[T WAS Been sHown et | [T PrROPOSE A COROLLARY:
IPRD PROBLEMS,

WELL, \F YOU COLLAPSE
THE ONIVERSE \NTO A
SINGULARITY THERE'S

NOW, LET'S APPLY THIS
ISULLOOSHUN T0 THE BIN-PACKING|

More NP-Complete Problems

Monday, November 22, 2021 e

CANT GO ANYWHERE?|

THE SULLOOSHUN IS YES,

CONSIDER THE HALTING'
PROBLEM. 1S THERE A IN THE GINGOLAR\TY,
GENERAL WAY TO TELL IF | |[TIME DOESN'T EXIST
A PROGRAM WITH A GWEN| [THE PROGRAM CANT
EVEN START, MUCH

‘rl’ THAT 1S BEYOND

N

k

%/{/{0«/{0@#(@/{13’

« HW 9 due Sun 11:59pm EST
- (after break)

last Time: NP-COmpleteness

DEFINITION

A language B is NP-complete if it satisfies two conditions:

Must prove for all 1. Bisin NP, and

langs, not just a 2. every A in NP is polynomial time reducible to B.
single language

TH EOR EM
It's difficult to prove the first .
: SAT is NP-complete.
NP-complete problem!
i e o o (Just like finding the first = RENQ
U - "”"7‘”5“'7“” - . - undeCidable prOblem Was hardl) | / SAT‘ {.()‘|01sasatisﬁable Boolean formula}

But each NP-complete problem we prove
makes it easier to prove the next one!

THEOREM __smrrrsesmscecessssnsnnsesssssssssnnnsssnssssanssnssssssssssnnsnsssssssss UNKNOWN lsssssssssssnssnnsnnsnnnnnss
known

Last [ine; 1f B 1s NP-complete and B <p C' for C'in NP, then C' is NP-complete.

If you're not Stephen Cook or
Leonid Levin, use this theorem to
prove a language is NP-complete

THEOREM --

Last [ine; It B is NP-complete and|B <p C'|for C' in NP, then|C' is NP-complete.

3 steps to prove a language|C is NP-complete:
1. Show Cis in NP

2. Choose B, the NP-complete problem to reduce from
3. Show a poly time mapping reduction from Bto C

To show poly time mapping reducibility:
1. create computable fn,
2. show that it runs in poly time,
3. then show forward direction of mapping red,,
4. and reverse direction

(or contrapositive of forward direction)

THEOREM --

Last [ine; It B is NP-complete and B <p C' for C' in NP, then|C' is NP-complete.

3 steps to prove a language C is NP-complete:
1. Show Cis in NP

2. Choose B, the NP-complete problem to reduce from
3. Show a poly time mapping reduction from Bto C

Example:

Let C = 3SAT, to prove|3SAT is NP-Complete:
1. Show 3SATis in NP

221

THEOREM --

Last [ine; It B is NP-complete and|B <p C'|for C' in NP, then C' is NP-complete.

3 steps to prove a language i1s NP-complete:
1. Show Cis in NP

2. Choose B, the NP-complete problem to reduce from
3. Show a poly time mapping reduction from Bto C

To show poly time mapping reducibility:
1. create computable fn,
Example: 2. show that it runs in poly time,
: . irection of mappi .
Let C = 3SAT, to prove 3SAT is NP-Complete: B s G IR 15,
ZI 1 ShOW 3SAT|S in NP (or contrapositive of forward direction)

V] 2.| Choose B, the NP-complete problem to reduce from: SAT
3.] Show a poly time mapping reduction from SAT to 3SAT

222

thstback: SAT 1S Poly Time Reducible to 3SAT

A B
;
SAT = {(¢)| ¢ is a satisfiable Boolean formula} « * 3SAT = {{(¢)| ¢ is a satishable 3cnf-formula}
f
‘/’_—__—_\—\.

Need: poly time computable fn converting a Boolean formula ¢ to 3CNF:

1. Convert ¢ to CNF (an AND of OR clauses)

a) Use DeMorgan’s Law to push negations onto literals
2(PVQ) <= (-P)A(-Q) (PAQ) <= (-P)V(-Q)

b) Distribute ORs to get ANDs outside of parens
(PV(QAR)) = (PVQ)A(PVR)| om)

2. Convert to 3CNF by adding new variables
(ayVasVasVay) < (@1VaxVz)A(ZVasVay)

Remaining step: show
iff relation holds ...

O(n)

O(n)

... easy for formula
conversion: each
step is already a

known “law”

THEOREM --

Last [ine; It B is NP-complete and B <p C' for C' in NP, then C' is NP-complete.

3 steps to prove a language i1s NP-complete:

1. Show Cis in NP

2. Choose B, the NP-complete problem to reduce from
3. Show a poly time mapping reduction from Bto C

. Now have 2 NP-Complete
Theorem: 3SAT is NP—Complete languages to use:

Let C = 3SAT, to prove 3SAT is NP-Complete: : %ZT
V1. Show 3SATis in NP
V2. Choose B, the NP-complete problem to reduce from: SAT
V13. Show a poly time mapping reduction from SAT to 3SAT

224

THEOREM --

Last [ine; It B is NP-complete and B <p C' for C in NP, then|C' is NP-complete.

3 steps to prove a language i1s NP-complete:

1. Show Cis in NP

2. Choose B, the NP-complete problem to reduce from
3. Show a poly time mapping reduction from Bto C

Theorem: (CLIQULE is NP-complete
Let C = 3SAT CLIQUE, to prove 3SAT CLIQUE is NP-Complete:
?1. Show 3SAT-CLIQUE is in NP
?2. Choose B, the NP-complete problem to reduce from; SAT-3SAT
?3. Show a poly time mapping reduction from Bto C

225

(lashback: ~ 3SAT is polynomial time reducible to CLIQUE.

3SAT = {(¢)| ¢ is a satisfiable 3cnf-formula} CLIQUE = {(G, k)| G is an undirected graph with a k-clique}

Need: poly time computable fn converting a 3cnf-formula ... Example:
o= (r1VayVizd) N (TYVT2VT) A (T V23 VT
« ...to a graph containing a clique:

« Each clause maps to a group of 3 nodes
« Connect all nodes except: —z

Runs in poly time:

« Contradictory nodes - # literals = 7
Don't forgetiff | Nodes in the same group # nodes (n)
= If ¢ € 3SAT - # edges poly in #
- Then each clause has a TRUE literal nodes 0(n?)

* Those are nodes in the clique!
e Fg,x,=0,x,=1

< If ¢ & 3SAT

« For any assignment, some clause must have a contradiction with another clause
« Then in the graph, some clause’s group of nodes won’t be connected to another group, preventing the clique

THEOREM --

Last [ine; It B is NP-complete and B <p C' for C' in NP, then C' is NP-complete.

3 steps to prove a language i1s NP-complete:
1. Show Cis in NP

2. Choose B, the NP-complete problem to reduce from
3. Show a poly time mapping reduction from Bto C

Now have 3 NP-Complete
Theorem: CLIQUE is NP-complete lang;;ges to use:
Let C = 3SAT CLIQUE, to prove 3SAT CLIQUE is NP-Complete: | 3o
V1. Show 3SAT-CLIQUE is in NP - CLIQUE

V2. Choose B, the NP-complete problem to reduce from: SAT-3SAT

13. Show a poly time mapping reduction from Bto C o

227

last Tie: NP-COmplete problems, so far

o SAT = {(¢)| ¢ is a satisfiable Boolean formula} (Cook-Levin Theorem)
o 3SAT = {(¢)| ¢ is a satisfiable 3cnf-formula} (reduced SAT to 3SAT)

e CLIQUE = {(G, k)| G is an undirected graph with a k-clique} (reduced 3SAT to CLIQUE)

We now have 3 options to choose from when
proving the next NP-complete problem

Flastback The HAMPATH Problem

HAMPATH = {(G, s,t)| G 1s a directed graph
with a Hamiltonian path from s to ¢}

« A Hamiltonian path goes through every node in the graph

>

* The Search problem:

 Exponential time (brute force) algorithm:
« Check all possible paths of length n
« See if any connects s and t: O(n!) = 0(2")

« Polynomial time algorithm:
« Unknown!!

 The Verification problem:
« Still O(n?), just like PATH!

e SO HAMPATH is in NP but not known to be in P

C>/ 4

Theorem: HAMPATH is NP-complete \I/Jl/ J

HAMPATH = {(G, s,t)| G is a directed graph
with a Hamiltonian path from s to ¢}

THEOREM --

Usin g: It B is NP-complete and B <p C' for C' in NP, then C' is NP-complete.

3 steps to prove a language is NP-complete:
1. Show Cis in NP

2. Choose B, the NP-complete problem to reduce from
3. Show a poly time mapping reduction from Bto C

Theorem: HAMPATH is NP-complete

HAMPATH = {(G, s.t)| G is a directed graph
with a Hamiltonian path from s to ¢}

To prove HAMPATH is NP-complete:

V1. S
vi2. C
3. S

now HAMPATH 1s in NP (in HW9)
noose B, the NP-complete problem to reduce from 3SAT

now a poly time mapping reduction from B to HAMPATH

Theorem: HAMPATH is NP-complete

HAMPATH = {(G, s.t)| G is a directed graph
with a Hamiltonian path from s to ¢}

To prove HAMPATH is NP-complete:
V1. Show HAMPATH i1s in NP (in HW9)

V2. Choose B, the NP-complete problem to reduce from 3SAT
? 3. Show a poly time mapping reduction from 3SAT to HAMPATH

To show poly time mapping reducibility:

1. create computable fn,

2. show that it runs in poly time,

3. then show forward direction of mapping red,,
?2?? 4. and reverse direction

(or contrapositive of forward direction)
A EZTOETIAE o i
f o
(1 VZZVT3) A (23 VT3V 26) A (T3 VTg V T4a)
f

— T
L] L]

Theorem: HAMPATH is NP-complete

HAMPATH = {(G, s.t)| G is a directed graph
with a Hamiltonian path from s to ¢}

To prove HAMPATH is NP-complete:
V1. Show HAMPATH i1s in NP (in HW9)

V2. Choose B, the NP-complete problem to reduce from 3SAT
? 3. Show a poly time mapping reduction from 3SAT to HAMPATH

To show poly time mapping reducibility:

1. create computable fn,

2. show that it runs in poly time,

3. then show forward direction of mapping red,,
?2?? 4. and reverse direction

(or contrapositive of forward direction)
A EZTOETIAE o i
f o
(1 VZZVT3) A (23 VT3V 26) A (T3 VTg V T4a)
f

— T
L] L]

[lashback: ~ 3SAT is polynomial time reducible to CLIQUE.

A B
.
3SAT = {(¢)| ¢ is a satishiable 3enf-formula} CLIQUE = {(G, k)| G is an undirected graph with a k-clique}
./’_—L——\\. ‘
Need: poly time computable fn converting a 3cnf-formula ... Example:

p=(r1VaxrVa) N (T1VZ2VT3) N (TT VXV xo)
« ...to a graph containing a clique:
» Each clause maps to a group of 3 nodes

« Connect all nodes except: —z
« Contradictory nodes
« Nodes in the same group

General Strategy: Reducing from 3SAT

NOTE: “gadgets” are
not always graphs

Create a computable function mapping formula to “gadgets”:
« Variable = another “gadget”, e.g,, (#

» Clause > some “gadget”, e.g,

Gadget is typically “used” in two “opposite” ways:
* “something” when var is assigned TRUE, or
« “something else” when var is assigned FALSE

Then connect variable and clause “gadgets”:

- Literal x; In clause ¢; - gadget x;“connects to” gadget
e Literal x; in clause ¢c; > gadget x;“connects to” gadget ¢,
« E.g, connect each node to node not in clause

Theorem: HAMPATH is NP-complete

HAMPATH = {(G, s.t)| G is a directed graph
with a Hamiltonian path from s to ¢}

To prove HAMPATH is NP-complete:
V1. Show HAMPATH i1s in NP (in HW9)

V2. Choose B, the NP-complete problem to reduce from 3SAT
? 3. Show a poly time mapping reduction from 3SAT to HAMPATH

To show poly time mapping reducibility:

1. create computable fn,

2. show that it runs in poly time,

3. then show forward direction of mapping red,,
?2?? 4. and reverse direction

(or contrapositive of forward direction)
A EZTOETIAE o i
f o
(1 VZZVT3) A (23 VT3V 26) A (T3 VTg V T4a)
f

— T
L] L]

Computable Fn: Formula wuwe =2 Graph wene

variable clause

0
Example input: &= (i Vb v e (v by V ea) A - Aak Vb V)

k = # clauses
 Clause = (extra) single nodes, Total = k
« Variable © diamond-shaped graph “gadget” O

» Clause 2 2 “connector” nodes + separator
» Total = 3k+1 “connector” nodes per “gadget”

(extra) > 0O o

Pair of
clause nodes | | separator

239

Computable Fn: Formula wuwe =2 Graph wene

Example input: ¢= (a1 VbiVer)Alaa Vb V) A -+ Alag Vi V)
k = # clauses

 Clause = (extra) single nodes, Total = k

« Variable - diamond-shaped graph “gadget”
» Clause 2 2 “connector” nodes + separator
» Total = 3k+1 “connector” nodes per “gadget”

Literal = variable or negated variable Reversed

edges

* Litx, In clause ¢; > ¢; node edges in gadget x; \
Each extra ¢; node has 6 edges f
« Litx;in clause ¢, > c; edges in gadget x,(rev) - C< >3

Theorem: HAMPATH is NP-complete

HAMPATH = {(G, s.t)| G is a directed graph
with a Hamiltonian path from s to ¢}

To prove HAMPATH is NP-complete:

V1. S
vi2. C
?23. S

(1 VT3 VT3)

now HAMPATH 1s In NP
noose B, the NP-complete problem to reduce from 3SAT

now a poly time mapping reduction from 3SAT to HAMPATH

To show poly time mapping reducibility:
V] 1. create computable fn,
mmm) 2. show that it runs in poly time,

3. then show forward direction of mapping red,,
A LZEEET0E oe
f .
f :

(or contrapositive of forward direction)

4. and reverse direction
./;—7———*&\.

P

olynomial Time?

Example input: ¢ = (a1 VbiVer) AlagVoa V) Ao Alar Vb V)

k = # clauses = at most 3k variables

Clause = (extra) single nodes O =«

0(k)

Variable > diamond-shaped graph “gadget”

* Clause = 2 “connector” nodes + separator

- Total = 3k+1 “connector” nodes per “gadget” *
Lit x; in clause ¢; = c;node edges In gadget x;

Lit x; in clause ¢; > c; edges in gadget x;(rev) .

[=

0(k2)

TOTAL:

0(k?)

0(k)

O(k)

D43

Theorem: HAMPATH is NP-complete

HAMPATH = {(G, s.t)| G is a directed graph
with a Hamiltonian path from s to ¢}

To prove HAMPATH is NP-complete:

V1. S
vi2. C
?23. S

(1 VT3 VT3)

now HAMPATH 1s In NP
noose B, the NP-complete problem to reduce from 3SAT

now a poly time mapping reduction from 3SAT to HAMPATH

To show poly time mapping reducibility:
A LZEEET0E oe
f o
f |

[V] 2. show that it runs in poly time,
3. then show forward direction of mapping red,,
4. and reverse direction
(or contrapositive of forward direction)

V] 1. create computable fn,
T

(1 VT2 VT3) A (3 VT5Vag) N (23VTgVay) e

- e
o (o0 - 2D

Want: Satisfiable 3cnf formula < graph witthamiltonian path

= If there is satisfying assignment, then Hamiltonian path exists

These hit all
nodes except
extra ¢;s

« Lit x; makes clause ¢; TRUE - “detour” to ¢; in ggadget X,

Now path
goes through
every node

o Reversed edges |
* Litx; makes clause ¢; TRUE - “detour” to ¢, In gadget x %

x,= TRUE - Hampath “zig-zags” gadget x,

7ig-7ag
@

x;, = FALSE - Hampath “zag-zigs” gadget x, °¢-

Every clause must be TRUE so path hits all ¢; nodes C{
« And edge directions align with TRUE/FALSE assignments 246

Summary: the only possible Ham.
path is the one that corresponds
/ to the satisfying assignment
. *) (described on prev slide)

Want: Satisfiable 3cnf formula < graph with Hamiltonian path

< If output has Ham. path, then input had Satisfying assignment
/—~/ « A Hamiltonian path must choose to either zig-zag or zag-zig gadgets .- >
Ham path can only hit “detour” ¢; nodes by coming right back %

Otherwise, It will miss some nodes 4 -

(x1 VT2 VT3) A (23 VT5Vag) A (x3VTgVIy) e

Qe R gadget x, “detours” from left to right - x, = TRUE

gadget x, “detours” from right to left - x, = FALSE

AR AN
BN \
}.’(\\\
i\

Theorem: HAMPATH is NP-complete

HAMPATH = {(G, s.t)| G is a directed graph
with a Hamiltonian path from s to ¢}

To prove HAMPATH is NP-complete:

V1. S
vi2. C
VI3. S

(1 VT3 VT3)

now HAMPATH 1s In NP
noose B, the NP-complete problem to reduce from 3SAT

now a poly time mapping reduction from 3SAT to HAMPATH

To show poly time mapping reducibility:
V] 1. create computable fn,
[V] 2. show that it runs in poly time,
[V] 3.then show forward direction of mapping red.,
[V] 4. and reverse direction
(or contrapositive of forward direction)

d - i:
A (x3VT5 Vxg) A (23 V%VE4% .
f |

— T
L] L]

Theorem: UHAMPATH is NP-complete

UHAMPATH = {(G,s,t)| G is a airected graph
with a Hamiltonian path from s to ¢}

To prove UHAMPATH is NP-complete:
M 1. Show UHAMPATH is in NP
==) 2. Choose the NP-complete problem to reduce from HAMPATH
3. Show a poly time mapping reduction from ???to UHAMPATH

Theorem: UHAMPATH is NP-complete

UHAMPATH = {(G,s,t)| G is a airected graph
with a Hamiltonian path from s to ¢}

To prove UHAMPATH is NP-complete:
vl 1. Show UHAMPATH is in NP
vl 2. Choose the NP-complete problem to reduce from HAMPATH
==) 3. Show a poly time mapping reduction from HAMPATH to UHAMPATH

Theorem: UHAMPATH is NP-complete
UHAMPATH = {(G,s,t)| G is a airected graph
with a Hamiltonian path from s to ¢}

Need: Computable function from HAMPATH to UHAMPATH
Naive Idea: Make all directed edges undirected?

« But we would create some paths that didn’t exist before

 Doesn’t work!

Theorem: UHAMPATH is NP-complete

UHAMPATH = {(G,s,t)| G is a airected graph
with a Hamiltonian path from s to ¢}

Need: Computable function from HAMPATH to UHAMPATH

Better Idea: “out” edgp “in” edge
* Distinguish “in” vs “out” edges O

* Nodes (directed) > 3 Nodes (undirected): in/mid/out

e Connect in/mid/out with edges
» Directed edge (u,v) 2 (U, . Vi, m

« Except: s> s, t 2t only! ¥

® (nHidHou) (v pidutd

Theorem: UHAMPATH is NP-complete
UHAMPATH = {(G,s,t)| G is a airected graph
with a Hamiltonian path from s to ¢}

Need: Computable function from HAMPATH to UHAMPATH
- " P
* If there was a directed path s, v, t ... o) (-G &)

. ...then there is an undirected paths_,v., v ., v .t

out’ Virv Ymid’ Youtr *in

—
« If there was no directed path s, v, t... m O,
V.,V

e ...then there is no undirected path s, ., v, V.4
« Because there will be a missing connection

®

Vout' tin

NP-Complete problems, so far

SAT = {(¢)| ¢ is a satisfiable Boolean formula} (Cook-Levin

3SAT = {(¢)| ¢ is a satistiable 3enf-formula} (reduce from

o HAMPATH = {(G,s,t)| G is a directed graph
with a Hamiltonian path from s to ¢}

UHAMPATH = {(G,s,t)| G is a airected graph
with a Hamiltonian path from s to t}

— nk —

Theorem)

SAT)

(reduce from 3SAT)

(reduce from HAMPATH)

CLIQUE = {(G, k)| G is an undirected graph with a k-clique} (reduce from 3s4T) =

20}

More NP-Complete problems

o SUBSET-SUM = {(S,t)| S ={x1,...,2zr}, and for some
{yi,...,y1} € {z1,..., 21}, we have Xy; =t}

® (reduce from 3SAT)

* VERTEX-COVER = {(G, k)| G is an undirected graph that

has a k-node vertex cover}

® (reduce from 3SAT)

Theorem: SUBSET-SUM is NP-complete

SUBSET-SUM = {(S,t)| S = {«1, ..., x1}, and for some
{y1,--., u}t C{x,..., x}, we have Xy; = t}
= .5
o £

266

THEOREM --

Usin g: It B is NP-complete and B <p C' for C' in NP, then C' is NP-complete.

3 steps to prove a language is NP-complete:
1. Show Cis in NP

2. Choose B, the NP-complete problem to reduce from
3. Show a poly time mapping reduction from Bto C

Theorem: SUBSET-SUM is NP-complete

SUBSET-SUM = {(S,t)| S = {z1,..., 21}, and for some

3 steps to prove SUBSET-SUM is NP-complete:
vl 1. Show SUBSET-SUM is in NP

v] 2. Choose the NP-complete problem to reduce from: 3SAT
3. Show a poly time mapping reduction from 3SAT to SUBSET-SUM

To show poly time mapping reducibility:
1. create computable fn,
2. show that it runs in poly time,
3. then show forward direction of mapping red,,
4. and reverse direction

(or contrapositive of forward direction)

A B
f
(21 VT3 VT3) A (23 VT5V 26) N (T3 VTGVM)%SJ) S={x1,...,zL}
f

—
L] .

feview: Reducing from 3SAT

Create a computable function mapping formula to “gadgets”:

* Clause - some “gadget”,eg, O =«

, ; NOTE: “gadgets” are
» Variable - another “gadget”, e.g,, =

not always graphs

Gadget is typically used in two “opposite” ways:

* ZIG when var is assigned TRUE, or /‘ .

« ZAG when var is assigned FALSE C) @j
Then connect “gadgets” according to clause literals:
- Literal x; In clause ¢; > gadget x;“detours” to
- Literalx; in clause ¢; > gadget x; “reverse detours” to c,

% S R
) S 2)

y;and z; v i digit =1 || z: I+ digit = 1
i digit = 1 if ¢, has x, if ¢, hasx;
. 1 2 3 4 .
Computable Fn: 3cnf 2> (S5,¢) N2l X s
z1711 0 0 O 0 0
Y2 1 0 O 0 0
E.S., |@NTahas) A (meVasv--)A - A@EV-- V..) mp 2 1 0 0 0 0
y 1 0 0 0
» Assume formula has: - 10 - 0 1
 Ivariables Z1,...,2
e kclauses c1,...,ck
. : : Y 110 0 0
Computable function f maps: " o o 0
« Variable x; 2 91 T 0 0
7 g;and h;: 11 0 0
« Clausec; > ' 1+t digit = 1
] . g2] g) / 1 0
e arranged In a table ... n To help get] 0
. . 2 the right
 Each number has max I+k digits: | sum
- Literal x; In clause ¢; 2> |
- LiteralX;in clause ¢, 2> 9k 1
. hk 1
*Sumisll1sfollowed by k3s [Treeuml—"7 1T T T 1T - 15 5 o

Theorem: SUBSET-SUM is NP-complete

SUBSET-SUM = {(S,t)| S = {z1,..., 21}, and for some

3 steps to prove SUBSET-SUM is NP-complete:
vl 1. Show SUBSET-SUM is in NP
v] 2. Choose the NP-complete problem to reduce from: 3SAT
3. Show a poly time mapping reduction from 3SAT to SUBSET-SUM

To show poly time mapping reducibility:
V1| 1. create computable fn,
|:>2. show that it runs in poly time,
3. then show forward direction of mapping red,,
4. and reverse direction
(or contrapositive of forward direction)

A B
f
(21 VT3 VT3) A (23 VT5V 26) N (T3 VTGVM)%SJ) S={x1,...,zL}
f

—
L] .

Polynomial Time?

E.g., (1‘1 VE\/:L';;) A\ (1:2\/3;3\/...)/\ ..
« Assume formula has:

 Ivariables Z1,...,Z;
e kclauses ¢i1,...,Ck

« Table size: (I + k) *|(21 + 2k)

 Creating it requires constant
number of passes over the table

« Num variables I = at most 3k

e Total:

/\(—%v

O(k %)

2 3 4 [| g o Ck

Y1 0 0 O O(1 O 0
21 0 0 O 010 O 0
Ys 1 0 0 0|0 1 0
29 1 0 O O(1 O 0
23 1 0 0|0 O 1
Ui 1{0 0 0
VA 1 0 0 0
g1 1 0 0
hl 1 0 0
g2 1 0
hg 1 0
gk 1
hk 1
t 1 1 1 1{3 3 3

Theorem: SUBSET-SUM is NP-complete

SUBSET-SUM = {(S,t)| S = {z1,..., 21}, and for some

3 steps to prove SUBSET-SUM is NP-complete:
vl 1. Show SUBSET-SUM is in NP
v] 2. Choose the NP-complete problem to reduce from: 3SAT
3. Show a poly time mapping reduction from 3SAT to SUBSET-SUM

To show poly time mapping reducibility:
V1| 1. create computable fn,
[V]| 2. show that it runs in poly time,
:>3. then show forward direction of mapping red.,
4. and reverse direction
(or contrapositive of forward direction)

A B
f
(21 VT3 VT3) A (23 VT5V 26) N (T3 VTGVM)%SJ) S={x1,...,zL}
f

—
L] .

Each column:
- At least one 1
- At most 3 1s

¢ is a satisfiable 3cnf-formula < f({(¢)) = (5,t) where some subset of S bum]Lu r

= If formula is satisfiable ... AT oo oot o
« Sum t = I 1s followed by k 3s Sy %y - - - ;
- Choose for the subset ... Bl 20 e el 1
°yiifX,-:TRUE 23 1 0 00 O 1
 z If x, = FALSE
« and some of g. and h, to make the sum ¢) B ;
* ... Then this subset of S must sum to ¢ bc: 2 | [anan: LLLO 0 0
- Left digits: 71 | helpgetthe (1 0 0
« onlyoneof y,orz isins$ Pl correctsum 1 0
) Right digitS: "2 So each column : ’
« Top right: Each column sums to 1, 2, or 3 sum (for left
« Because each clause has 3 literals digits) is 1
« Bottom right: Ik ‘l' .
« Can always use g, and/or h, to make column sum to 3 i L
t |1 1 1 1 --- 1|3 3 ..+ 3

¢ is a satisfiable 3cnf-formula < f({(¢)) = (5,t) where some su

< If a subset of S sumsto ¢ ...

The only way to do it is as prev described: .S?nc:y
« It can only include either y, or z, oy

. . Yi or z;
« Because each left digit column must sum to 1
« And no carrying is possible

« Also, since each right digit column must sum to 3:
« And only 2 can come from g, and A,

« Then for every right column, some y. or z, in the subset
has a 1in that column

e ... Then table must have been created from a sat. ¢:

« x,=TRUE ify, inthe subset
« x,=FALSE if z in the subset

 This Is satisfying because:

« Table was constructed so 1in column ¢, for
y. or zz-means that variable x, satisfies clause C;

« We already determined, for every right column,
some number in the subset has a 1in the column

e So all clauses are satisfied

Subset must have
some number with
1in each right
column

ot
1 2 3 4 l&l C2 Ck
i [T 0 0 0 0|YT 0 0
%21 1 0 0 O 00 O 0
Yo 1 0 0 00 1 0
Z9 1 0 0 O 1 O 0
23 1 0 00 0 1
. 110 O 0
In each right 110 o 0
7| column, g, and h, T 0 0
can account for il 0 0
at most 2 1 0
hg 1 0
Because each
column sum (for
left digits) is 1
dk 1
hk ll 1
t |11 1 1 1 --- 13 3 3

More NP-Complete problems

V] SUBSET-SUM = {(S,t)| S = {x1,..., 21}, and for some
{yi,...,y1} € {z1,..., 21}, we have Xy; =t}

® (reduce from 3SAT)

* VERTEX-COVER = {(G, k)| G is an undirected graph that

has a k-node vertex cover}

® (reduce from 3SAT)

Theorem: VERTEX-COVER is NP-complete

VERTEX-COVER = {(G, k)| G is an undirected graph that

has a k-node vertex cover}

A vertex cover of a graph is ...
* ... a subset of its nodes where every edge touches one of those nodes

* Proof Sketch: Reduce 3SAT to VERTEX-COVER
* The reduction maps:

 Variable x, 2 2 connected nodes
« corresponding to the var and its negation, e.g.,

* Clause - 3 connected nodes
« corresponding to its literals, e.g.,

- Additionally,
« connect var and clause gadgets by ... -
* ... connecting nodes that correspond to the same literal

VERTEX-COVER example

VERTEX-COVER = {(G, k)| G is an undirected graph that
has a k-node vertex cover}

p=(x1VaxiVay) N (T1VT2VT2) A (T1Vas V)

¥

@ - Variable /@\ -
\/ | gadgets |

281

VERTEX-COVER example

VERTEX-COVER = {(G, k)| G is an undirected graph that

has a k-node vertex cover}

O = (581 \/.“171\/$2) N\ (:1:_1\/5\/@) N\ ($_1V372V$2)

(1)
Clause
gadgets

282

VERTEX-COVER example

VERTEX-COVER = {(G, k)| G is an undirected graph that
has a k-node vertex cover}

p=(x1VaxiVay) N (T1VT2VT2) A (T1Vas V)

Extra edges
connecting
variable and
clause gadgets
together

283

¢=(x1Vr1Va) AN (@IVT2VT2) A (T1VayV)
VERTEX-COVER example

e If formula has ...
« m = # variables
« I=# clauses

* Then graph has ...
* f nodes =2m + 31

= If satisfying assignment, then there Is a k-cover, where k=m + 21

« Nodes in the cover:
* In each of m var gadgets, choose 1 node corresponding to TRUE literal
« For each of I clause gadgets, ignore 1 TRUE literal and choose other 2
« Since there is satisfying assignment, each clause has a TRUE literal
 Total=m + 21

VERTEX-COVER = {(G, k)| G is an undirected graph that

has a k-node vertex cover}

¢=(x1Vr1Va) AN (@IVT2VT2) A (T1VayV)
VERTEX-COVER example D

e If formula has ...

e m = #t variables
Example:
e I = # clauses v = FALSE Cﬁi
=
* Then graph has ... |x,=TRUE YO H

* f nodes =2m + 31
= If satisfying assignment, then there Is a k-cover, where k=m + 21

« Nodes in the cover:
* In each of m var gadgets, choose 1 node corresponding to TRUE literal
« For each of I clause gadgets, ignore 1 TRUE literal and choose other 2
« Since there is satisfying assignment, each clause has a TRUE literal
 Total=m + 21

VERTEX-COVER = {(G, k)| G is an undirected graph that

has a k-node vertex cover}

dp=(x1VaxrVa) AN (TIVITIVT) A (TT VeV x)

VERTEX-COVER example D
e If formula has ...
« m=# variables
- I=# clauses ixazm&?:SE (ﬁi
* Then graph has ... x;=TRUE YO

* # nodes =2m + 31
& If there i1s a k=m + 21 cover,

« Then 1t can only be a k-cover as described on the last slide ...
* 1 node from each of “var” gadgets
» 2 nodes from each “clause” gadget

« Which means that input has satisfying assignment:

« x,= TRUE If node x, from x, gadget is in cover set | |
1 I ! VERTEX-COVER = {(G, k)| G is an undirected graph that

e E lse Xi = FALSE has a k-node vertex cover}

Quiz 11/22

