UMB CS622 Hierarchy Theorems

Monday, December 6, 2021

Announcements

- HW 9
 - Due Tues 11/30 11:59pm EST
- HW 10
 - Due Tues 12/7 11:59pm EST
- HW 11
 - Out Wed 12/8
 - Due Tues 12/14 11:59pm EST

Flashback: Is SAT Intractable? (Not in P?)

• There's <u>no known</u> poly time algorithm that decides *SAT*

• But it's hard to prove that an algorithm doesn't exist

Last Time: Space vs Time: Conjecture

We think? $L \subset NL = coNL \subset P \subset NP \subset PSPACE = NPSPACE \subset EXPTIME$

We know: $L \subseteq NL = coNL \subseteq P \subseteq NP \subseteq PSPACE = NPSPACE \subseteq EXPTIME$

How to Prove an Algorithm "Doesn't Exist"

- 1. Prove containment of two language complexity classes,
 - e.g, if $P \subset NP$

- 2. Prove completeness of a language in the larger class,
 - e.g, and if $SAT \in NP$
 - and SAT is NP-hard

DEFINITION

A language B is NP-complete if it satisfies two conditions:

- **1.** *B* is in NP, and
- **2.** every A in NP is polynomial time reducible to B.
- 3. <u>Conclude</u> that the language cannot be in the smaller class
 - e.g, then SAT ∉ P
 - i.e., SAT has no poly time algorithm
- THEOREM
- If B is NP-complete and $B \in P$, then P = NP.
- (see also HW 9, problem # 2, part 2 for related problem)
 - ullet Prove that if ${f P}
 eq {f NP}$, then $3{
 m NODES}$ cannot be ${f NP}$ -complete.

Theorems

How Much Is a Tape Cell Worth?

- Does giving a TM "more space" make it "more powerful"?
 - I.e., does it increase the # of problems it can solve?
- What if we only give a TM 1 more tape cell?
 - (Might not help in some cases?)
- Can we formalize "more space" and "more powerful"?

Space Hierarchy Theorem

THEOREM

Space hierarchy theorem For any space constructible function $f: \mathcal{N} \longrightarrow \mathcal{N}$, a language A exists that is decidable in O(f(n)) space but not in o(f(n)) space.

Flashback: Big-O Notation

Let f and g be functions $f, g: \mathcal{N} \longrightarrow \mathcal{R}^+$. Say that f(n) = O(g(n)) if positive integers c and n_0 exist such that for every integer $n \ge n_0$,

$$f(n) \le c g(n)$$
.

"only care about large n"

When f(n) = O(g(n)), we say that g(n) is an **upper bound** for f(n), or more precisely, that g(n) is an **asymptotic upper bound** for f(n), to emphasize that we are suppressing constant factors.

Flashback: Small-o Notation

Let f and g be functions $f, g: \mathcal{N} \longrightarrow \mathcal{R}^+$. Say that f(n) = o(g(n)) if

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0.$$

In other words, f(n) = o(g(n)) means that for any real number c > 0, a number n_0 exists, where f(n) < c g(n) for all $n \ge n_0$.

Analogy

- Big-*0* : ≤
- Small-*o* : <

Let f and g be functions $f, g: \mathcal{N} \longrightarrow \mathcal{R}^+$. Say that f(n) = O(g(n)) if positive integers c and n_0 exist such that for every integer $n \ge n_0$,

$$f(n) \le c g(n).$$

When f(n) = O(g(n)), we say that g(n) is an **upper bound** for f(n), or more precisely, that g(n) is an **asymptotic upper bound** for f(n), to emphasize that we are suppressing constant factors.

Space Hierarchy Theorem

???

THEOREM

Space hierarchy theorem For any space constructible function $f: \mathcal{N} \longrightarrow \mathcal{N}$, a language A exists that is decidable in O(f(n)) space but not in o(f(n)) space.

Flashback: Computable Functions

• A TM that (instead of accept/reject) "outputs" final tape contents

A function $f: \Sigma^* \longrightarrow \Sigma^*$ is a *computable function* if some Turing machine M, on every input w, halts with just f(w) on its tape.

Space Constructible Functions

$$\mathsf{Let}\, f(n) = n^2$$

Input <i>n</i> (base 10)	Input <i>n</i> (unary)	Output <i>n</i> ² (base 10)	Output <i>n</i> ² (binary)
1	1	1	1

$$\mathsf{Let}\, f(n) = n^2$$

Input <i>n</i> (base 10)	Input <i>n</i> (unary)	Output n^2 (base 10)	Output <i>n</i> ² (binary)
1	1	1	1
2	11	4	100

$$\mathsf{Let}\, f(n) = n^2$$

Input <i>n</i> (base 10)	Input <i>n</i> (unary)	Output n^2 (base 10)	Output <i>n</i> ² (binary)
1	1	1	1
2	11	4	100
3	111	9	1001

$$\mathsf{Let}\, f(n) = n^2$$

Input <i>n</i> (base 10)	Input <i>n</i> (unary)	Output n^2 (base 10)	Output <i>n</i> ² (binary)
1	1	1	1
2	11	4	100
3	111	9	1001
	•••		
16	1111111111111111	256	10000000 (28)

$$\mathsf{Let}\, f(n) = n^2$$

On input $1^n(n)$ in unary notation):

- Convert to binary by ...
 - Counting the # of 1s
 - (counters require) log(n) space
- Multiply (binary nums) n * n:
 - Quadratic (grade school) algorithm
 - $\log^2(n)$ space

Total space: $O(\log^2(n))$

Space allowed: $O(n^2)$

Don't count input space O(n)

Otherwise, cant compute $\log n$ in $\log n$ space

Let
$$f(n) = n^k$$

On input $1^n(n)$ in unary notation):

- Convert to binary by ...
 - Counting the # of 1s
 - (counters require) log(n) space
- Repeat *k* times: multiply by *n*:
 - Quadratic (grade school) algorithm
 - $\log^{k}(n)$ space

Total space: $O(\log^k(n))$

Space allowed: $O(n^k)$

Don't count input space O(n)

Otherwise, cant compute $\log n$ in $\log n$ space

Space Hierarchy Theorem

THEOREM

Space hierarchy theorem For any space constructible function $f: \mathcal{N} \longrightarrow \mathcal{N}$, a language A exists that is decidable in O(f(n)) space but not in o(f(n)) space.

Space Hierarchy Theorem: Proof Plan

THEOREM

Space hierarchy theorem For any space constructible function $f: \mathcal{N} \longrightarrow \mathcal{N}$, a language A exists that is decidable in O(f(n)) space but not in o(f(n)) space.

- Let A be a language with decider D that runs in O(f(n)) space
- Make sure D rejects something from every o(f(n)) language ...
- ... using diagonalization!

	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	
M_1	accept	reject	accept	reject	
M_2	\overline{accept}	accept	accept	accept	
M_3	reject	\overline{reject}	reject	reject	• • •
M_4	accept	accept	\overline{reject}	reject	
÷		:			٠.

Flashback: Diagonalization with TMs

Diagonalization with o(f(n)) TMs?

Space Hierarchy Theorem: Diagonalization

- Let A be a language with decider D that runs in O(f(n)) space
- Make sure D rejects something from every o(f(n)) language ...
- ... using diagonalization!
- If M is an o(f(n)) space TM ...
 - ... make *D* differ from *M* on one input:
 - ... <*M*> itself!
- Specifically D runs M with <M> and checks space usage is o(f(n))
- If *M* accepts <*M*> then *D* rejects <*M*>
 - and vice versa
- Then D cannot use o(f(n)) space!

3 potential issues:

- 1. M uses more than o(f(n)) space
 - D rejects M if it ever uses more than f(n) space
- 2. *M* uses more than o(f(n)) space for small n
 - Accept all inputs with arbitrary padding <*M*>10*
- 3. *M* might go into loop
 - f(n) space TM cannot run for more than $2^{f(n)}$ steps
 - So D runs M for only $2^{f(n)}$ steps

Space Hierarchy Theorem: Proof

THEOREM

Space hierarchy theorem For any space constructible function $f: \mathcal{N} \longrightarrow \mathcal{N}$, a language A exists that is decidable in O(f(n)) space but not in o(f(n)) space.

PROOF The following O(f(n)) space algorithm D decides a language A that is not decidable in o(f(n)) space.

 $D = \text{"On input } w: \longleftarrow \langle M \rangle 10^*$

1. Let n be the length of w.

Use only f(n) space

2. Compute f(n) using space constructibility and mark off this much tape. If later stages ever attempt to use more, reject.

3. If w is not of the form $\langle M \rangle 10^*$ for some TM M, reject.

Make sure input is long enough

Run for only $2^{f(n)}$ steps

- **4.** Simulate M on w while counting the number of steps used in the simulation. If the count ever exceeds $2^{f(n)}$, reject.
- **5.** If *M* accepts, reject. If *M* rejects, accept."

Space Hierarchy Theorem: <u>Corollary</u> # 1

For any two functions $f_1, f_2 : \mathcal{N} \longrightarrow \mathcal{N}$, where $f_1(n)$ is $o(f_2(n))$ and f_2 is space constructible, $SPACE(f_1(n)) \subseteq SPACE(f_2(n))$.

PROOF

□ that we want

• f_2 is space constructible, so by the Space Hierarchy Thm ...

Space hierarchy theorem For any space constructible function $f: \mathcal{N} \longrightarrow \mathcal{N}$, a language A exists that is decidable in O(f(n)) space but not in o(f(n)) space.

- ... some lang A is decidable in $O(f_2(n))$ space but not $o(f_2(n))$
- So $A \in SPACE(f_2(n))$ but $A \notin SPACE(f_1(n))$
 - Because $f_1(n) = o(f_2(n))$
- Thus, $SPACE(f_1(n)) \neq SPACE(f_2(n))$
- So SPACE $(f_1(n)) \subset SPACE(f_2(n))$

Space Hierarchy Theorem: <u>Corollary</u> # 2

For any two real numbers $0 \le \epsilon_1 < \epsilon_2$, SPACE $(n^{\epsilon_1}) \subseteq SPACE(n^{\epsilon_2})$.

<u>Proof</u>

From previous corollary ...

```
For any two functions f_1, f_2 : \mathcal{N} \longrightarrow \mathcal{N}, where f_1(n) is o(f_2(n)) and f_2 is space constructible, SPACE(f_1(n)) \subseteq SPACE(f_2(n)).
```

- Earlier we showed that n^k is space constructible
- So for any two natural numbers $k_1 < k_2$:
 - SPACE $(n^{k1}) \subset SPACE(n^{k2})$
 - Because $n^{k1} = o(n^{k2})$
- Similarly, for two rationals $c_1 < c_2$: SPACE $(n^{c1}) \subset SPACE(n^{c2})$
- Two rationals exist between any two reals $\varepsilon_1 < c_1 < c_2 < \varepsilon_2$:
 - So SPACE $(n^{\varepsilon 1}) \subset \text{SPACE}(n^{\varepsilon 2})$

Space Hierarchy Theorem: <u>Corollary</u> # 3

$PSPACE \subseteq EXPSPACE$

<u>Proof</u>

- **PSPACE** = $SPACE(n^k)$
- **EXPSPACE** = SPACE $(2^n n^k)$
- $n^k = o(2^n n^k)$
- By Space Hierarchy Theorem ...

Space hierarchy theorem For any space constructible function $f: \mathcal{N} \longrightarrow \mathcal{N}$, a language A exists that is decidable in O(f(n)) space but not in o(f(n)) space.

- A language A is decidable in $O(2^nk)$ space but not $o(2^nk)$
- So $A \in \mathbf{EXPSPACE}$ but $A \notin \mathbf{PSPACE}$
- So EXPSPACE ≠ PSPACE

Space Hierarchy Theorem: <u>Corollary</u> # 4 NL ⊊ PSPACE

Proof

- $NL = NSPACE(\log n)$
- By Savitch's Theorem ...

```
Savitch's theorem For any function f: \mathcal{N} \longrightarrow \mathcal{R}^+, where f(n) \ge n, 
 \operatorname{NSPACE}(f(n)) \subseteq \operatorname{SPACE}(f^2(n)).
```

- NL = NSPACE($\log n$) \subseteq SPACE($\log^2 n$)
- By Space Hierarchy Theorem ...

Space hierarchy theorem For any space constructible function $f: \mathcal{N} \longrightarrow \mathcal{N}$, a language A exists that is decidable in O(f(n)) space but not in o(f(n)) space.

• SPACE($\log^2 n$) \subset SPACE(n) \subset SPACE(n^k) = **PSPACE**

How does this help show that some lang <u>doesn't</u> have an algorithm with some complexity?

How to Prove an Algorithm "Doesn't Exist"

- 1. Prove containment of two language complexity classes,
 - e.g, if $P \subset NP$

- 2. <u>Prove completeness</u> of a language in the larger class,
 - e.g, and if $SAT \in NP$
 - and SAT is NP-hard
 - 3. <u>Conclude</u> that the language cannot be in the smaller class
 - e.g, then *SAT* ∉ **P**
 - i.e., SAT has no poly time algorithm

Flashback: PSPACE-Completeness

DEFINITION

A language B is **PSPACE-complete** if it satisfies two conditions:

- **1.** B is in PSPACE, and
- **2.** every A in PSPACE is polynomial time reducible to B.

If B merely satisfies condition 2, we say that it is **PSPACE-bard**.

THEOREM

TQBF is PSPACE-complete.

PSPACE-Completeness w.r.t. ≤₁

A language B is **PSPACE-complete** if it satisfies two conditions:

- **1.** B is in PSPACE, and
- 1. D is in FSPACE, and $\log \text{space}$ 2. every A in PSPACE is polynomial time reducible to B.

If B merely satisfies condition 2, we say that it is **PSPACE-bard**.

THEOREM

TQBF is PSPACE-complete. with respect to log space reducibility

Each subformula can be generated in log space

Space Hierarchy Theorem: <u>Corollary</u> # 4 NL ⊊ PSPACE

- *TQBF* ∉ **NL**
- Because TQBF is PSPACE-Complete (w.r.t log space reducibility)
- So if $TQBF \in \mathbf{NL}$
 - Then every **PSPACE** problem is in **NL**
 - and NL = PSPACE

An NL algorithm for TQBF doesn't exist!

Now can we prove that a language <u>doesn't have a poly time algorithm?</u>

Time Constructible Functions

Let
$$t(n) = n^2$$

On input $1^n(n)$ in unary notation):

- Convert to binary by ...
 - Counting the # of 1s
 - Each counter increment takes:
 - $\log(n)$ steps
 - Total: $O(n \log(n))$
- Multiply *n* * *n*:
 - Quadratic (grade school) algorithm
 - $O(\log^2(n))$ steps

<u>Total</u> steps: $O(n \log(n)) + O(\log^2(n)) = O(n \log(n))$

Steps <u>allowed</u>: $O(n^2)$

Time Hierarchy Theorem

THEOREM

Time hierarchy theorem For any time constructible function $t: \mathcal{N} \longrightarrow \mathcal{N}$, a language A exists that is decidable in O(t(n)) time but not decidable in time $o(t(n)/\log t(n))$.

Time is "weaker"; Must increase # steps by at least log t(n) to get extra "power" (i.e., decide additional languages)

Time Hierarchy Theorem Proof

D takes t(n) steps ...

PROOF The following O(t(n)) time algorithm D decides a language A that is not decidable in $o(t(n)/\log t(n))$ time.

D = "On input w:

Overhead of the counter

1. Let n be the length of w.

Need to limit # of steps

2. Compute t(n) using time constructibility and store the value $\lceil t(n)/\log t(n) \rceil$ in a binary counter. Decrement this counter before each step used to carry out stages 4 and 5. If the counter ever hits 0, reject.

... to simulate $t(n)/\log(t(n))$ steps of some M

- **3.** If w is not of the form $\langle M \rangle$ 10* for some TM M, reject.
- **4.** Simulate M on w.
- 5. If M accepts, then reject. If M rejects, then accept."

A TM simulating another TM is not free!

(This style of diagonalization proof won't work to prove $P \subset NP$)

Time Hierarchy Corollary # 1

For any two functions $t_1, t_2 : \mathcal{N} \longrightarrow \mathcal{N}$, where $t_1(n)$ is $o(t_2(n)/\log t_2(n))$ and t_2 is time constructible, $\text{TIME}(t_1(n)) \subsetneq \text{TIME}(t_2(n))$.

Time Hierarchy Corollary # 2

For any two real numbers $1 \le \epsilon_1 < \epsilon_2$, we have $TIME(n^{\epsilon_1}) \subsetneq TIME(n^{\epsilon_2})$.

Time Hierarchy Corollary # 3

$$P \subseteq EXPTIME$$

So there exists some language that does not have a poly time algorithm!

(Next time, we see an example)

Check-in Quiz 12/6

On gradescope