Cook-Levin, and other NP-Complete Problems

Wednesday, November 17, 2021

Announcements

• HW 8 due tonight

- HW9 out tomorrow
 - Due after break: 11/28 11:59pm EST

Last Time: NP-Completeness

DEFINITION

A language B is NP-complete if it satisfies two conditions:

Must prove for <u>all</u> langs, not just a single language

1. B is in NP, and easy

 \rightarrow 2. every A in NP is polynomial time reducible to B.

hard????

It's only hard to prove the first NP-complete problem!

(Just like figuring out <u>the first</u> undecidable problem was hard!)

Last Time: The Cook-Levin Theorem

The first **NP**-Complete problem

 $SAT = \{ \langle \phi \rangle | \phi \text{ is a satisfiable Boolean formula} \}$

THEOREM

SAT is NP-complete.

But it makes sense that every problem can be reduced to it ...

Last Time: Reducing every NP lang to SAT

How can we reduce some w to a Boolean formula if we don't know w???

Accepting config sequence = "Tableau"

- input $w = w_1 ... w_n$
- Assume configs start/end with #
- Must have an accepting config
- At most n^k configs
 - (why?)
- Each config has length n^k
 - (why?)

Theorem: SAT is NP-complete

Proof idea:

- Create a reduction from accepting tableaus to satisfiable formulas
- And vice versa

Tableau Terminology

• A tableau <u>cell</u> has coordinate *i,j*

• A cell has <u>symbol</u>: $s \in C = Q \cup \Gamma \cup \{\#\}$

A **Turing machine** is a 7-tuple, $(Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$, where Q, Σ, Γ are all finite sets and

- $\mathbf{1.} Q$ is the set of states,
- **2.** Σ is the input alphabet not containing the *blank symbol* \Box ,
- **3.** Γ is the tape alphabet, where $\sqcup \in \Gamma$ and $\Sigma \subseteq \Gamma$,
- 4δ : $Q \times \Gamma \longrightarrow \mathcal{P}(Q \times \Gamma \times \{L, R\})_{e \text{ transition function}}$,
- **5.** $q_0 \in Q$ is the start state,
- **6.** $q_{\text{accept}} \in Q$ is the accept state, and
- 7. $q_{\text{reject}} \in Q$ is the reject state, where $q_{\text{reject}} \neq q_{\text{accept}}$.

Formula Variables

- A tableau <u>cell</u> has coordinate *i,j*
- A cell has <u>symbol</u>: $s \in C = Q \cup \Gamma \cup \{\#\}$

Resulting formulas will have four components:

 $\phi_{\text{cell}} \wedge \phi_{\text{start}} \wedge \phi_{\text{move}} \wedge \phi_{\text{accept}}$

Use these variables to create $\phi_{\text{cell}} \wedge \phi_{\text{start}} \wedge \phi_{\text{move}} \wedge \phi_{\text{accept}}$ such that: accepting tableau ⇔ satisfying assignment

 $||q_0||w_1||w_2|| \dots$

- For every *i,j,s* create <u>variable</u> $x_{i,i,s}$
 - i.e., one var for every possible symbol/cell combination
- Total variables =
 - # cells * # symbols =
 - $n^{k*} n^{k*} |C| = O(n^{2k})$

⇒ For <u>accepting tableau</u>:

A Turing m. • all four parts must be TRUE

 $Q, \Sigma, \Gamma \text{ are a} \Leftarrow \text{For } \underline{\text{non-accepting tableau}}$

1. Q is the • only one part must be FALSE

2. Σ is the input alphabet not containing the blank symbol \Box ,

3. Γ is the tape alphabet, where $\sqcup \in \Gamma$ and $\Sigma \subseteq \Gamma$,

 $4\delta: Q \times \Gamma \longrightarrow \mathcal{P}(Q \times \Gamma \times \{L, R\})_{e \text{ transition function}}$

5. $q_0 \in Q$ is the start state,

6. $q_{\text{accept}} \in Q$ is the accept state, and

7. $q_{\text{reject}} \in Q$ is the reject state, where $q_{\text{reject}} \neq q_{\text{accept}}$.

 $|w_n|$ \sqcup

start configuration

_{ject}), where

 $C = Q \cup \Gamma \cup \{\#\}$

"The following must be TRUE for <u>every</u> cell *i,j*"

"The variable for <u>one</u> *s* must be TRUE"

And only one variable for some s must be TRUE

i.e., **every cell** has a valid character

- ⇒ Does an <u>accepting tableau</u> correspond to a satisfiable (sub)formula?
 - **Yes**, assign $x_{i,i,s}$ = TRUE if it's in the tableau,
 - and assign other vars = FALSE
- ← Does a <u>non-accepting tableau</u> correspond to an unsatisfiable formula?
 - Not necessarily

nkth configuration

i.e., **tableau has** valid start config

- ⇒ Does an accepting tableau correspond to a satisfiable (sub)formula?
 - **Yes**, assign $x_{i,i,s}$ = TRUE if it's in the tableau,
 - and assign other vars = FALSE
- ← Does a <u>non-accepting tableau</u> correspond to an unsatisfiable formula?
 - Not necessarily

⇒ accepting tableau: **all four** must be TRUE ← <u>nonaccepting</u> tableau: **one** must be FALSE

$$\phi_{
m accept} = igvee_{1 \leq i,j \leq n^k} x_{i,j,q_{
m accept}}$$
 The state $q_{
m accept}$ must appear in some cell

i.e., **tableau has** valid accept config

- ⇒ Does an <u>accepting tableau</u> correspond to a satisfiable (sub)formula?
 - **Yes**, assign $x_{i,i,s}$ = TRUE if it's in the tableau,
 - and assign other vars = FALSE
- ← Does a <u>non-accepting tableau</u> correspond to an unsatisfiable formula?
 - **Yes,** because it wont have $q_{\rm accept}$

- Ensures that every configuration is <u>legal</u> according to the previous configuration and the TM's δ transitions
- Only need to verify every 2×3 "window"
 - Why?
 - Because in one step, only the cell at the head can change
- ullet E.g., if $\delta(q_1,\mathtt{b}) = \{(q_2,\mathtt{c},\! \mathtt{L}), (q_2,\!\mathtt{a},\! \mathtt{R})\}$
 - Which are <u>legal</u>?

⇒ accepting tableau: all four must be TRUE

i.e., all transitions are legal, according to δ fn

$$\phi_{\text{move}} = \bigwedge_{1 \leq i < n^k, \ 1 < j < n^k} \text{(the } (i, j)\text{-window is legal)}$$

i,j = upper center cell

$$\bigvee_{a_1,\ldots,a_6} \left(x_{i,j-1,a_1} \wedge x_{i,j,a_2} \wedge x_{i,j+1,a_3} \wedge x_{i+1,j-1,a_4} \wedge x_{i+1,j,a_5} \wedge x_{i+1,j+1,a_6} \right)$$

is a legal window

- ⇒ Does an <u>accepting tableau</u> correspond to a satisfiable (sub)formula?
 - **Yes**, assign $x_{i.i.s}$ = TRUE if it's in the tableau,
 - and assign other vars = FALSE
- ← Does a <u>non-accepting tableau</u> correspond to an unsatisfiable formula?
 - Not necessarily

$$\wedge \phi_{\mathrm{accept}}$$

i,j = upper

center cell

$$\phi_{\text{move}} = \bigwedge_{1 \le i < n^k, \ 1 < j < n^k} \text{(the } (i, j) \text{-window is legal)}$$

$$\bigvee_{a_1,\ldots,a_6} \left(x_{i,j-1,a_1} \wedge x_{i,j,a_2} \wedge x_{i,j+1,a_3} \wedge x_{i+1,j-1,a_4} \wedge x_{i+1,j,a_5} \wedge x_{i+1,j+1,a_6} \right)$$

is a legal window

- ⇒ Does an accepting tableau correspond to a satisfiable (sub)formula?
 - **Yes**, assign $x_{i,i,s}$ = TRUE if it's in the tableau,
 - and assign other vars = FALSE
- ← Does a <u>non-accepting tableau</u> correspond to an unsatisfiable formula?
 - Not necessarily

To Show Poly Time Mapping Reducibility ...

Language A is **polynomial time mapping reducible**, or simply **polynomial time reducible**, to language B, written $A \leq_P B$, if a polynomial time computable function $f: \Sigma^* \longrightarrow \Sigma^*$ exists, where for every w,

$$w \in A \iff f(w) \in B$$
.

The function f is called the **polynomial time reduction** of A to B.

To show poly time <u>mapping reducibility</u>:

- ✓ 1. create computable fn,
- **2.** show that it **runs in poly time**,
- ☑ 3. then show forward direction of mapping red.,
 - 4. and reverse direction
- **☑** (or contrapositive of forward direction)

• Number of cells = $O(n^{2k})$

$$\phi_{\text{cell}} = \bigwedge_{1 \le i, j \le n^k} \left[\left(\bigvee_{s \in C} x_{i,j,s} \right) \land \left(\bigwedge_{\substack{s,t \in C \\ s \ne t}} \left(\overline{x_{i,j,s}} \lor \overline{x_{i,j,t}} \right) \right) \right] \boxed{O(n^{2k})}$$

$$\phi_{\text{start}} = x_{1,1,\#} \wedge x_{1,2,q_0} \wedge$$

The variables in the start config, ANDed together

$$x_{1,3,w_1} \wedge x_{1,4,w_2} \wedge \ldots \wedge x_{1,n+2,w_n} \wedge \boxed{O(n^k)}$$
 $x_{1,n+3,\sqcup} \wedge \ldots \wedge x_{1,n^k-1,\sqcup} \wedge x_{1,n^k,\#}$

$$\phi_{\text{cell}} = \bigwedge_{1 \le i, j \le n^k} \left[\left(\bigvee_{s \in C} x_{i,j,s} \right) \land \left(\bigwedge_{\substack{s,t \in C \\ s \ne t}} \left(\overline{x_{i,j,s}} \lor \overline{x_{i,j,t}} \right) \right) \right] \boxed{O(n^{2k})}$$

$$\phi_{\text{start}} = x_{1,1,\#} \wedge x_{1,2,q_0} \wedge \\ x_{1,3,w_1} \wedge x_{1,4,w_2} \wedge \ldots \wedge x_{1,n+2,w_n} \wedge \boxed{O(n^k)}$$
$$x_{1,n+3,\sqcup} \wedge \ldots \wedge x_{1,n^k-1,\sqcup} \wedge x_{1,n^k,\#}$$

$$\phi_{
m accept} = igvee_{1 \leq i,j \leq n^k} x_{i,j,q_{
m accept}}$$
 The state $q_{
m accept}$ must appear in some cell

$$\phi_{\text{cell}} = \bigwedge_{1 \le i, j \le n^k} \left[\left(\bigvee_{s \in C} x_{i,j,s} \right) \land \left(\bigwedge_{\substack{s,t \in C \\ s \ne t}} \left(\overline{x_{i,j,s}} \lor \overline{x_{i,j,t}} \right) \right) \right] \boxed{O(\mathbf{n}^{2k})}$$

$$\phi_{\text{start}} = x_{1,1,\#} \wedge x_{1,2,q_0} \wedge \\ x_{1,3,w_1} \wedge x_{1,4,w_2} \wedge \ldots \wedge x_{1,n+2,w_n} \wedge \boxed{O(n^k)}$$
$$x_{1,n+3,\sqcup} \wedge \ldots \wedge x_{1,n^k-1,\sqcup} \wedge x_{1,n^k,\#}$$

$$\phi_{\text{accept}} = \bigvee_{1 \le i, j \le n^k} x_{i,j,q_{\text{accept}}} \qquad \boxed{\textit{O}(\mathbf{n}^{2k})}$$

$$\phi_{\text{move}} = \bigwedge_{1 \le i < n^k, \ 1 < j < n^k} \text{(the } (i, j) \text{-window is legal)} \qquad \boxed{O(n^{2k})}$$

Time complexity of the reduction $\frac{\text{Total}}{O(n^2k)}$

$$\phi_{\text{cell}} = \bigwedge_{1 \le i, j \le n^k} \left[\left(\bigvee_{s \in C} x_{i,j,s} \right) \land \left(\bigwedge_{\substack{s,t \in C \\ s \ne t}} \left(\overline{x_{i,j,s}} \lor \overline{x_{i,j,t}} \right) \right) \right] \quad O(n^{2k})$$

$$\phi_{\text{start}} = x_{1,1,\#} \wedge x_{1,2,q_0} \wedge$$

$$x_{1,3,w_1} \wedge x_{1,4,w_2} \wedge \ldots \wedge x_{1,n+2,w_n} \wedge$$

$$x_{1,n+3,\sqcup} \wedge \ldots \wedge x_{1,n^k-1,\sqcup} \wedge x_{1,n^k,\#}$$

$$0(\mathbf{n}^k)$$

$$\phi_{\text{accept}} = \bigvee_{1 \le i, j \le n^k} x_{i,j,q_{\text{accept}}}$$
 $O(n^{2k})$

$$\phi_{\text{move}} = \bigwedge_{1 \le i < n^k, \ 1 < j < n^k} \text{(the } (i, j) \text{-window is legal)} \qquad O(n^{2k})$$

To Show Poly Time Mapping Reducibility ...

Language A is **polynomial time mapping reducible**, or simply **polynomial time reducible**, to language B, written $A \leq_P B$, if a polynomial time computable function $f: \Sigma^* \longrightarrow \Sigma^*$ exists, where for every w,

$$w \in A \iff f(w) \in B$$
.

The function f is called the **polynomial time reduction** of A to B.

To show poly time <u>mapping reducibility</u>:

- ✓ 1. create computable fn,
- ☑ 2. show that it runs in poly time,
- ☑ 3. then show forward direction of mapping red.,
 - 4. and reverse direction
- **✓** (or contrapositive of forward direction)

QED: SAT is NP-complete

DEFINITION

A language B is NP-complete if it satisfies two conditions:

 \checkmark 1. B is in NP, and

 \checkmark 2. every A in NP is polynomial time reducible to B.

 $SAT = \{ \langle \phi \rangle | \phi \text{ is a satisfiable Boolean formula} \}$

 $\phi_{\text{cell}} \wedge \phi_{\text{start}} \wedge \phi_{\text{move}} \wedge \phi_{\text{accept}}$

Now it will be much easier to prove that other languages are NP-complete!

known

unknown

<u>Key Thm</u>: If B is NP-complete and $B \leq_{\mathrm{P}} C$ for C in NP, then C is NP-complete.

To use this theorem, C must be in **NP**

Proof:

- Need to show: C is NP-complete:
 - it's in NP (given), and
 - every lang A in NP reduces to C in poly time (must show)
- For every language A in NP, reduce $A \rightarrow C$ by:
 - First reduce $A \rightarrow B$ in poly time
 - Can do this because B is NP-Complete
 - Then reduce $B \rightarrow C$ in poly time
 - This is given

• <u>Total run time</u>: Poly time + poly time = poly time

DEFINITION

A language B is NP-complete if it satisfies two conditions:

- **1.** B is in NP, and
- **2.** every A in NP is polynomial time reducible to B.

If you're not Stephen Cook or Leonid Levin, use this theorem to prove a language is NP-complete THEOREM

<u>Using</u>: If B is NP-complete and $B \leq_{\mathbf{P}} C$ for C in NP, then C is NP-complete.

3 steps to prove a language C is NP-complete:

- 1. Show *C* is in **NP**
- 2. Choose *B,* the **NP**-complete problem to reduce from
- 3. Show a poly time mapping reduction from B to C

To show poly time <u>mapping reducibility</u>:

- 1. create computable fn,
- 2. show that it runs in poly time,
- 3. then show forward direction of mapping red.,
- 4. and reverse direction (or contrapositive of forward direction)

THEOREM

<u>USing</u>: If B is NP-complete and $B \leq_{\mathbf{P}} C$ for C in NP, then C is NP-complete.

3 steps to prove a language C is NP-complete:

- 1. Show C is in NP
- 2. Choose B, the NP-complete problem to reduce from
- 3. Show a poly time mapping reduction from B to C

Example:

Let *C* = *3SAT*, to prove *3SAT* is **NP**-Complete:

1. Show *3SAT* is in **NP**

Flashback, 3SAT is in NP

 $3SAT = \{\langle \phi \rangle | \phi \text{ is a satisfiable Boolean formula}\}$

Let n =the number of variables in the formula

Verifier:

On input $\langle \phi, c \rangle$, where c is a possible assignment of variables in ϕ to values:

• Accept if c satisfies ϕ

Running Time: O(n)

Non-deterministic Decider:

On input $\langle \phi \rangle$, where ϕ is a boolean formula:

- Non-deterministically try all possible assignments in parallel
- Accept if any satisfy ϕ

Running Time: Checking each assignment takes time O(n)

THEOREM

<u>Using</u>: If B is NP-complete and $B \leq_{\mathbf{P}} C$ for C in NP, then C is NP-complete.

3 steps to prove a language is NP-complete:

- 1. Show *C* is in **NP**
- 2. Choose B, the NP-complete problem to reduce from
- 3. Show a poly time mapping reduction from B to C

Example:

Let C = 3SAT, to prove 3SAT is **NP-Complete**:

- ✓ 1. Show *3SAT* is in **NP**
- \square 2. Choose B, the NP-complete problem to reduce from: SAT
 - 3. Show a poly time mapping reduction from *SAT* to *3SAT*

Flashback: SAT is Poly Time Reducible to 3SAT

<u>Need</u>: poly time <u>computable fn</u> converting a Boolean formula ϕ to 3CNF:

1. Convert ϕ to CNF (an AND of OR clauses)

Remaining step: show iff relation holds ...

a) Use DeMorgan's Law to push negations onto literals

$$\neg (P \lor Q) \iff (\neg P) \land (\neg Q) \qquad \neg (P \land Q) \iff (\neg P) \lor (\neg Q) \qquad O(\mathbf{n})$$

b) Distribute ORs to get ANDs outside of parens

$$(P \lor (Q \land R)) \Leftrightarrow ((P \lor Q) \land (P \lor R))$$
 $O(n)$

2. Convert to 3CNF by adding new variables

$$(a_1 \vee a_2 \vee a_3 \vee a_4) \Leftrightarrow (a_1 \vee a_2 \vee z) \wedge (\overline{z} \vee a_3 \vee a_4) \bigcirc (n)$$

... easy for formula conversion: each step is already a known "law"

THEOREM

<u>USing</u>: If B is NP-complete and $B \leq_{\mathbf{P}} C$ for C in NP, then C is NP-complete.

3 steps to prove a language is NP-complete:

- 1. Show C is in NP
- 2. Choose B, the NP-complete problem to reduce from
- 3. Show a poly time mapping reduction from B to C

Example:

Let C = 3SAT, to prove 3SAT is **NP-Complete**:

- ✓ 1. Show 3SAT is in NP
- \square 2. Choose B, the NP-complete problem to reduce from: SAT
- ☑3. Show a poly time mapping reduction from SAT to 3SAT

Each NP-complete problem we prove makes it easier to prove the next one!

THEOREM

<u>Using</u>: If B is NP-complete and $B \leq_{\mathbf{P}} C$ for C in NP, then C is NP-complete.

3 steps to prove a language is NP-complete:

- 1. Show C is in NP
- 2. Choose B, the NP-complete problem to reduce from
- 3. Show a poly time mapping reduction from B to C

Example:

Let C = 3SAT CLIQUE, to prove 3SAT CLIQUE is NP-Complete:

- ?1. Show 3SAT CLIQUE is in NP
- ?2. Choose *B,* the **NP**-complete problem to reduce from *SAT-3SAT*
- ?3. Show a poly time mapping reduction from B to C

CLIQUE is in NP

 $CLIQUE = \{\langle G, k \rangle | G \text{ is an undirected graph with a } k\text{-clique}\}$

PROOF IDEA The clique is the certificate.

Let n = # nodes in G

c is at most n

PROOF The following is a verifier V for CLIQUE.

V = "On input $\langle \langle G, k \rangle, c \rangle$:

- **1.** Test whether c is a subgraph with k nodes in G.
- 2. Test whether G contains all edges connecting nodes in c.
- 3. If both pass, accept; otherwise, reject."

For each node in c, check whether it's in $G: O(n^2)$

For each pair of nodes in c, check whether there's an edge in G: $O(n^2)$

Flashback:

3SAT is polynomial time reducible to CLIQUE.

Need: poly time computable fn converting a 3cnf-formula ...

Example: $\phi = (x_1 \vee x_1 \vee \overline{x_2}) \wedge (\overline{x_1} \vee \overline{x_2} \vee \overline{x_2}) \wedge (\overline{x_1} \vee x_2 \vee \overline{x_2})$

• ... to a graph containing a clique:

Each clause maps to a group of 3 nodes

Connect all nodes <u>except</u>:

 Contradictory nodes Nodes in the same group Don't forget iff

 \Rightarrow If $\phi \in 3SAT$

- Then each clause has a TRUE literal
 - E.g., $x_1 = 0$, $x_2 = 1$

 \Leftarrow If $\phi \notin 3SAT$

- For any assignment, some clause must have a contradiction with another clause
- Then in the graph, some clause's group of nodes won't be connected to another group, preventing the clique

- # literals = O(n)# nodes
- # edges poly in # nodes

 $O(n^2)$

THEOREM

<u>Using</u>: If B is NP-complete and $B \leq_{\mathbf{P}} C$ for C in NP, then C is NP-complete.

3 steps to prove a language is NP-complete:

- 1. Show C is in NP
- 2. Choose B, the NP-complete problem to reduce from
- 3. Show a poly time mapping reduction from *B* to *C*

Example:

Let C = 3SAT CLIQUE, to prove 3SAT CLIQUE is NP-Complete:

- **☑**1. Show *3SAT-CLIQUE* is in **NP**
- \square 2. Choose B, the NP-complete problem to reduce from: SAT-3SAT
- \square 3. Show a poly time mapping reduction from B to C

NP-Complete problems, so far

- $SAT = \{\langle \phi \rangle | \phi \text{ is a satisfiable Boolean formula} \}$ (Cook-Levin Theorem)
- $3SAT = \{\langle \phi \rangle | \phi \text{ is a satisfiable 3cnf-formula} \}$ (reduced *SAT* to *3SAT*)

• $CLIQUE = \{\langle G, k \rangle | G \text{ is an undirected graph with a } k\text{-clique}\}$ (reduced 3SAT to CLIQUE)

Each NP-complete problem we prove makes it easier to prove the next one!

Flashback: The HAMPATH Problem

 $HAMPATH = \{\langle G, s, t \rangle | G \text{ is a directed graph}$ with a Hamiltonian path from s to $t\}$

• A Hamiltonian path goes through every node in the graph

- Exponential time (brute force) algorithm:
 - Check all possible paths and see if any connect s and t using all nodes $O(n^n)$
- Polynomial time algorithm:
 - We don't know if there is one!!!
- The **Verification** problem:
 - Still $O(n^2)$!
 - HAMPATH is polynomially verifiable, but not polynomially decidable
 - i.e., It's in in NP but not known to be in P

 $HAMPATH = \{\langle G, s, t \rangle | G \text{ is a directed graph}$ with a Hamiltonian path from s to $t\}$

THEOREM -----

<u>USing</u>: If B is NP-complete and $B \leq_{\mathbf{P}} C$ for C in NP, then C is NP-complete.

3 steps to prove a language is NP-complete:

- 1. Show *C* is in **NP**
- 2. Choose B, the NP-complete problem to reduce from
- 3. Show a poly time mapping reduction from B to C

 $HAMPATH = \{\langle G, s, t \rangle | G \text{ is a directed graph}$ with a Hamiltonian path from s to $t\}$

To prove *HAMPATH* is **NP**-complete:

- **☑1.** Show *HAMPATH* is in **NP** (in HW9)
- ? 2. Choose B, the NP-complete problem to reduce from 3SAT
 - 3. Show a poly time mapping reduction from B to HAMPATH

 $HAMPATH = \{\langle G, s, t \rangle | G \text{ is a directed graph}$ with a Hamiltonian path from s to $t\}$

To prove *HAMPATH* is **NP**-complete:

- **☑1.** Show *HAMPATH* is in **NP** (in HW9)
- \square 2. Choose *B*, the **NP**-complete problem to reduce from *3SAT*
- ? 3. Show a poly time mapping reduction from 3SAT to HAMPATH

??

To show poly time <u>mapping reducibility</u>:

- 1. create computable fn,
- 2. show that it runs in poly time,
- 3. then show forward direction of mapping red.,
- 4. and reverse direction (or contrapositive of forward direction)

Computable Fn: Formula (blue) → Graph (orange)

Example input: $\phi = (a_1 \lor b_1 \lor c_1) \land (a_2 \lor b_2 \lor c_2) \land \cdots \land (a_k \lor b_k \lor c_k)$ k = # clauses

- Clause \rightarrow (extra) single nodes, Total = k
- Variable → diamond-shaped graph "gadget"
 - Clause → 2 "connector" nodes + separator
 - Total = 3k+1 "connector" nodes per "gadget"

<u>Computable Fn</u>: Formula (blue) → Graph (orange)

Example input: $\phi = (a_1 \lor b_1 \lor c_1) \land (a_2 \lor b_2 \lor c_2) \land \cdots \land (a_k \lor b_k \lor c_k)$ k = # clauses

- Clause \rightarrow (extra) single nodes, Total = k
- Variable → diamond-shaped graph "gadget"
 - Clause → 2 "connector" nodes + separator
 - Total = 3k+1 "connector" nodes per "gadget"
- Lit x_i in clause $c_j \rightarrow c_j$ node edges in gadget x_i
- Lit $\overline{x_i}$ in clause $c_i \rightarrow c_j$ edges in gadget x_i (rev)

 $HAMPATH = \{\langle G, s, t \rangle | G \text{ is a directed graph}$ with a Hamiltonian path from s to $t\}$

To prove *HAMPATH* is **NP**-complete:

- ✓ 1. Show HAMPATH is in NP
- \square 2. Choose *B*, the **NP**-complete problem to reduce from *3SAT*
- ? 3. Show a poly time mapping reduction from 3SAT to HAMPATH

- 1. create computable fn,
- 2. show that it runs in poly time,
- 3. then show forward direction of mapping red.,
- 4. and reverse direction (or contrapositive of forward direction)

Polynomial Time?

ΓΟΤΑL: Ο(**k**²)

Example input: $\phi = (a_1 \lor b_1 \lor c_1) \land (a_2 \lor b_2 \lor c_2) \land \cdots \land (a_k \lor b_k \lor c_k)$ k = # clauses = at most 3k variables

- Clause \rightarrow (extra) single nodes \bigcirc \circ_i O(k)
- Variable \rightarrow diamond-shaped graph "gadget" $O(k^2)$
 - Clause → 2 "connector" nodes + separator
 - Total = 3k+1 "connector" nodes per "gadget"

- Lit x_i in clause $c_j \rightarrow c_j$ node edges in gadget x_i
- Lit $\overline{x_i}$ in clause $c_j \rightarrow c_j$ edges in gadget x_i (rev)

 $HAMPATH = \{\langle G, s, t \rangle | G \text{ is a directed graph } \}$ with a Hamiltonian path from s to t}

To prove *HAMPATH* is **NP**-complete:

- ✓ 1. Show HAMPATH is in NP
- \square 2. Choose B, the NP-complete problem to reduce from 3SAT
- ? 3. Show a poly time mapping reduction from 3SAT to HAMPATH

- 1. create computable fn,
- 2. show that it runs in poly time,
- 3. then show forward direction of mapping red.,
- 4. and reverse direction (or contrapositive of forward direction)

Want: Satisfiable 3cnf formula ⇔ graph with Hamiltonian path

⇒ If there is satisfying assignment, then Hamiltonian path exists

These hit all nodes except extra c_j s

 $x_i = \text{TRUE} \rightarrow \text{Hampath "zig-zags" gadget } x_i$

 $x_i = \text{FALSE} \rightarrow \text{Hampath "zag-zigs" gadget } x_i$

- Lit x_i makes clause c_j TRUE \rightarrow "detour" to c_j in gadget x_i
- Lit $\overline{x_i}$ makes clause c_j TRUE \rightarrow "detour" to c_j in gadget x_i

Now path goes through every node

Every clause must be TRUE so path hits all c_i nodes

• And edge directions align with TRUE/FALSE assignments

228

Summary: the only possible Ham. <u>path</u> is the one that corresponds to the satisfying assignment (described on prev slide)

<u>Want</u>: Satisfiable 3cnf formula \Leftrightarrow graph with Hamiltonian path

if output has Ham. path, then input had Satisfying assignment

- A Hamiltonian path must choose to either zig-zag or zag-zig gadgets Ham path can only hit "detour" c_i nodes by coming right back
- Otherwise, it will miss some nodes

gadget x_i "detours" from left to right $\rightarrow x_i = \text{TRUE}$

gadget x_i "detours" from right to left $\rightarrow x_i = \text{FALSE}$

 $HAMPATH = \{\langle G, s, t \rangle | G \text{ is a directed graph}$ with a Hamiltonian path from s to $t\}$

To prove *HAMPATH* is **NP**-complete:

- ✓ 1. Show HAMPATH is in NP
- \square 2. Choose *B*, the **NP**-complete problem to reduce from *3SAT*
- ☑3. Show a poly time mapping reduction from *3SAT* to *HAMPATH*

To show poly time <u>mapping reducibility</u>:

- 1. create computable fn,
 - 2. show that it runs in poly time,
 - **3.** then show **forward direction** of mapping red.,
 - 4. and reverse direction (or contrapositive of forward direction)

 $UHAMPATH = \{\langle G, s, t \rangle | G \text{ is a directed graph}$ with a Hamiltonian path from s to $t\}$

To prove *UHAMPATH* is **NP**-complete:

- ✓ 1. Show UHAMPATH is in NP
- 2. Choose the **NP**-complete problem to reduce from *HAMPATH*
 - 3. Show a poly time mapping reduction from ??? to UHAMPATH

 $UHAMPATH = \{\langle G, s, t \rangle | G \text{ is a directed graph}$ with a Hamiltonian path from s to $t\}$

To prove *UHAMPATH* is **NP**-complete:

- ✓ 1. Show *UHAMPATH* is in **NP**
- ☑ 2. Choose the **NP**-complete problem to reduce from *HAMPATH*
- → 3. Show a poly time mapping reduction from *HAMPATH* to *UHAMPATH*

 $UHAMPATH = \{\langle G, s, t \rangle | G \text{ is a directed graph } \}$

with a Hamiltonian path from s to t}

<u>Need</u>: Computable function from *HAMPATH* to *UHAMPATH* Naïve Idea: Make all directed edges undirected?

- Doesn't work!
- But we would create some paths that didn't exist before

 $UHAMPATH = \{\langle G, s, t \rangle | G \text{ is a directed graph } \}$

"out" edge

with a Hamiltonian path from s to t}

Need: Computable function from HAMPATH to UHAMPATH

Better Idea:

- Distinguish "in" vs "out" edges
- Nodes (directed) → 3 Nodes (undirected): in/mid/out
 - Connect in/mid/out with edges
 - Directed edge $(u, v) \rightarrow (u_{\text{out}}, v_{\text{in}})$
- Except: $s \rightarrow s_{\text{out}}$, $t \rightarrow t_{\text{in}}$ only

"in" edge

 $UHAMPATH = \{\langle G, s, t \rangle | G \text{ is a directed graph } \}$

with a Hamiltonian path from s to t}

Need: Computable function from HAMPATH to UHAMPATH

 \Rightarrow

• If there was a directed path s, v, t ...

• ... then there is an undirected path s_{out} , v_{in} , v_{mid} , v_{out} , t_{in}

 \Leftarrow

• If there was <u>no</u> directed path s, v, t ...

• ... then there is <u>no</u> undirected path s_{out} , v_{in} , v_{mid} , v_{out} , t_{in}

Because there will be a missing connection

NP-Complete problems, so far

- $SAT = \{\langle \phi \rangle | \phi \text{ is a satisfiable Boolean formula} \}$ (Cook-Levin Theorem)
- $3SAT = \{\langle \phi \rangle | \phi \text{ is a satisfiable 3cnf-formula} \}$ (reduce from SAT)

- $CLIQUE = \{\langle G, k \rangle | G \text{ is an undirected graph with a } k\text{-clique}\}$ (reduce from 3SAT)
- $HAMPATH = \{\langle G, s, t \rangle | G \text{ is a directed graph}$ with a Hamiltonian path from s to $t\}$
- $UHAMPATH = \{\langle G, s, t \rangle | G \text{ is a directed graph }$ with a Hamiltonian path from s to $t\}$

(reduce from 3SAT)

Check-in Quiz 11/17

On gradescope