Cook-Levin,

and other NP-Complete Problems
Wednesday, November 17, 2021




Arnoancements
« HW 8 due tonight

* HW9 out tomorrow
 Due after break: 11/28 11:59pm EST



last Time: NP-COmpleteness

DEFINITION

A language B is NP-complete it it satisfies two conditions:

1S 1 eas
Must prove for all 1. Bisin NP, and y

langs, not just a 2. every A in NP is polynomial time reducible to B. har
single language

d????

It's only hard to prove the first
NP-complete problem!

(Just like figuring out the first
undecidable problem was hard!)



Last Tive: THe COOk-Levin Theorem

SAT = is a satisfiable Boolean formula
The first NP- Lo 9 }

Complete

problem
THEOREM -------------------

SAT is NP-complete. But it makes sense that every

problem can be reduced to it ...
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last Time: Reducing every NP lang to SAT

Some NP lang = {w | wis 7?7} SAT = {(®)| ¢ 1s a satisfiable Boolean formula}

How can we reduce some w to a Boolean
formula if we don’t know w???



Accepting config sequence = “Tableau”

# |go|wylws| ... |wylu| ... |u|# | start configuration ° |nput W = W1 Wn

# # | second configuration

« Assume configs start/end with #

nk

« Must have an accepting config

« At most nk configs
* (why?)

# # | n¥th configuration

nk

« Each config has length n*
* (why?)



Theorem: SAT is NP-complete

Proof idea:

 Create a reduction from accepting tableaus to satisfiable formulas
« And vice versa




Tableau Terminology

A tableau cell has coordinate i;

* A cell has symbol:
seC=QUT U{#}

A # |qo |wqlwo

w

cell

¥ #

-
-

nk

start configuration

second configuration

n*th configuration

A Turing machine is a 7-tuple, (Q,X,T, 0, o, Gaccept, Greject), Where
Q, X, I are all finite sets and

I'=Q is the set of states,
2. ¥ is the input alphabet not containing the blank symbol .,

3.#F is the tape alphabet. whereu e "'and ¥ C T,
40: QxI'—P(@Qx T X {L R})e transition function,

5. qp € @ 1s the start state,
6. Gaceepr € @ is the accept state, and

7. Greject € @ 1 the reject state, Where Greject 7 Gaccept-



A #|qo|wylwe| ... |Wy, u| ... | u|# | start configuration

second configuration

Formula Variables

* A tableau cell has coordinate i,j L v
¥

Resulting formulas will have four
components:

* A cell has symbol: Breelll A Dzre A B A Pz
SEC=QUT U {#) I

Use these variables to create ¢cell A Pstart /\ Pmove /\ Paccepe SUCh that: |
accepting tableau < satisfying assignment

- T K -

 For every ij,s create variable x; = For accepting tableau:

: : L)S .
* I.e, one var for every possible A Turing mq « 3l four parts must be TRUE |ect); Where

symbol/cell combination @ % Taredl o For non-accepting tableau
1. Qisth( « only one part must be FALSE

2. ¥ is the input alphabet not containing the blank symbol v,
3. I' 1s the tape alphabet. whereu e "'and ¥ C T,

* To—tal Varlables = 40: @ xT'—P(Q x T X {L?R})C transition function,
e f cells * # sym bols = 5. gy € Q is the start state,
o nk* pk* |C| — 0(n2k) 6. Gaceepr € @ is the accept state, and

7. Greject € @ 1 the reject state, Where Greject 7 Gaccept-



w,] U [#] start configu = accepting tableau: all four must be TRUE
41| sccond configuestion - & nonaccepting tableau: one must be FALSE
I qbcell A ¢start A\ ¢move A\ ¢accept
f
— T
# h configu

C=QuUTIU({#}

been = /\ {(\/ x’i,j,s) A ( A (%‘,j,s\/iﬁi,j,t))]

1<4,j<nk

/

seC

AN

“The following “The variable
must be TRUE for one s must
for every cell ij” be TRUE”

s, teC

sF#t \

And only one
variable for some
s must be TRUE

l.e., every cell
has a valid
character

= Does an accepting tableau correspond to a satisfiable (sub)formula?
= TRUE if it's in the tableau,

* Yes, assign x;
« and assign other vars = FALSE

& Does a non-accepting tableau correspond to an unsatisfiable formula?

* Not necessarily
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wiwd .. fogu] ... Ju]#] surcconfiguration = accepting 'gableau: all four must be TRUE
I} second configurarion P |Z[ < nonaccepting tableau: one must be FALSE
qbcell A ¢start A\ ¢move A\ ¢accept
f
— T
# h configu

pam— For a string w, start config
Is always #qow; ... w,, ... #

The variables in /Cbstart = mlalafﬁéqo/\ \
the start config,

X N\ T N...\Nx A
ANDed together 1,8,w1 /A *1,4,w; 1,n+2,wn,

L1 n+3,u ANAVA\ L1, nk—1,0 A\ L1 nk # -
l.e., tableau has

valid start config

= Does an accepting tableau correspond to a satisfiable (sub)formula?
* Yes, assign x;;, = TRUE if it's in the tableau,
« and assign other vars = FALSE

& Does a non-accepting tableau correspond to an unsatisfiable formula?
* Not necessarily
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= accepting tableau: all four must be TRUE

# | second configuration [— nonaCCGDtinQ tableaUI One must be FALSE

M |
qbcell A ¢start A\ quove

./_———\\.
The state q,cep
Paccept = \/ Li,j,qaccepr<——{ MUSt appear in
1<i,j<nk some cell I

l.e., tableau has
valid accept config

= Does an accepting tableau correspond to a satisfiable (sub)formula?
* Yes, assign x;;, = TRUE if it's in the tableau,
« and assign other vars = FALSE

& Does a non-accepting tableau correspond to an unsatisfiable formula?
* Yes, because it wont have g,
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# g0 [wi[wa] . Jw[u] .. [u]#] starconfiguration = accepting 'gableau: all four must be TRUE
# # | second configurion & nonaccepting tableau: one must be FALSE[V]

! M M
e e Geell N Pstart N\ |Pmove |\ ¢accl:zel‘:pt

—_— S

* Ensures that e configuration Is legal according to the
previous configuratien and the TM’s 6 transitions

« Only need to verify every 2x3 “window”

« Why?

« Because Iin one step, only the cell at the head can change
° Eg, if 5(q17b) — {(QQ,C,L),(QQ,B.,R)}

- Which are legal? ToTs T T 72?1

(a) (b) —— © L
gzl alc aj|aljaqgs alal|b
# | b | a alb]| a b
(d) (e) (f)
# | bl a a|b|ge c




# # | n*th configuration

-— e —_—

e, all
transitions are
legal, according

todfn

1<i<nk, 1<j<nk

= accepting tableau: all four must be TRUE
& nonaccepting tableau: one must be FALSE[V]

! M M
Peell N Pstart /\/\ ¢acc|:zelzpt

Do = /\ (the (7, 7)-window is legal) ij = upper

center cell

\/ (26,591,010 N Tigiaz N Tigatas A Lidd,j—1,a0 N Titlj,as N ikl j+1,a5)

ay,...,a6
is a legal window

= Does an accepting tableau correspond to a satisfiable (sub)formula?

* Yes, assign x
« and assign other vars = FALSE

& Does a non-accepting tableau correspond to an unsatisfiable formula?

= TRUE if it's in the tableau,

LJ,S

* Not necessarily




Do = /\ (the (7, 7)-window is legal) ij = upper

1<i<nk, 1<j<nk

= accepting tableau: all four must be TRUE E[
& nonaccepting tableau: one must be FALSE[V]

M M M
Peell N\ Pstart \ Pmove /\ ¢acclzze[':pt

center cell

\/ (26,591,010 N Tigiaz N Tigatas A Lidd,j—1,a0 N Titlj,as N ikl j+1,a5)

ay,...,a6
is a legal window

= Does an accepting tableau correspond to a satisfiable (sub)formula?

* Yes, assign x
« and assign other vars = FALSE

& Does a non-accepting tableau correspond to an unsatisfiable formula?

LJ,S

* Not necessarily

= TRUE if it's in the tableau,




To Show Poly Time Mapping Reducibility ...

Language A is polynomial time mapping reducible, or simply poly-
nomial time reducible, to language B, written A <p B, if a polyno-
mial time computable function f: ¥*— ¥* exists, where for every
w,

w e A<= f(w) € B.

The function f is called the polynomial time reduction ot A to B.

To show poly time mapping reducibility:
M| 1. create computable fn,
m)2. show that it runs in poly time,
| 3. then show forward direction of mapping red.,
4. and reverse direction
| (or contrapositive of forward direction)




Time complexity of the reduction

 Number of cells = 0(n?k)

Geell = /\ [(\/ il?'i,j,s) A (/\ (Ii,j,s\/a?i’j,t))] 0(n?k)

1<4,5<nk seC s,teC
s#t
“The following “The variable And only one
must be TRUE for one s must variable for some

for every cellij” be TRUE” s must be TRUE



Time complexity of the reduction

 Number of cells = 0(n?k)

Peell = /\ [( \/ 5Ui,j,s) A ( /\ (Zi s Va?i,j,t))] 0(n?¥)

1<4,5<nk seC s,teC
s#t

(bstart = X1,1,# A ml:QaQO/\

The variables in T1,3,w1 N T1,4,w0 N oo ANT1n+2,w0, "N O(n*)
the start config,
ANDed together

T1n+3,0 N NTL k1 NI ks



Time complexity of the reduction

 Number of cells = 0(n?k)

Peell = /\ [( \/ CUz',j,s) A ( /\ (Zi s Va?i,j,t))] 0(n?¥)

1<4,5<nk seC s,teC

s#t

(bstart = X1,1,# A ml:QaQO/\

k
21,30, N T1dwy A+ ATLng2.0, A | ON)
T1n+3u N A T1 pk—1,0 A L1k #
B The state Qaccept 0(n2k
gbaccept — \/ L4,5, Gaccept must appear In (ﬂ )

1<4,5<nk some cell




Time complexity of the reduction

 Number of cells = 0(n?k)

Peell = /\ [( \/ CUz',j,s) A ( /\ (Zi s Vﬂ?i,j,t))] 0(n?¥)

1<¢,5<nk seC s,teC
s#t
Ostart = L1148 N\ T1,2,q0/\
k

2130, A T1dws Ao AT g0, A | O0Y)

T1n+30 N NTL k1 NI ks

_ 2k
§baccept — \/ L,5, Gaceept 0(n*")

1<4,j<nk

Brmove = /\ (the (4, 7)-window is legal) 0(n?¥)

1<i<nk, 1<j<nk




Total:
0(n2k)

Time complexity of the reduction

 Number of cells = 0(n?k)

Peell = /\ [( \/ CUz',j,s) A ( /\ (Zi s Va?i,j,t))] 0(n?¥)

1<4,5<nk seC s,teC
s#t

Ostart = L1148 N\ T1,2,q0/\
k
T13,w AN Tldws Ao AT1nt2.w, A O(Y)

T1n+3,0 N NTL k1 NI ks

gbaccept — \/ L4, 5, Gaccept 0(n2k)
1<i,j<nk
Brmove = /\ (the (4, 7)-window is legal) 0(n?¥)

1<i<nk, 1<j<nk



To Show Poly Time Mapping Reducibility ...

Language A is polynomial time mapping reducible, or simply poly-
nomial time reducible, to language B, written A <p B, if a polyno-
mial time computable function f: ¥*— ¥* exists, where for every
w,

w e A<= f(w) € B.

The function f is called the polynomial time reduction ot A to B.

To show poly time mapping reducibility:
M| 1. create computable fn,
| 2. show that it runs in poly time,
| 3. then show forward direction of mapping red.
4. and reverse direction
| (or contrapositive of forward direction)




QED: SAT 1s NP-complete

A language B is NP-complete if it satisfies two conditions:

[V]1. Bisin NP, and
[V] 2. every A in NP is polynomial time reducible to B.

Now it will be much easier to prove that
other languages are NP-complete!



THEOREM  rwreeresssssnnes known | UNKNOWN | eeeraeeeseseessensseessmns

Key Thm: 1f B is NP-complete and B <p C' for C' in NP, then C' is NP-complete.

To use this theorem,
C must be in NP

P rOOf: DEFINITION
° N e e d to S h O W: C iS NP - CO m p lete: A lzing;aiinBl\Ti;]\;i:;omplete if it satisfies two conditions:
° it's i N NP <g|ve N ), and 2. every A in NP is polynomial time reducible to B.

» every lang 4 in NP reduces to Cin poly time (must show)

* For every language A in NP, reduce A - C by:
* First reduce A 2 Bin poly time

If you're not Stephen Cook

« Can do this because B is NP-Complete or Leonid Levin, use this
« Then reduce B - C in poly time theorem to prove a
. This is given language is NP-complete

 Total run time: Poly time + poly time = poly time




THEOREM ------------------------------------------------------------------------------------------------------------------------

Usin g: It B is NP-complete and|B <p C'|for C'in NP, then|C' is NP-complete.

3 steps to prove a language|C is NP-complete:
1. Show Cis in NP

2. Choose B, the NP-complete problem to reduce from
3. Show a poly time mapping reduction from Bto C

To show poly time mapping reducibility:
1. create computable fn,
2. show that it runs in poly time,
3. then show forward direction of mapping red,,
4. and reverse direction

(or contrapositive of forward direction)




THEOREM ........................................................................................................................

U Si [ g: It B 1s NP-complete and B <p C for C'in NP, then|C' is NP-complete.

3 steps to prove a language C is NP-complete:
1. Show Cis in NP

2. Choose B, the NP-complete problem to reduce from
3. Show a poly time mapping reduction from Bto C

Example:

Let C = 3SAT, to prove|3SAT is NP-Complete:
1. Show 3SATis in NP
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Fasktack SSAT is in NP
BSAT = {(¢)| ¢ is a satisfiable Boolean formula}

Let n = the number of variables in the formula

Verifier:

On input <¢, c>, where c is a possible assignment of variables in ¢ to values:
 Accept If ¢ satisfies ¢

Running Time: O(n)

Non-deterministic Decider: b
On input <¢>, where ¢ is a boolean formula:

« Non-deterministically try all possible assignments in parallel

« Accept if any satisfy ¢ |

Running Time: Checking each assignment takes time O(n)




THEOREM ------------------------------------------------------------------------------------------------------------------------

U Si [ g: It|B 1s NP-complete and|B <p C'|for C'in NP, then C' is NP-complete.

3 steps to prove a language i1s NP-complete:
1. Show Cis in NP

2. Choose B, the NP-complete problem to reduce from
3. Show a poly time mapping reduction from Bto C

Example:

Let C = 3SAT, to prove 3SAT is NP-Complete:
vl 1. Show 3SATis in NP
V] 2.. Choose B, the NP-complete problem to reduce from: SAT
3.] Show a poly time mapping reduction from SAT to 3SAT

207



thstback: SAT 1S Poly Time Reducible to 3SAT

A B
;
SAT = {(¢)| ¢ is a satisfiable Boolean formula} « * 3SAT = {{(¢)| ¢ is a satishable 3cnf-formula}
f
‘/’_—__—_\—\.

Need: poly time computable fn converting a Boolean formula ¢ to 3CNF:

1. Convert ¢ to CNF (an AND of OR clauses)

a) Use DeMorgan’s Law to push negations onto literals
2(PVQ) <= (-P)A(-Q) (PAQ) <= (-P)V(-Q)

b) Distribute ORs to get ANDs outside of parens
(PV(QAR)) = (PVQ)A(PVR)| om)

2. Convert to 3CNF by adding new variables
(ayVasVasVay) < (@1VaxVz)A(ZVasVay)

Remaining step: show
iff relation holds ...

O(n)

O(n)

... easy for formula
conversion: each
step is already a

known “law”



THEOREM ------------------------------------------------------------------------------------------------------------------------

U Si [ g: It B 1s NP-complete and B <p C for C'in NP, then C' is NP-complete.

3 steps to prove a language i1s NP-complete:
1. Show Cis in NP

2. Choose B, the NP-complete problem to reduce from
3. Show a poly time mapping reduction from Bto C

Example: Each NP-complete problem
Let C = 3SAT, to prove 3SAT is NP-Complete: we prove makes it easier to
1. Show 3SATis in NP prove the next one!

V2. Choose B, the NP-complete problem to reduce from: SAT
V13. Show a poly time mapping reduction from SAT to 3SAT
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THEOREM ------------------------------------------------------------------------------------------------------------------------

U Si [ g: It B 1s NP-complete and B <p C for C'in NP, then C' is NP-complete.

3 steps to prove a language i1s NP-complete:
1. Show Cis in NP

2. Choose B, the NP-complete problem to reduce from
3. Show a poly time mapping reduction from Bto C

Example:
Let C = 3SAT CLIQUE, to prove 3SAT CLIQUE is NP-Complete:
?1. Show 3SAT-CLIQUE is in NP

?2. Choose B, the NP-complete problem to reduce from; SAT-3SAT
?3. Show a poly time mapping reduction from Bto C
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o8
(lastback:  CLIQUE 1s in NP z
CLIQUE = {(G, k)| G is an undirected graph with a k-clique}

PROOF IDEA The clique is the certificate.

Let n=# nodesin G

PROOF The following is a verifier V' for CLIQUE. cisatmostn

V =“On input ((G, k), c): For each node in ¢, check
1. Test whether c is a subgraph with k£ nodes in G.| whether it's in G: O(n?)

2. 'Test whether G contains all edges connecting nodes in c.| for each pair of nodes in c,

3. If both pass, accept; otherwise, reject.” check whether there's an
edge in G: O(n?)




(lashback: ~ 3SAT is polynomial time reducible to CLIQUE.

3SAT = {(¢)| ¢ is a satisfiable 3cnf-formula} CLIQUE = {(G, k)| G is an undirected graph with a k-clique}

Need: poly time computable fn converting a 3cnf-formula ... Example:
o= (r1VayVizd) N (TYVT2VT) A (T V23 VT
« ...to a graph containing a clique:

» Each clause maps to a group of 3 nodes
« Connect all nodes except: —z

Runs in poly time:

« Contradictory nodes - # literals = 7
Don't forgetiff | Nodes in the same group # nodes (n)
= If ¢ € 3SAT - # edges poly in #
- Then each clause has a TRUE literal nodes 0(n?)

* Those are nodes in the clique!
e Fg,x,=0,x,=1

< If ¢ & 3SAT

« For any assignment, some clause must have a contradiction with another clause
« Then in the graph, some clause’s group of nodes won’t be connected to another group, preventing the clique




THEOREM ------------------------------------------------------------------------------------------------------------------------

U Si [ g: It B 1s NP-complete and B <p C for C'in NP, then C' is NP-complete.

3 steps to prove a language i1s NP-complete:
1. Show Cis in NP

2. Choose B, the NP-complete problem to reduce from
3. Show a poly time mapping reduction from Bto C

Example:

Let C = 3SAT CLIQUE, to prove 3SAT CLIQUE is NP-Complete:
V1. Show 3SAT-CLIQUE is in NP
V2. Choose B, the NP-complete problem to reduce from: SAT-3SAT
13. Show a poly time mapping reduction from Bto C
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NP-Complete problems, so far

o SAT = {(¢)| ¢ is a satisfiable Boolean formula} (Cook-Levin Theorem)
o 3SAT = {(¢)| ¢ is a satisfiable 3cnf-formula} (reduced SAT to 3SAT)

e CLIQUE = {(G, k)| G is an undirected graph with a k-clique} (reduced 3SAT to CLIQUE)

Each NP-complete problem we prove
makes it easier to prove the next one!



Flastback The HAMPATH Problem

HAMPATH = {(G, s,t)| G 1s a directed graph
with a Hamiltonian path from s to ¢}

« A Hamiltonian path goes through every node in the graph

b
>

* The Search problem:

 Exponential time (brute force) algorithm:
« Check all possible paths and see if any connect s and ¢ using all nodes 0(n™)
« Polynomial time algorithm:
« We don’t know if there is one!!!

 The Verification problem:
. Still 0(n?)!
« HAMPATH is polynomially verifiable, but not polynomially decidable
* i.e,, It's in in NP but not known to be in P

C>/ 4




Theorem: HAMPATH is NP-complete \I/Jl/ J

HAMPATH = {(G, s,t)| G is a directed graph
with a Hamiltonian path from s to ¢}




THEOREM ------------------------------------------------------------------------------------------------------------------------

Usin g: It B is NP-complete and B <p C' for C' in NP, then C' is NP-complete.

3 steps to prove a language is NP-complete:
1. Show Cis in NP

2. Choose B, the NP-complete problem to reduce from
3. Show a poly time mapping reduction from Bto C




Theorem: HAMPATH is NP-complete

HAMPATH = {(G, s.t)| G is a directed graph
with a Hamiltonian path from s to ¢}

To prove HAMPATH is NP-complete:

M1. Show HAMPATH is in NP (in HW9)

? 2. Choose B, the NP-complete problem to reduce from 3SAT
3. Show a poly time mapping reduction from B to HAMPATH




Theorem: HAMPATH is NP-complete

HAMPATH = {(G, s.t)| G is a directed graph
with a Hamiltonian path from s to ¢}

To prove HAMPATH is NP-complete:
V1. Show HAMPATH i1s in NP (in HW9)

V2. Choose B, the NP-complete problem to reduce from 3SAT
? 3. Show a poly time mapping reduction from 3SAT to HAMPATH

To show poly time mapping reducibility:

1. create computable fn,

2. show that it runs in poly time,

3. then show forward direction of mapping red,,
?2?? 4. and reverse direction

(or contrapositive of forward direction)
A EZTOETIAE o i
f o
(1 VZZVT3) A (23 VT3V 26) A (T3 VTg V T4a)
f

— T
L] L]




Computable Fn: Formula wuwe =2 Graph wene

Example input: ¢= (a1 VbiVer)Alaa Vb V) A -+ Alag Vi V)

k = # clauses
 Clause = (extra) single nodes, Total = k
« Variable - diamond-shaped graph “gadget”

* Clause = 2 “connector” nodes + separator
» Total = 3k+1 “connector” nodes per “gadget”

/C\

Pair of
clause nodes

separator

221




Computable Fn: Formula wuwe =2 Graph wene

Example input: ¢=(a1VbiVer)A(aa VbyVea) A - Afag Vi Ver)
k = # clauses
 Clause = (extra) single nodes, Total = k

« Variable - diamond-shaped graph “gadget”
» Clause 2 2 “connector” nodes + separator
» Total = 3k+1 “connector” nodes per “gadget”

Reversed

edges

» Lit x; in clause ¢; = ¢; node edges in gadget x,
» Lit x; in clause ¢; > c; edges in gadget x.(rev) C< (@




Theorem: HAMPATH is NP-complete

HAMPATH = {(G, s.t)| G is a directed graph
with a Hamiltonian path from s to ¢}

To prove HAMPATH is NP-complete:

V1. S
vi2. C
?23. S

(1 VT3 VT3)

now HAMPATH 1s In NP
noose B, the NP-complete problem to reduce from 3SAT

now a poly time mapping reduction from 3SAT to HAMPATH

To show poly time mapping reducibility:
V] 1. create computable fn,
mmm) 2. show that it runs in poly time,

3. then show forward direction of mapping red,,
A LZEEET0E oe
f .
f :

(or contrapositive of forward direction)

4. and reverse direction
./;—7———*&\.




P

Example input: ¢ = (a1 VbiVer) AlagVoa V) Ao Alar Vb V)

olynomial Time?

k = # clauses = at most 3k variables

Clause = (extra) single nodes O =«

O(k)

Variable > diamond-shaped graph “gadget”

« Clause = 2 “connector” nodes + separator

° To—tal = 3k+1 “Connectorn nOdeS per ugadget,, z

Lit x; in clause ¢; 2 c; node edges in gadgetx; ,

Lit x; in clause ¢; > c; edges in gadget x; (rev)

O(k?)

TOTAL:

O(k?)

O(k)

0(k)
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Theorem: HAMPATH is NP-complete

HAMPATH = {(G, s.t)| G is a directed graph
with a Hamiltonian path from s to ¢}

To prove HAMPATH is NP-complete:

V1. S
vi2. C
?23. S

(1 VT3 VT3)

now HAMPATH 1s In NP
noose B, the NP-complete problem to reduce from 3SAT

now a poly time mapping reduction from 3SAT to HAMPATH

To show poly time mapping reducibility:
A LZEEET0E oe
f o
f |

[V] 2. show that it runs in poly time,
3. then show forward direction of mapping red,,
4. and reverse direction
(or contrapositive of forward direction)

V] 1. create computable fn,
T




(1 VT2 VT3) A (3 VT5Vag) N (23VTgVay) e

- e
o (o0 - 2D

Want: Satisfiable 3cnf formula < graph witthamiltonian path

= If there is satisfying assignment, then Hamiltonian path exists

These hit all
nodes except
extra ¢;s

« Lit x; makes clause ¢; TRUE - “detour” to ¢; in ggadget X,

Now path
goes through
every node

o Reversed edges |
* Litx; makes clause ¢; TRUE - “detour” to ¢, In gadget x %

x,= TRUE - Hampath “zig-zags” gadget x,

7ig-7ag
@

x;, = FALSE - Hampath “zag-zigs” gadget x, °¢-

Every clause must be TRUE so path hits all ¢; nodes C{
« And edge directions align with TRUE/FALSE assignments 228



“*| Summary: the only possible Ham.
path is the one that corresponds
to the satisfying assignment
(described on prev slide)

Want: Satisfiable 3cnf formula < graph with Hamiltonian path

< If output has Ham. path, then input had Satisfying assignment
/—~/ « A Hamiltonian path must choose to either zig-zag or zag-zig gadgets .- >
Ham path can only hit “detour” ¢; nodes by coming right back %

Otherwise, It will miss some nodes 4 -

0
/ (4/;/*/ ) 7 ” - .
o« " N7 77 gadgetx “detours” from left to right - x. = TRUE
. / T/(/> gadget x, “detours” from right to left - x, = FALSE
' \K »\_f_; - s



Theorem: HAMPATH is NP-complete

HAMPATH = {(G, s.t)| G is a directed graph
with a Hamiltonian path from s to ¢}

To prove HAMPATH is NP-complete:

V1. S
vi2. C
VI3. S

(1 VT3 VT3)

now HAMPATH 1s In NP
noose B, the NP-complete problem to reduce from 3SAT

now a poly time mapping reduction from 3SAT to HAMPATH

To show poly time mapping reducibility:
A LZEEET0E oe
f o
f |

[V] 2. show that it runs in poly time,
[V] 3.then show forward direction of mapping red.,
[V] 4. and reverse direction

(or contrapositive of forward direction)

V] 1. create computable fn,
T




Theorem: UHAMPATH is NP-complete

UHAMPATH = {(G,s,t)| G is a airected graph
with a Hamiltonian path from s to ¢}

To prove UHAMPATH is NP-complete:
M 1. Show UHAMPATH is in NP
==) 2. Choose the NP-complete problem to reduce from HAMPATH
3. Show a poly time mapping reduction from ???to UHAMPATH




Theorem: UHAMPATH is NP-complete

UHAMPATH = {(G,s,t)| G is a airected graph
with a Hamiltonian path from s to ¢}

To prove UHAMPATH is NP-complete:
vl 1. Show UHAMPATH is in NP
vl 2. Choose the NP-complete problem to reduce from HAMPATH
==)3. Show a poly time mapping reduction from HAMPATH to UHAMPATH




Theorem: UHAMPATH is NP-complete

UHAMPATH = {(G,s,t)| G is a airected graph
with a Hamiltonian path from s to ¢}

Need: Computable function from HAMPATH to UHAMPATH
Naive Idea: Make all directed edges undirected?

* Doesn’t work!
« But we would create some paths that didn’t exist before




Theorem: UHAMPATH is NP-complete

UHAMPATH = {(G,s,t)| G is a airected graph
with a Hamiltonian path from s to ¢}

Need: Computable function from HAMPATH to UHAMPATH

Better Idea: “out” edgp “in” edge
* Distinguish “in” vs “out” edges O

» Nodes (directed) > 3 Nodes (undirected): in/mid/out

e Connect in/mid/out with edges
» Directed edge (u,v) 2 (U, . Vi, m

« Except: s> s ., t 2t only ¥

® (nHidHou) (v pidutd




Theorem: UHAMPATH is NP-complete
UHAMPATH = {(G,s,t)| G is a airected graph
with a Hamiltonian path from s to ¢}

Need: Computable function from HAMPATH to UHAMPATH
- " P
* If there was a directed path s, v, t ... o) (-G &)

. ...then there is an undirected paths_,v., v ., v .t

out’ Virv Ymid’ Youtr *in

—
« If there was no directed path s, v, t... m O,
V.,V

e ...then there is no undirected path s, ., v, V.4
« Because there will be a missing connection

®

Vout' tin



NP-Complete problems, so far

SAT = {(¢)| ¢ is a satisfiable Boolean formula} (Cook-Levin

3SAT = {(¢)| ¢ is a satistiable 3enf-formula} (reduce from

o HAMPATH = {(G,s,t)| G is a directed graph
with a Hamiltonian path from s to ¢}

UHAMPATH = {(G,s,t)| G is a airected graph
with a Hamiltonian path from s to t}

— nk —

Theorem)

SAT)

(reduce from 3SAT)

(reduce from HAMPATH)

CLIQUE = {(G, k)| G is an undirected graph with a k-clique} (reduce from 3s4T) =

20}
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