UMB CS622
Hierarchy Theorems

Monday, December 6, 2021

EXPSPACE
?

EXPTIME

%/{/{0«/{0@#{@/{&?

+ HW-9.
+ Due Fues+H30-11:59pmEST

« HW 10
* Due Tues 12/7 11:59pm EST

* HW 11

« Out Wed 12/8
e Due Tues 12/14 11:59pm EST

Fishback- 1S SAT Intractable? (Not in P?)

* There’s no known poly time algorithm that decides SAT

« But It's hard to prove that an algorithm doesn’t exist

-

last Tire: SPACE VS TIMe: Conjecture

EXPTIME

So far, only if we “skip” steps:
- NL c PSPACE

- PSPACE c EXPSPACE
- P c EXPTIME

/.

Proving is difficult because it
requires showing that an algorithm
doesn't exist (e.g., poly time)!

PSPACE

Do we know if any of these
subsets are true? E.g., P c NP

we think? | L, C NL = CONL € P € NP C PSPACE = NPSPACE c EXPTIME
we know: |, € NL = cONL € P € NP € PSPACE = NPSPACE € EXPTIME

How to Prove an Algorithm “Doesn’t Exist”

m=) 1. Prove containment of two language complexity classes,

+ eg if PC NP : -

2. Prove completéness of a language in the larger class,
e 2.g, and If SAT € NP PEFINITION -_-)
. and SAT iS NP—hard A language B is NP-complete if it satisfies two conditions:

1. Bisin NP, and
2. every A in NP is polynomial time reducible to B.

3. Conclude that the language cannot be in the smaller class
o e.g, then SAT ¢ P THEOREM s

o Ie’ SAThaS no pOly time algorithm If B is NP-complete and B € P, then P = NP.
e (see also HW 9, problem # 2, part 2 for related problem)

e Prove that if P # NP, then 3NODES cannot be NP-complete.

Theorems

PSPACE C EXPSPACE
P C EXPTIME

Could help prove that
some language doesn’t
have a poly time algorithm

How Much Is a Tape Cell Worth? f*fi=,

* Does giving a TM “more space” make it “more powerful”?
* |.e, does it increase the # of problems it can solve?

« What if we only give a TM 1 more tape cell?
* (Might not help in some cases?)

« Can we formalize “more space” and “more powerful”?

Space Hierarchy Theorem

THEOREM --

Space hierarchy theorem For any space constructible function f: N'— N,
a language A exists that is decidable in O(f(n)) space but not in o(f(n)) space.

tastback: B1g-0 Notation

Let f and g be functions f, g: N— R ™. Say that f(n) = O(g(n))
if positive integers c and ng exist such that for every integer n > ny,

f(n) < cgn). “only care about large n*
When f(n) = O(g(n)), we say that g(n) is an upper bound tor
f(n), or more precisely, that g(n) is an asymptotic upper bound for
f(n), to emphasize that we are suppressing constant factors.

Flaskieck SMall-o Notation

Let f and g be functions f, g: N— R ™. Say that f(n) = o(g(n))
if

lim ﬂ =1().
n—oo g(n)
In other words, f(n) = o(g(n)) means that for any real number

¢ > 0, a number ng exists, where f(n) < cg(n) for all n > ny.

An ad log y Let f and g be functions f, g: N— R™. Say that f(n) = O(g(n))
] if positive integers ¢ and ng exist such that for every integer n > ny,
¢ Blg_O . < f(n) <cg(n).

e When f(n) = O(g(n)), we say that g(n) is an upper bound for
* S ma I-I- 0. < f(n), or more precisely, that g(n) is an asymptotic upper bound for

f(n), to emphasize that we are suppressing constant factors.

Space Hierarchy Theorem

THEOREM --

Space hierarchy theorem For any space constructible function f: N'— N,
a language A exists that is decidable in O(f(n)) space but not in o(f(n)) space.

thstback COMputable Functions

« A TM that (instead of accept/reject) “outputs” final tape contents

A function f: ¥X*—3* is a computable function it some Turing
machine M, on every input w, halts with just f(w) on its tape.

Space Constructible Functions

DEFINITION

Input n: unary
Qutput f{n): binary
(Computable) Function #2 (a TM)
N

Function #1: f(n) Space usage: O(f(n))

A function f: N— N, where|f(n) is at least O(logn), is called

space constructible if the function that|maps the string 1" o the

binary representation of f(n)|is computable in[space O(f(n)):

Unary
representation

Space Constructible Function Example
Let f(n) = n?

Input n (base 10) Input n (unary) Output n? (base 10) | Output n? (binary)
1 1

15

Space Constructible Function Example
Let f(n) = n?

Input n (base 10) Input n (unary) Output n? (base 10) | Output n? (binary)
1 1 1
2 1 4 100

16

Space Constructible Function Example

Let f(n) = n?
Input n (base 10) Input n (unary) Output n? (base 10) | Output n? (binary)
1 1 1 1
2 1 4 100
3 m 9 1001

17

Space Constructible Function Example

Let f(n) = n?
Input n (base 10) Input n (unary)
1 1
2 L
3 111
16 N0 e e e e

Output n2 (base 10)

256

Output n2 (binary)
1
100
1001

100000000 (2?)

18

Space Constructible Function Example

Let f(n) = n?

On input 1" (n in unary notation): Don’t count input space O(n)

* Convert to binary by ... Otherwise, cant compute
« Counting the # of 1s log nin log n space

e (counters require) log(n) space

 Multiply (binary nums) n * n:
» Quadratic (grade school) algorithm
* log?(n) space

Total space: O(log?(n))
Space allowed: 0(n?)

Space Constructible Function Example

Let f(n) = n*

On input 1" (n in unary notation): Don’t count input space O(n)

* Convert to binary by ... Otherwise, cant compute
« Counting the # of 1s log nin log n space

« (counters require) log(n) space

« Repeat k times: multiply by n:
» Quadratic (grade school) algorithm
 logh(n) space

Total space: O(logh(n))
Space allowed: O(n%)

Space Hierarchy Theorem

THEOREM --

Space hierarchy theorem For any space constructible function f: N'— N/,
a language A exists that is decidable in O(f(n)) space but not in o(f(n)) space.

Space Hierarchy Theorem: Proof Plan

THEOREM --

Space hierarchy theorem For any space constructible function f: N'— N,
a language A exists that is decidable in O(f(n)) space but not in o(f(n)) space.

 Let A be a language with decider D that runs in O(f{(n)) space
« Make sure D rejects something from every o(f(n)) language ...
e ... using diagonalization! AR

My | accept reject accept reject
Ms | accept accept accept accept
Ms | reject reject reject reject o
My | accept acceplt reject reject

thstback: Diagonalization with TMs

Diagonal: Result of Giving a TM its own Encoding as Input

\ (My) (My) (M;3)

All TM Encodings

(My) (D)
——— M, | accept reject accept reject accept
1> | accept accept accept accept accept
Ms | reject reject reject reject reject
All TMs,_!Il/[4 accept accept reject reject accept What
should
happen
_ _ - here?
T reject reject accept accept :
construct TM D can't exist! It must both
opposite accept and reject!

™

Diagonalization with o(f(n)) TMs?

Diagonal: Result of Giving a TM its own Encoding as Input

\ (My) (My) (M;3)

All TM Encodings

(M) (D)
Opposites, J\/{ 1 |.accept reject accept reject accept
iris vIo | accept accept accept accept accept
o(fln)) |Msg | reject reject reject reject reject
AllTMs (M4 | accept accept reject reject accept Doesn't
matter!
- - reject
T reject reject accept accept J
construct TM D can exist! But only for
“opposite” | ,
g | o(f(n)) TMs!

Space Hierarchy Theorem: Diagonalization

* Let A be a language with decider D that runs in O(f{(n)) space
« Make sure D rejects something from every o(f(n)) language ...

e ... using diagonalization!

If M is an o(f(n)) space TM ...
... make D differ from M on one input:

... <M> itself!

Specifically D runs M with <M> and
checks space usage is o(f(n))

If M accepts <M> then D rejects <M>
 and vice versa

Then D cannot use o(f(n)) space!

3 potential issues:

1. M uses more than o(f(n)) space
* Drejects M If it ever uses more than f{(n) space

2. M uses more than o(f{(n)) space for small n
« Accept all inputs with arbitrary padding <M>10*

3. M might go into loop
* f(n) space TM cannot run for more than 2 steps
« So D runs M for only 2/t steps

27

Space Hierarchy Theorem: Proof

THEOREM --

Space hierarchy theorem For any space constructible function f: N— N,
a language A exists that is decidable in O(f(n)) space but not in o(f(n)) space.

PROOF The following O(f(n)) space algorithm D decides a language A that
is not decidable in o(f(n)) space.

D = “On input w: <—{(M) 10"

1. Letn be the length of w.

2. Compute f(n) using space constructibility and mark off this
much tape. If later stages ever attempt to use more, reject.

Use only f{(n) space

)

If w is not of the form (M)10* for some TM M, reject. Make sure input is long enough

4. Simulate M on w while counting the number of steps used in

Run for only 21 steps :) '
the simulation. If the count ever exceeds 2/, reject.

5. If M accepts, reject. If M rejects, accept.”

29

Space Hierarchy Theorem: Corollary # 1

For any two functions f1, fo: N— N, where f1(n) is o(f2(n)) and f5 is space
constructible, SPACE(f1(n)) € SPACE(f2(n)).

PROOF c that we want
e f, 1S space constructible, so by the Space Hierarchy Thm ...

Space hierarchy theorem For any space constructible function f: N— N/,
a language A exists that is decidable in O(f(n)) space but not in o(f(n)) space.

« ...some lang A is decidable in O(f,(n)) space but not o(f,(n))

- S0 A € SPACE(f,(n)) but A & SPACE(f,(n))

* Because f,(n) = o(f,(n))
» Thus, SPACE(f,(n)) # SPACE(f,(n))

- S0 SPACE(f,(n)) © SPACE(f,(n))

Space Hierarchy Theorem: Corollary

For any two real numbers 0 < ¢; < €2, SPACE(n) C SPACE(n?).

Proof
* From previous corollary ...

For any two functions fi, fo: N— N, where fi(n) is o(f2(n)) and f5 is space
constructible, SPACE(f1(n)) € SPACE(f2(n)).

 Earlier we showed that n* is space constructible

 So for any two natural numbers k; < k,:
« SPACE(n*!) c SPACE(n*?)
* Because n*! = o(n*?)
 Similarly, for two rationals c, < c¢,: SPACE(n!) c SPACE(n¢?)

« Two rationals exist between any two reals g, <¢, <c,<&,:
* S0 SPACE(n®l) c SPACE(n¢?)

Space Hierarchy Theorem: Corollary
PSPACE C EXPSPACE

Proof

» PSPACE = SPACE(n%)

« EXPSPACE = SPACE(2/nX)

e n¥=0(2"n")

« By Space Hierarchy Theorem ...

Space hierarchy theorem For any space constructible function f: N'— N,
a language A exists that is decidable in O(f(n)) space but not in o(f(n)) space.

A language A iIs decidable in 0(2”n*) space but not o(2”n*)
* SO0 A € EXPSPACE but A ¢ PSPACE
SO EXPSPACE # PSPACE

Space Hierarchy Theorem: Corollary # 4
NL ¢ PSPACE

P f How does this help show that some
roo lang doesn’t have an algorithm

e NL = NSPACE(log n) with some complexity?
By Savitch’'s Theorem ...

Savitch’s theorem Forany function f: N—R™, where f(n) > n,

NSPACE(f(n)) € SPACE(f?*(n)).

* NL = NSPACE(log n) € SPACE(log? n)
« By Space Hierarchy Theorem ...

Space hierarchy theorem For any space constructible function f: N— N,
a language A exists that is decidable in O(f(n)) space but not in o(f(n)) space.

- SPACE(log2 n) © SPACE(n) c SPACE(n¥) = PSPACE

How to Prove an Algorithm “Doesn’t Exist”

1. Prove containment of two language complexity classes,

+ eg if PC NP : -

mm) 2. Prove completeness of a language in the larger class,
« e.¢, and If SAT € NP
« and SAT is NP-hard

3. Conclude that the language cannot be in the smaller class
« e.g then SAT ¢ P
* .., SAT has no poly time algorithm

thshsack: PSPACE-Completeness

DEFINITION

A language B i1s PSPACE-complete it it satisties two conditions:

1. B isin PSPACE, and
2. every A in PSPACE is polynomial time reducible to B.

If B merely satisfies condition 2, we say that it is PSPACE-hard.

THEOREM remresemsnmnmnnanen

TQBF is PSPACE-complete.

20(n"k)

20(n"k)

PSPACE-Completeness w.rt. 5,

DEFINITION

respect 10 log space reducibiity

A language B is PSPACE-completé’ IF\{ satisfies two conditions:

1. B isin PSPACE, and
log space

2. every A in PSPACE is pelynemial-ttme reducible to B.
If B merely satisfies condition 2, we say that it is PSPACE-hard.

THEOREM remresemsnmnmnnanen

TQBF is PSPACE-complete.

with respect to log space reducibility

¢Cstart s Caccept 5 24 (™)
f ~__~

Each subformula can be generated in log space | s

Space Hierarchy Theorem: Corollary # 4
NL ¢ PSPACE

- TQBF ¢ NL
 Because TQBF is PSPACE-Complete (w.r.t log space reducibility)

* So If TQOBF € NL
« Then every PSPACE problem is in NL

» and NL = PSPACE ’&

An NL algorithm for TQBF doesn’t exist! ‘) 4

Now can we prove that a language doesn’t have a poly time algorithm?

Time Constructible Functions

Input n: unary
Output ¢(n): binary
(Computable) Function #2 (a TM)
DEFINITION N

Function #1: t(n) Space usage: O(t(n))
A function t: N'— N, where[t(n) is at least O(nlogn), is called

time constructible if the function that jmaps the string 1" |¢o\the
binary representation of ¢(n) i1s computable in|time O(¢(n)). Unary

representation

Time Constructible Function Example
Let t(n) = n?

On input 17(n in unary notation):

« Convert to binary by ...
« Counting the # of 1s
« Each counter increment takes:

* log(n) steps
. Total: O(n log(n))
« Multiply n * n:
 Quadratic (grade school) algorithm
* O(log?(n)) steps
Total steps: O(nlog(n)) + O(log?(n)) = O(n log(n))

Steps allowed: O(n?)

Time Hierarchy Theorem

TH EOREM ...

Time hierarchy theorem For any time constructible function ¢: N— N,
a language A exists that is decidable in O(¢(n)) time but not decidable in time

o(t(n)/logt(n)).

Time is “weaker”; Must increase # steps by
at least log t(n) to get extra “power”
(i.e., decide additional languages)

Time Hierarchy Theorem Proof

D takes t(n) steps ...

PROOF The following O(t(n)) time algorithm D decides a language A that
is not decidable in o(t(n)/log t(n)) time.
"] Overhead of the counter

D = “On input w:
1. Let n be the length of w. Qﬂ/ Need to limit # of steps
t

2. Compute t(n) using time constructibility and store the value
[t(n)/logt(n)] in a binary counter. Decrement this counter
before each step used to carry out stages 4 and 5. If the counter

: ever hits 0, reject.
... to simulate > 7€

¢(n) /log(t(n)) 3. Ifw is not of the form (M)10* for some TM M, reject.
steps of some M | 4. Simulate”™ on w.

5. If M accepts, then reject. If M rejects, then accept.”

A TM simulating another TM is not free!

(This style of diagonalization proof won't work to prove P c NP)

49

Time Hierarchy Corollary # 1

For any two functions tq,t5: N— N, where t1(n) is o(tz(n)/logts(n)) and
ts 1s time constructible, TIME(¢1(n)) € TIME(t2(n)).

Time Hierarchy Corollary # 2

For any two real numbers 1 < ¢; < €2, we have TIME(n€!) C TIME(n®?).

Time Hierarchy Corollary # 3

P C EXPTIME

So there exists some language that does not have a poly time algorithm!

(Next time, we see an example)

Check-in Quiz 12/6

On gradescope

