CS622
Computing With DFAs

Friday, February 2, 2024
UMass Boston Computer Science

%/{/{0&/{0@%@/{5&’

« HW 1
* Due: Wed 2/7 12pm (noon)

A Computation Model Is ... (from lecture 1)

« Some definitions ...

e.g., A Natural Number is either
- Zero
- a Natural Number + 1

« And rules that describe how to compute with the definitions ...

To add two Natural Numbers:

1. Add the ones place of each num

2. Carry anything over 10

3. Repeat for each of remaining digits ...

A Computation Model IS ... (from lecture 1

@ docs.python.org/3/reference/grammar.html

10. Full Grammar specification

This is the: full Python grammar, derived directly from the grammar used to generate the CPython pe

L] [] []
PY S O m e d efl n I tl O n S Grammar/python.gram). The version here omits details related to code generation and error recovet
eeo L

========================= START OF THE GRAMMAR =========================

General grammatical elements and rules:

Strings with double quotes (") denote SOFT KEYWORDS

Strings with single quotes (') denote KEYWORDS

Upper case names (NAME) denote tokens in the Grammar/Tokens file

Rule names starting with "invalid " are used for specialized syntax errors

- These rules are NOT used in the first pass of the parser.

- Only if the first pass fails to parse, a second pass including the invalid
rules will be executed.

- If the parser fails in the second phase with a generic syntax error, the
Location of the generic failure of the first pass will be used (this avoids
reporting incorrect locations due to the invalid rules).

- The order of the alternatives involving invalid rules matter
(like anu rule in PFG)

« And rules that describe how to compute with the definitions ...

@ docs.python.org/3/reference/executionmodel.html

4. Execution model
4.1. Structure of a program

A Python program is constructed from code blocks. A block is a piece of Python program text that is execute:

BoH R B R R R R ¥R B R H R

a unit. The following are blocks: a module, a function body, and a class definition. Each command typed intel
tively is a block. A script file (a file given as standard input to the interpreter or specified as a command line &
ment to the interpreter) is a code block. A script command (a command specified on the interpreter commant
with the -c option) is a code block. A module run as a top level script (as module __main__) from the comm:
line using a -m argument is also a code block. The string argument passed to the built-in functions eval() a

exec() is a code block.

A code block is executed in an execution frame. A frame contains some administrative information (used for .
bugging) and determines where and how execution continues after the code block's execution has complete

4 2 Namina and hindina

A Computation Model Is ... (from lecture 1)

DEFINITION

« Some definitions ...

A finite automaton is a S-tuple (Q), X, 4, qo, F'), where

1. @ is a finite set called the states,

2. ¥ is a finite set called the alphabet,

3. 0: Q x ¥—Q is the tramnsition function,
4. qo € Q is the start state, and

5. F C Q is the set of accept states.

« And rules that describe how to compute with the definitions ...

P??7?

Computation with DFAS (JFLAP demo)

|
« DFA: }o ! e

- Input: “1101”

HINT: always work out concrete
examples to understand how a
machine works

DFA Computation Rules

Informally

Given
« A DFA (~ a “Program”)
« and Input = string of chars, eg “1101"

To run the automata / “program”:
e Start in “start state”

* Repeat:

« Read 1 char from input;
« Change state according to the transition table

« Result of computation =
« Accept if last state is Accept state
« Reject otherwise

DFA Computation Rules

A finite automaton is a 5-tuple (Q. 2.6, qo, F'), where

1. Q is a finite set called the states,

2. X is a finite set called the alphabet,

3. §: Q x ¥—Q is the transition function,
4. gy € Q is the start state, and

5. F C Q is the set of accept states.

Informally

Formally (i.e., mathematically)

Given

« A DFA (~ a “Program”)
« and Input = string of chars, eg “1101"

To run the automata / “program”:
 Start in “start state”

 Repeat:

« Read 1 char from input;
« Change state according to the transition table

e Result of computation =
« Accept if last state is Accept state
« Reject otherwise

c M =

ow:

76

DFA Computation Rules

Informally Formally (i.e, mathematically)
Glven
A DFA (~ a “Program”) - M = (Q,%,9,q,F)
« and Input = string of chars, eg “1101” c W = WiW3 -+ Wy
A run is represented by variables ry, ..., I, ,
To run the automata / “program™; the sequence of states in the computation, where:
e Start in “start state” * To = qo
 Repeat:

« Read 1 char from input;
« Change state according to the transition table

* Result of computation = « M accepts w it | |
« Accept if last state is Accept state sequence of states 19,7, . ..,y in () exists . . .
* Reject otherwise withr, € F 7

DFA Computation Rules

0: Q X ¥—Q is the transition function

Informally

Formally (i.e., mathematically)

Given
« ADFA (~ a “Program”)
« and Input = string of chars, eg “1101”

To run the automata / “program”:
 Start in “start state”

- M :_(Q7275 QOvF)

\
* W = |[WWw2g - -+ Wy,

A run is represented by variables ry, ..., I, ,
the sequence of states in the computation, where:

o

= qo

 Repeat:

« Read 1 char from input;

« Change state according to the transition table

e Result of computation =
« Accept if last state is Accept state
« Reject otherwise

- T =
if i=1, ry = 6(ry wy)
if i=2, ry= 6(ry, wy)
« M accepts w it Ifi=3, 3= 6(ry w3)
sequence of states 19,71, ..., 7, in () exists ...

with r,, € I

0: Q X X— Q) is the transition function.

DFA Computation Rules

Informally Formally (i.e, mathematically)
Glven
A DFA (~ a “Program”) - M = (Q,%,9,q,F)
« and Input = string of chars, eg “1101” W = WiW3 - Wy
A run is represented by variables ry, ..., I, ,
To run the automata / “program”; the sequence of states in the computation, where:
e Start in “start state” « To = qo
* Repeat: e r; =0(r;_1,w;), fori=1,...,n

« Read 1 char from input;
« Change state according to the transition table

» Result of computation = » M accepts w if | |
» Accept If last state is Accept state sequence of states 1o, 71, ..., 7, In () exists . . .
* Reject otherwise withr,, € F

0: Q X ¥—Q is the transition function

DFA Computation Rules

Informally Formally (ie, mathematically)

Glven

« ADFA (~ a “Program”) - M = (Qa 2,0, qo, F) This is still a

 and Input = string of chars, eg “1101” W = WLW2 - Wy little “informal”
A run is represented by variables ry, ..., I, ,

To run the automata / “program”; the sequence of states in the computation, where:

e Start in “start state” « To = qo

* Repeat: e r; =0(r;_1,w;), fori=1,...,n

« Read 1 char from input;
« Change state according to the transition table

This is still a
» Result of computation = « M accepts w if | little “informal”
« Accept if last state is Accept state sequence of states 79,71, . ..,y 1N () exists . . .

« Reject otherwise withr,, € I %

d: Q X ¥—Q is the transition function

An Extended Transition Function

set of pairs *=“0 or more”
Define extended transition function: 0:Q XX —Q
 Domain:
+ Input state ¢ € () (doesn’t have to be start state) ¥" = set of all
 Input String w = WwiWs -+ Wy where w; €)y possible strings!
* Range:

 Output state (doesn't have to be an accept state)
(Defined recursively)

e Base case: ...

wtrtide: REcursive Definitions

function factorial(n)

{

Base case if (0) Function is called before

o o
return 1: it is fully defined!

Recursive case else - -
Recursive call with

“smaller” argument

return factorial

« Why is this allowed?
e It's a “feature” (i.e., an axiom!) of the programming language

« Why does this “work”? (why doesn't it loop forever?)
« Because the recursive call always has a “smaller” argument ...
e ... and so eventually reaches the base case and stops

Recursive Definitions

A Natural Number is either: | Use of definition before
it is fully defined!
Base case e Zero, Or

Recursive case e the Successor of a Natural Number “smaller” argument

Examples

« Zero

 Successor of Zero (= “one”)

» Successor of Successor of Zero (= “two”)

« Successor of Successor of Successor of Zero (= “three”) ...

Recursive Definitions

A node followed by a list

S IEE]
Left sub-tree is a binary tree \ o @ /Right sub-tree is a binary tree

Recursive definitions have: - This is a recursive definition:
2 > Node is used before it is fully

- base case and)
- recursive case data; > defined (but must be “smaller”)
Node next;

(with a “smaller” object)

Strings Are Defined Recursively

A String is either:
Base case e the empty String (8), or

Recursive case « xa (non-empty string) where

e xis a string “smaller” argument
* gisa‘“char’in X

Remember: all strings are
formed with “chars” from
some alphabet set X

¥ =set of all
possible strings!

Recursive Functions <& Recursive Data

A Natural Number is either:
« Zero, or
* the Successor of a Natural Number

function factorial(n)

{

Base case if (== 0)

return 1;
Recursive case else
return * factorial(

Recursive case must
have “smaller” » - : .
argument The “shape” of recursive function

definitions is based on ...
The recursive definition of its
Input data

An Extended Transition Function

Define extended transition function: 5 QxY*—Q

 Domain:
« Input state ¢ € () (doesn't have to be start state)

* Inputstring w = wiWs -+ Wn where w; € X

* Range: . .
» Output state (doesn’t have to be an accept state) Recursive Junctions
Recursive Data
. . A String is either:
(Defl ned reCU rS|Vely) Base case e the empty String (E), or

+ xa (non-empty string)
~ where

o Base case 6((]7 6) — « xis astring

e agisa‘“char’inX

An Extended Transition Function

Define extended transition function: 5 QxY*—Q

 Domain:
« Input state ¢ € () (doesn't have to be start state)
* Input string w = wiwa2 -+ Wy where w; € 3

* Range: | |
« Output state (doesn’t have to be an accept state) Recursive Functions

Recursive Data

A String is either:
 the empty string (), or
Recursive case e xg (non-empty string)

(Defined recursively)

A where
o Base case () — Recursive call u " « xis astring
6 q, <& q smaller” argument v

A

e| Recursive Case d(q, w’wn) —

where w' = wy -+ - w,_1

0: Q X ¥—Q is the transition function

An Extended Transition Function

Define extended transition function: 5 Qx> Q

 Domain:
+ Input state ¢ € () (doesn't have to be start state)
* Inputstring w = wiws - -+ Wy where w; € X

* Range: | |
» Output state (doesn’t have to be an dccept state) Recursive Functions

Recursive Data

A String is either:
 the empty string (), or
+ xa (non-empty string)

(Defined recursively)

A~ where
o Base case () — « xis astring
6 Q7 & q e aisa“char’inX

A A

« ReaursiveCase | §(q, w'w,) = d(d(q,w"), wy,)

where w' = wy -+ - w,_1

/Dﬁw/ba&é

DFA Computation Rules

Informally Formally (ie, mathematically)
Glven
A DFA (~ a “Program”) - M = (Q,%,9,q,F)
« and Input = string of chars, eg “1101” W = WiW3 - Wy
A run is represented by variables ry, ..., I, ,
To run the automata / ‘program”: the sequence of states in the computation, where:
- Start in “start state” * Tp = qo
* Repeat: e r; =0(r;_1,w;), fori=1,...,n

« Read 1 char from input;
« Change state according to the transition table

This is still a
« Result of computation = « M accepts w if | little “informal”
« Accept if last state is Accept state sequence of states 79,71, . ..,y 1N () exists . . .

« Reject otherwise with r,, € F 12

DFA Computation Rules

Informally

Glven
« ADFA (~ a “Program”)
« and Input = string of chars, eg “1101”

To run the automata / “program”:
« Start in “start state”

 Repeat:

« Read 1 char from input;

« Change state according to the transition table

« Result of computation =
« Accept if last state is Accept state
« Reject otherwise

Formally (i.e., mathematically)

- M = (Q72767QO7F)

W = UW1w2o - Wp

A run is represented by variables ry, ..., I, ,
the sequence of states in the computation, where:

* To = 4o

* T; :(5(7“7;_1,11)7;), for ¢ = 1,...,n

« M accepts w if S(QOaw) c F

sequence of states 79,71, ..., 7, 1N () €xists . ..

with r,, € I

Definition of Accepting Computations

An accepting computation, for DFA M =(Q, Z, 6, q,, F) and string w:
1. starts in the start state q,

2. goes through a valid sequence of states according to §

3. ends in an accept state

All 3 must be true for a computation A
to be an accepting computation! M accepts w if §(qg, w) € F

Accepting Computation or Not?

|
DFA: }0 1 e

.5 (q1,1101)

e Yes

0 (q1,110)

_* No (doesn't end in accept state)

.0 (g2, 101)

« No (doesn’t start in start state)

Alphabets, Strings, Languages

Alphabet specifies “all possible strings”

« An alphabet is a non-empty finite set of sSymbols | (possibie to have strings
Y = {O 1} with non-alphabet chars)

22 — {a?b? Cﬂd'?e?f?g?h?i?j7k717m7n?07p7q3r7S7t7u7v?W7X?Y3z}

* A string is a finite sequence of symbols from an alphabet

01001 abracadabra € Empty string (length 0)

A language is a set of strings Languages can be infinite
A = {good, bad} A = {w| w contains at least one 1 and

0 {} an even number of 0s follow the last 1}

Empty set is a language “the set of all ...” “such that ...”

Computation and Languages

« The language of a machine is the set of all strings that it accepts
£g,A DFA M accepts w it 5((]0, w) € F

e Language of M = L(M) ={w| M accepts w}

“the set of all ...” “such that...”

Machine and Language Terminology

DFA M accepts w string
M recognizes language A Set of strings

it A = {w| M accepts w}

Computation and Classes of Languages

« The language of a machine = set of all strings that it accepts

« E.g, every DFA is associated with a language

« A computation model = set of machines it defines

« E.g, all possible DFAs are a computation model

« Thus: a computation model = set of languages

Regular Languages: Definition

f a deterministic finite automata (DFA) recognizes a language,
then that language Is called a regular language.

A language is a set of strings.

M recognizes language A
it A= {w| M accepts w}

A Language, Regular or Not?

* [f given: a DFA M
« We know: L(M), the language recognized by M, is a regular language

If a DFA recognizes a language,

then that language is called a regular language. (modus ponens)

e |If given: a Language A
* |Is A a regular language?
« Not necessarily!
« How do we determine, i.e,, prove, that A is a regular language?

An Inference Rule: Modus Ponens

Premises Example Premises
 If Pthen Q « |f there is an DFA recognizing language A4,
DS T then A Is a regular language

* There i1s an DFA M where L(M) = A

Conclusion Conclusion
e QO must also be true *A s aregular language!

A Language, Regular or Not?

* |f given: a DFA M
« We know: L(M), the language recognized by M, is a regular language

If a DFA recognizes a language,
then that language is called a regular language.

e |If given: a Language A

* |Is A a regular language?
« Not necessarily!

« How do we determine, i.e,, prove, that A is a regular language?

Create an DFA recognizing A!

