UMB CS 622
GNFA -> Regular Expression

Friday March 1, 2024

%/{/{0&(/{06/%@/{56’

 HW 3 out
* Due Mon 3/4 12pm EST (noon)

/D/‘w/'m{y

Regular Expressions = Regular Langs?

R is a regular expression if R is

1. a for some a in the alphabet ¥,

2. €,
3. 0,

4. (R1 U Ry), where R; and R are regular expressions,

5. (R1 o Ra), where Ry and Ry are regular expressions, or
6. (R}), where R; is a regular expression.

We would like it if:

- Aregular expression represents a regular language
- The set of all regular expressions represents the set of all regular languages

(But we have to prove it)

/Dﬁw/aax{y

Thm: A Lang Is Regular iff Some Reg Expr Describes It

= If a language Is regular, then it's described by a reg expression

&< If a language Is described by a reg expression, then it’'s regular

(Easier) How to show that a
- Key step: convert reg expr — equivalent NFA! language Is regular?

e (Hint: we mostly did this already when discussing closed ops)
Construct a DFA or NFA!

RegEXpr->NFA

R is a regular expression it R is

. a
1 a for some a in the alphabet &,)—’©
@ \ Construction of N to recognize Ay o Ay
N(N
?

3 — O 5 @}
~O o °. 0 o

4 (Ry U Ry), where oy and Ry a | /|0 -J% e

5.

6.

(R1 0 R2), where Ry and Ry a1 | | —— | expregione o=
5 . oy e
(RY), where R; is a regular exj 2, © ofe i }

@) O @

. /

Thm: A Lang Is Regular iff Some Reg Expr Describes It

= If a language Is regular, then it's described by a reg expression
(Harder) GNFA

- Key step: Convert an DFA or NFA=equivalent/Regular Expression
* First we need another kind of finite automata: a GNFA

< If a language Is described by a reg expression, then it's regular
(Easier)

- Key step: Convert the regular expression — an equivalent NFA!

(full proof requires writing Statements and Justifications, and creating an “Equivalence” Table)

Generalized NFAs (GNFAs)
Transition can read

as multiple chars

plain NFA
ab U ba = GNFA with single char

regular expr transitions

Goal: convert GNFAs
to equivalent
Regular Exprs

« GNFA = NFA with regular expression transitions

GNFA->RegExpr function

On GNFA input G:

e If G has 2 states, return the regular expression (on the transition),
e.8. Equivalent regular expression

@ (Ry) (Ro)* (R3) U (Ry) —

Could there be
less than 2 states?

GNFA>RegEXpr Preprocessing

« Modify input machine to have:

Does this change the language of
the machine? i.e, are before/after
machines equivalent?

e New start state:
« No incoming transitions
e ectransition to old start state

« New, single accept state:
« With e transitions from old accept states
Modified machine always has 2+ states:

- New start state
- New accept state

GNFA->RegExpr function (recursive)

On GNFA input G:

o2 |+ If G has 2 states, return the regular expression (from transition),
.9
N\ BB BHURY [
Recursive qi > 4
Case
e Else:

« “Rip out” one state
« “Repair” the machine to get an equivalent GNFA G’ | recursive definitions have:
- Recursively call GNFA®RegExpr(G) ; Dasecase and

- recursive case
(with “smaller” self-reference)

GNFA->RegExpr: “Rip/Repair” step

N @ (Ry) (Ro)* (Rs) U (Ry)
R

after

To convert a GNFA -> regular expression:

1. “rip out” one state

before 2. “repair” machine to preserve equivalence,
3. repeat until only 2 states remain

GNFAéRegExpr: “Rip/Repair” step

Before: two paths from g; to g;:
1. Not through q,,

Through q,;,
/ Q (Ry) (Ro)™ (R3) U (I12y)

after

before 2. “repair” machine to preserve equivalence,

GNFA->RegExpr: “Rip/Repair” step

R After: union of two “paths” from g; to g;
~v4 1. Not through q,;,

o o e \

o) L ED Rl (R)

) @)
after
R

2

before 2. “repair” machine to preserve equivalence,

GNFA->RegExpr: “Rip/Repair” step

Ry
o) LED B BV (R
o @ s after
R

2

before Before:
- path through q,;, has 3 transitions

- One s self-loop

GNFAéRegExpr: “Rip/Repair” step

After:
- Self loop becomes star operation
o o - Others are concat’ed together
(£21) (R)* (Ra)|U (Ry)
Q@)
Ry Rs
@ concat after
R Star operation
before Before:

- path through q,;, has 3 transitions
- One s self-loop

Thm: A Lang Is Regular iff Some Reg Expr Describes It

= If a language Is regular, then it's described by a regular expr
Need to convert DFA or NFA to Regular Expression ...

« Use GNFA>RegEXxpr to convert GNFA — equiv regular expression!

M ??? This time, let’s really

prove equivalence!
(we previously “proved” it
with some examples)

< If a language Is described by a regular expr, then it's regular
« Convert regular expression — equiv NFA!

GNFA->RegExpr function (recursive)

On GNFA input G:

Base . -
case |* [T G has 2 states, return the regular expression (from transition),
e.g..
(Ry) (R.)* (R3) U (Ry) /\ This time, let’s really
. q; > q; prove equivalence!
Recursive \/ (we previously “proved” it
CEELE with some examples)
First, show this step
e Flse: preserves equivalence

« “Rip out” one state
« “Repair” the machine to get an equivalent GNFA G’
« Recursively call GNFA»RegExpr(G)

GNFA->RegExpr: Rip/Repair Correctness

@ (Ry) (Ry)* (R3) U (Ry)

after

Must show these
are equivalent

Equivalent =
same language =
before accepts the same strings

GNFA->RegExpr: Rip/Repair Correctness

Must show these are
equivalent
R, 9

@(Ro (Ro)* (R3)|UI(R)
(v

after

Must prove:
R, R, * Every string accepted|before, Is accepted |after

e 2 Ccases:
1. Let w, = str accepted before, doesnt go through q,;,

B - |after|still accepts w; bc: both use R, transition

2. Letw, = str accepted before,|goes through q,,,

* w, accepted by |after]
V+ Yes, via our previous reasoning

~J

before

GNFA->RegExpr function (recursive)

Now we prove the whole
function preserves

. On GNFA Input G: elEla
caee | * If G has 2 states, return the regular expression (from transition),
e.g..
O\ B RY)* (R)U(Ry) T\ Thistime, lets really
. q; > q; prove equivalence!
HEEERE \/ (we previously “proved” it
CEELE with some examples)
First, show this step Z
e Flse: preserves equivalence

« “Rip out” one state
« “Repair” the machine to get an equivalent GNFA G’
« Recursively call GNFA»RegExpr(G)

GNFA>RegExpr Equivalence

» Equivalent = the language does not change (same strings)!

Statement to Prove: linput output | 2272 This time, let’s really
prove equivalence!
_ (we previously “proved” it
LANGOF (G) = LANGOF (R) vvi?h some Zxapmples)
* where:
e G=a GNFA
« R =a Regular Expression = GNFA>RegEXpr(G)

Language could be infinite set of strings!

(how can we guarantee equivalence for a possibly infinite set of strings?)

Recursion!

Inductive Proofs

(Proofs involving recursion)

Kinds of Mathematical Proof

 Deductive proof (from before)
« Start with: assumptions, axioms, and definitions
* Prove: news conclusions by making logical inferences (e.g., modus ponens)

* Proof by induction (i.e., “a proof involving recursion”) (now)
e Same as above ...
« But: use this when proving something that is recursively defined

A valid recursive definition has:
- base case(s) and
- recursive case(s) (with “smaller” self-reference)

P rO Of by ‘ n d U Ctl O n (cases match a recursive definition)

To Prove: a Statement about a recursively defined “thing” x:
1. Prove: Statement for base case of x

2. Prove: Statement for |recursive case of x:
. Assume: induction hypothesis (IH)

.e., Statement is true for{some X, jjer
« E.g,ifxis number, then “smaller” = lesser number

+ Prove: Statement for x,,..,, using IH (and known definitions, theorems ..)
» Typically: show that going from x ..., t0 X, ... Preserves Statement

A valid recursive definition has:

- base case(s) and
- recursive case(s)|(with| “smaller”|self-reference)

Natural Numbers Are Recursively Defined

A Natural Number is:

Base Case | ¢ O Self-reference

Recursive

ae . *Ork+1, where kis a Natural Number

But definition is valid because self-reference is “smaller”

So proving things about Natural Numbers
requires recursion in the proof, i.e., proof by induction!

A valid recursive definition has:
- base case and
- recursive case (with “smaller” self-reference)

Proof By Induction Example (sipser ch o)

M —1

= loan balance after t months
* t = # months
« P =principal = original amount of loan
« M = interest (multiplier)
* Y=monthly payment

t__
Prove true: P, = PM' —Y (M 1)

(Details of these variables not too important here)

Proof By Induction Example (sipser ch o)
Mt —1

M —1 ———
An proof by induction exactly

| | ; \ e
Proof: by induction on natural number ¢ (ﬁ‘e‘fewzgtjrgfz“urrﬂgzrﬂf;ﬁ;ﬁ'iﬁe

induction is “on”

Prove true: P, = PM* —Y

Base Case, t = 0: A Natural Number is:
e Goal: Show PO = P (amount owed at start = loan amount) -0
. * Ork+1,wherekisa
* Proof of Goal: 0 MY —1 natural number
P,=PM°—Y (= _p
M —1
Plugint=0

Simplify, to get to goal statement

Proof By Induction Example (sipser ch o)

A proof by induction exactly follows the

. 7\475 . 1 recursive definition (here, natural
Prove true: Pt _ PM L Y numbers) that the induction is “on
M — 1 A Natural Number is:

-0

m)+ k+1, for some nat num k

Inductive Case: t = k+ 1, for some nat num k
» Inductive Hypothesis (IH), assume statement true for some ¢ = (smaller) k

“Connect together” known |, == PM" — Y

definitions and statements M—1 Mk+1 1
\Goal statement to prove, for t = k+1. Py = PMFTL vy ([V)
Plug in IH for P, B

e Proof of Goal Simplify, to getlto goal statement

Pk:-i-l — Pﬁﬂf - Y

Definition of Loan:
amt owed in month k+1 =
amt owed in month k* interest M - amt paid Y

In-class Exercise: Proof By Induction

A proof by induction exactly follows the
recursive definition (here, natural

Prove: (Z * 1) , _— numbers) that the induction is “on”
— <

m
: A Natural Number is:
p— . 0
Z | :

: k +1, for some nat num k
1=0

Use Proof by Induction.

Make sure to clearly state what (number) the induction is “on”

Proof by Induction: CS 622 Example

Statement tO prove: LANGOF (G) = LANGOF (R=GNFA>RegExpr(G))

 Where:

* G=a GNFA Condition for GNFA»RegExpr function to be “correct”,
R =a Regular Expression | ie, the languages must be equivalent

* R=GNFA>RegEXpr(G)

* .., GNFA>RegExpr must not change the language!
 Key step: the rip/repair step
Now we are really proving equivalence!
(previously, we “proved” equivalence
with a table of examples)

last Tiwe: GNFAXREGEXpTY (recursive) function

On GNFA input G:
oo |+ If G has 2 states, return the regular expression (from the transition),

e.o..
5 @ (Ry) (Ro)* (Rs) U (Ry)
Recursive definitions have:

- base case and
- recursive case
(with a “smaller” object)

- Else:
Recursive |+ “Rip out” one state

Case . “Repair” the machine to get an equivalent GNFA ¢’
 Recursively call GNFA®RegExpr(G)

Proof by Induction: CS 622 Example

Statement 1o prove: | LANGOF (G) = LANGOF (GNFA»RegEXxpr(G))

Recursively defined “thing”

Proof: by Induction on # of states in G <L
] 1. Prove Statement is true for base case [Ghas2 states| (1)——() | por > s an ok

Plug in

base case?
Statements _—— — Justifications
1. LANGOF ((«)"~()) = LANGOF (R Plug in R 1. Definition of GNFA

2. GNFA>RegEXpr((«)"-(+))=R 2. Definition of GNFA>RegExpr
Goal LANGOF ((«)"“~(s)) = LANGOF (GNFA>RegExpr((» -“~++))) | 3. From(1)and (2)

Don't forget to write out
Statements / Justifications !

Proof by Induction: CS 622 Example

Statement 1o prove: | LANGOF (G) = LANGOF (GNFA»RegEXxpr(G))

Proof: by Induction on # of states In G
1. Prove Statement is true for base case |¢has 2 states @)L

2. Prove Statement is true for recursive case: | G has > 2 states
 Assume the induction hypothesis (IH):

. LANGOF (G')
» Statement 1s true for smaller G’ _
« Use it to prove Statement is true for larger G LANGOF (GNFA®RegExpr(G’))
- Show that going from G to G’ preserves Statement | (Where G’ has less states than G)
Don’t fo rget to write out , @ (R1) (R)* (R U (Ry) @ Show that “r|p/repa|r".Step
‘ ; converts G to smaller, equivalent G’

Statements / Justifications ! s

before

Proof by Induction: CS 622 Example

Statement 1o prove: | LANGOF (G) = LANGOF (GNFA»RegEXxpr(G))

Proof: by Induction on # of states In G
1. Prove Statement is true for base case |¢has 2 states @)L

V] 2. Prove Statement is true for recursive case: | ¢ has > 2 states
 Assume the induction hypothesis (IH):

. LANGOF (G')
« Statement 1s true for smaller G’ _
« Use it to prove Statement is true for larger G LANGOF (GNFA®RegExpr(G’))
- Show that going from G to G’ preserves Statement | (Where G’ has less states than G)
Statements Justifications
1. LANGOF (G’) = LANGOF (GNFA>RegEXpr(G’)) 1. IH
2. LANGOF (G) = LANGOF (G") . Correctness of Rip/Repair step (prev)

2
3. GNFA>RegExpr(G)=GNFA>RegExpr(G¢’) 3. Def of GNFA>RegEXxpr
Goal 4. LANGOF (G) = LANGOF (GNFA>RegEXpr(G)) 4. From (1), (2), and (3)

Thm: A Lang Is Regular iff Some Reg Expr Describes It

= If a language Is regular, it is described by a regular expr
Need to convert DFA or NFA to Regular Expression ...

i « Use GNFA>RegEXxpr to convert GNFA — equiv regular expression!

< If a language Is described by a regular expr, it is regular
V] « Convert regular expression — equiv NFA!

Now we may use regular expressions to
e p rese nt regu la r la ngs. So a regular language has these

equivalent representations:

DFA
So we also have another way to prove - NFA

things about regular languages! Regular Expression

S fa~ HoOw to Prove A Language |s Regular?

Kevy step, either:

e Construct DFA
e Construct NFA

» Create Regular Expression mmm | 3lishty different because

of recursive definition

R is a regular expression if R is
1. a for some a in the alphabet X,
2. g,
3. 0,
4. (R1 U Rs), where R; and R, are regular expressions,
5. (R1 o R), where Ry and R; are regular expressions, or
6. (R7), where R; is a regular expression.

