ¢ is a satisfiable 3cnf-formula} CLIQUE = {(G, k)| G is an undirected graph with a k-clique}

To show poly time mapping reducibility:
1. create computable fn,

2. show that it runs in poly time,

3. then show forward direction of mapping red.
4. and reverse direction

(or contrapositive of forward direction)




heorem: 3SAT is polynomial time reducible to CLIQUE.

3SAT = {(¢)| ¢ is a satisfiable 3cnf-formula} CLIQUE = {(G, k)| G is an undirected graph with a k-clique}

Need: poly time computable fn converting a 3cnf-formula ... Example:
o= (r1VayVizd) N (TYVT2VT) A (T V23 VT
« ...to a graph containing a clique:

» Each clause maps to a group of 3 nodes
« Connect all nodes except: —z

Runs in poly time:

« Contradictory nodes - # literals = 7
Don't forgetiff | Nodes in the same group # nodes (n)
= If ¢ € 3SAT - # edges poly in #
- Then each clause has a TRUE literal nodes 0(n?)

* Those are nodes in the clique!
e Fg,x,=0,x,=1

< If ¢ & 3SAT

« For any assignment, some clause must have a contradiction with another clause
« Then in the graph, some clause’s group of nodes won’t be connected to another group, preventing the clique




heorem: 3SAT is polynomial time reducible to CLIQUE.

A B
f

3SAT = {(¢)| ¢ is a satisfiable 3cnf-formula} CLIQUE = {(G, k)| G is an undirected graph with a k-clique}
-

 But this a single language reducing to another single language



NP-Completeness

DEFINITION

A language B is NP-complete it it satisfies two conditions:

1S 1 eas
Must prove for all 1. Bisin NP, and y

langs, not just a 2. every A in NP is polynomial time reducible to B. hard????
single language

It's very hard to prove NP-Completeness,
but only for first problem!

(Just like figuring out the first

. undecidable problem was hard!)
After we find one, then we use that problem

to prove other problems NP-Complete!
TH EOREM ................................................................................................................

It B is NP-complete and B <p C for C' in NP, then C' is NP-complete.



The Cook-Levin Theorem

The first NP-
Complete

problem
THEOREM -------------------

SAT is NP-complete. But it makes sense that every

problem can be reduced to it ...




The Cook-Levin Theorem

The Complexity of Theorem-Proving Procedures

1971

Summary

It is shown that any recognition
problem solved by a polynomial time-
bounded nondeterministic Turing
machine can be "reduced" to the pro-
blem of determining whether a given
propositional formula is a tautology.
Here "reduced" means, roughly speak-
ing, that the first problem can be
solved deterministically in polyno-
mial time provided an oracle 1is
available for solving the second.
From this notion of reducible,
polynomial degrees of difficulty are
defined, and it is shown that the
problem of determining tautologyhood
has the same polynomial degree as the

Stephen A. Cook

University of Toronto

certain recursive set of strings on
this alphabet, and we are interested
in the problem of finding a good
lower bound on its possible recog-
nition times. We provide no such
lower bound here, but theorem 1 will
give evidence that { tautologies} is

a difficult set to recognize, since
many apparently difficult problems
can be reduced to determining tau-
tologyhood. By reduced we mean,
roughly speaking, that if tauto-
logyhood could be decided instantly
(by an "oracle") then these problems
could be decided in polynomial time.
In order to make this notion precise,
we introduce query machines, which
are like Turing machines with oracles

Hard part

DEFINITION

SAT is NP-complete.

KPATKRHE COOBITEH T A

1973

VIHK 519.14

YHHUBEPCAJLHBIE 3AJTAYH MEPEROPA
o Ao Jdesun

B cratee PaccMATPHBAETCA HEeCHOIBRED H3IBECTHRIX MACCOBRIX 33789
«nepeﬁﬂpanro THOa® H O0KA3RBAETCH, YTO 3ITH .'ia,'],d'll.l MP‘}-]{II{] pPEllaTh JHlb
Jd Takoe BpeM#A, 3a RKOTOpOE MOMEHO pellaTh BOODINE AHWOBIE 347890 yHadaH-
HOI'0 THIIA.

Hocae YTOUHEeHHA NOHATHA AJATQPHTMA OELTIA AOEazaHa alropaTMHYeCEad Hepaape-
IMHMOCTL PAfJa KIaccHYecKHX MaccoBHIX npobieM (Hampumep, npolieM TossaecTBa ade-
MEHTOB TPYyO, roMeoMoppHocTH MHOTOODPa3dil, paspeuEMocT JAo(aHTOBHX YVpaBHeHRI
n gpyrax). Tes caMeiM DB CHAT BONPOC 0 HaXOEICHHH NPaKTHYecKoIo coocoda MX pe-
1IeHLH. U,’.T,,llal{n CyIIeCTBOBAHHE AITOpPHTMOEB [JId pelleHHA OPYVIHEX 3aja4d He CHEMaeT
JJsH HMX aHalorHYHOro BOUpOCca W3-3a aHTacTHIeckH odemoro ofbema paboTH, mpemmi-
CRIBACMOI0 9THMH AJArOpPHTMAME. Tarora CATYalUlld ¢ TAK HajblBaeMBIMH ﬂ{?[.lt"jﬂpﬂhlllﬂ Ja-
AagaMi: MUHHMHEzANEE Oyaessix Py, moMcka 0KA3aTEALCTB OrpAHHYCHHOR NAHHLL
BhIfCHeHH HEGMDP(i!H{)t}TL! rpaqma H IpYIrHMH, Bee atH 3amaun pPelllaTCH TPHBHAIbHBIMIL
ANTOPHTMAME, COCTOALIMME B [[L‘pl.‘ﬁl]]'_lE BCeX BOaMOEHOCTeH. OHARO 2TH AJATOPHTME Tpe-
ﬁ}'m’l‘ SECHOHEHIHAILHOT O BpeMEeHH ]]EfrCITI:l H ¥ MATCMATHROB CO0AILIOCH }'ﬁi.‘}li,l PHHE, 4T

A language B is NP-complete if it satisfies two conditions:

1. Bisin NP. and
——> 2. every A in NP is polynomial time reducible to B



Reducing every NP language to SAT

Some NP lang = {w | wis 7?7} SAT = {(®)| ¢ 1s a satisfiable Boolean formula}

How can we reduce some w to a Boolean
formula if we don’t know w???



Proving theorems about an entire class of langs?

We can still use general facts about the languages!

THEOREM ................................................................................................

E.Z., The class of regular languages is closed under the union operation.
PROOF uses the fact that every regular lang has an NFA accepting it

Let Ny = (Q1,%, 61, q1, F1) recognize Ay, and Proof (.:onstructs a union-
No = (Q2,%, 02, q2, F) recognize As. recognizing NFA from any two

general NFA descriptions
Construct N = (Q, 3, 6, qo, F') to recognize A; U As,.

e £.0, Acrcisa decidable language. Acrc = {(G,w)| G is a CFG that generates string w}

Proof uses the theorem that every CFG has a Chomsky Normal Form



What do we know about NP languages?

They are:

1. Verified by a deterministic poly time verifier

2. Decided by a nondeterministic poly time decider (NTM)

Let’s use this one




Flaskback NON-deterministic TMs

« Formally defined with states, transitions, alphabet ...

A Turing machine is a 7-tuple, (Q, 2,1, 9, qo. Gaccept; Greject), Where
Q, X, I are all finite sets and
1. @ is the set of states,
. X 1s the input alphabet not containing the blank symbol .,
. I is the tape alphabet, where u € I"'and X C T,
L0:Q xT'—P(Q x T x {L,R}) transition function,
. go € (@ 1s the start state,
. Qaccepr € @ 1s the accept state, and

] N W W N

« Qreject € @ 1 the reject state, where grejece 7 Gaceept-

« Computation can branch
« Each node in the tree represents a TM configuration

(
()

: f
101 1q701111

reject e ¢

B

- accept



thstback: TM Config = State + Head + Tape

q7
101151111uuu3...
10119701111
Textual
representation 1st char after state is

of “configuration” current head position



Flaskback NON-deterministic TMs

« Formally defined with states, transitions, alphabet ...

Idea: We don’t know the A Turing machine is a 7-tuple, (Q, 2,1, 9, qo. Gaccept; Greject), Where

. e . Q, X, I are all finite sets and
specific language or strings

in the language’ but ... 1. @ is the set of states,
2. ¥ is the input alphabet not containing the blank symbol .,
y 3. I' is the tape alphabet, where v € I'and X C T, (')
... we know those strings 4.6: Q xI'—P(Q x T x {L., R}) transition function, N Y
must have an accepting 5. qo € Q is the start state, (D' \,
sequence of configurations! 6. Gaccepe € Q is the accept state, and e
7. Greject € @ 1s the reject state, where Greject 7 Gaccept- 101 1(_;7011 11

reject e ¢

« Computation can branch ;-
« Each node in the tree represents a TM configuration Y

. . [} ° ® ° ’ ﬂCC‘-ept
 Transitions specify valid configuration sequences
q10000 == ug2000 mm) Lxq300 =) ux0g40 - — UXXXUaccept




Accepting config sequence = “Tableau”

# |go|wylws| ... |wylu| ... |u|# | start configuration ° |nput W = W1 Wn

# # | second configuration

« Assume configs start/end with #

nk

« Must have an accepting config

« At most nk configs
* (why?)

# # | n¥th configuration

nk

« Each config has length n*
* (why?)



Theorem: SAT is NP-complete

* Proof idea:
« Give an algorithm that reduces accepting tableaus to satisfiable formulas

* Thus every string in the NP lang will be mapped to a sat. formula

« and vice versa : :
Resulting formulas will have four

components:
¢C€H /\ ¢start A ¢m0ve /\ ¢accept




Tableau Terminology

A tableau cell has coordinate i;

* A cell has symbol:
seC=QUT U{#}

A # |qo |wqlwo

w

cell

¥ #

-
-

nk

start configuration

second configuration

n*th configuration

A Turing machine is a 7-tuple, (Q,X,T, 0, o, Gaccept, Greject), Where
Q, X, I are all finite sets and

I'=Q is the set of states,
2. ¥ is the input alphabet not containing the blank symbol .,

3.#F is the tape alphabet. whereu e "'and ¥ C T,
40: QxI'—P(@Qx T X {L R})e transition function,

5. qp € @ 1s the start state,
6. Gaceepr € @ is the accept state, and

7. Greject € @ 1 the reject state, Where Greject 7 Gaccept-



#|qo|wylwe| ... |Wy, u| ... | u|# | start configuration

second configuration

Formula Variables

A tableau cell has coordinate i; " \

* A cell has symbol:
seC=QUT U{#}

Use these variables to create ¢cell A Pstart /\ Pmove /\ Paccepe SUCh that: |
accepting tableau < satisfying assignment

- T K -

 For every ij,s create variable x; - e Acmm i el

: : L],S .
* i.e, one var for every possible A Turing mé o all four parts must be TRUE  [vhere

symbol/cell combination © % Tarea s For non-accepting tableau
1. Q is the « only one part must be FALSE

2. ¥ is the input alphabet not containing the blank symbol v,
3. I' 1s the tape alphabet. whereu e "'and ¥ C T,

* TOtal Varlables = 40: Q xI'—P(Q x T X {Iij})c transition function,
* # cells * # symbols = 5. gy € Q is the start state,
o nk* pk* |C| — 0(n2k) 6. Qaccepr € @ 1s the accept state, and

7. Greject € @ 1 the reject state, Where Greject 7 Gaccept-



Check-in Quiz 11/15

On gradescope



