UMB CS 622

Non-CFLs

Wednesday, March 27, 2024

o "
& O

ﬁ/{/{d«/{&@/f{@/{f&

c HW 6
* Due Monday 4/112pm noon

CEG;S/AREAWESOME!
(g
S &
; ¥

Last Tine

Application of this class: Compilers

A program string (chars) (e.g,a : = (5 + 3) ; ..)

DFAs (recognizing
regular languages)

in here! Program “words”
(e.g., ID(a) ASSIGN LPAREN NUM(5) PLUS NUM(3) RPAREN SEMI ...)

Last [ine

Application of this class: Compilers

A program string (chars) (e.g,a : = (5 + 3) ; ..)

DFAs (recognizing
regular languages)
in here!

Program “words”
(e.g., ID(a) ASSIGN LPAREN NUM(5) PLUS NUM(3) RPAREN SEMI)

DPDAs (recognizing
DCFLs) in here!

As/signs<n Syntax tree (AST), i.e., a parse tree!

a OpExp

e

NumExp Plus NumExp
I I
5 3

Last Tine

Subclasses of CFLs

—

f}:ambiguous Grammars
A7 IO\ LRK)

DCFLs -

Programming
language parsers
[compilers are
ideally in here

{ —>

LALR(1)

SLR

LR(0)

Ambiguous
Grammars

%

2) choose “look ahead” amount |

2 parser design decisions:

1) Parse from left, or from right

All CFLS

To learn more, take a Compilers Class!

Unambiguous Grammars

LALR(1)

SLR

LR(0)

Ambiguous
Grammars

This phase needs computation that goes beyond CFLs '/

A program (string of chars)

Program “words”

Abstract Syntax tree (AST)

tastteek, Pumping Lemma for Regular Langs

« Pumping Lemma describes_how strings repeat

i / e \
Repeating pattern Y

7 nfter repeat
A non-regular language: -\
{O 1 | n 2z 0} Before repeat :]
Kleene star can’t express this pattern: ot
2nd part depends on (length of) 15t part ______|Independent /

* Q: How do CFLs repeat?

Repetition and Dependency in CFLs

Parts before/after repetition point linked (not independent)

Repetition “<_ O"#1" | n > 0
A— B { | j

B — # /zﬁ‘l\ repetition
A
A
4
O 0 0 # 1 1 1
A = 0A1 = 00A11 = 000A111 = 0005111 = 000#111

How Do Strings in CFLs Repeat?

« Strings in CFLs repeat subtrees in the parse tree

T

One repeated subtree means that it
an be repeated any number of times

7 :
/’R\

Z // \\

v v x Yy oz 5 substrings
T . T
: Linked parts
R
B
R z

U v / \\ Yy oz U Z
v x Yy

Linked parts repeat together

Pumping Lemma for CFLS

Pumping lemma for context-free languages If A is a context-free language,
then there is a number p (the pumping length) where, if s is any string in A of
length at least »_then < maw he divided into five pieces s = uvzyz satistying the

. s Two pumpable parts.
conditions But they must be pumped together! f
1. for each i > 0, wvtzy'z € A, "
2. |vy| > 0, and .
3. “U:Ey| < p. Pumping lemma If A is a regular ber p (the
pumping length) where if s is any stri ‘ % s may be
divided into three pieces, s = xyz satl 457 "

L=

1. foreachi > 0, zy'z € A, Two pumpable parts,

2. |y| > 0, and pumped together
3. |zy| < p. | Qnepumpable part Frevinsty

A Non CFL example

language B = {a"b"c"|n > 0} is not context free

Intuition
e Strings In CFLs can have two parts that are “pumped” together

« Language B requires three parts to be “pumped” together
« SO it's not a CFL!

Proof?

Pumping lemma for context-free languages If A is a context-free language,

Want to prove. apnch iS not a CFL then there is a number p (the pumping length) where, if s is any string in A of

length at least p, then s may be divided into five pieces s = uvzyz satisfying the
conditions

1. for each i > 0, uvizyiz € A;

2. |vy| > 0, and
3. Uiy|>< D. Reminder: CFL Pumping lemma says:
_ - — all strings a"b"c” > length p are splittable
Proof (by contrad |Ct|0n>: Now we must find a contradiction ... into uvxyzavvhgre vand y are pumpable
* Assume: a"b"c" IS a CFL
« So it must satisfy the pumping lemma for CFLs
« |.e,all strings = length p are pumpable [;. iradiction i
- Astring in the language
 Counterexample =|aPbPcP o S K
- Is not_splittable into uvxyz where vand y are pumpab';”

pas pbs pbs

a..n..c..

. Pumping lemma for context-free languages If A is a context-free language,
Wa nt to D rove: a"o"c" Is not a CFL then there is a number p (the pumping length) where, if s is any string in A of

length at least p, then s may be divided into five pieces s = uvayz satisfying the
conditions

Possible Splits L

3. Jvzy| < p.
Proof (by contradiction):
e Assume: a"b"c" is a CFL

« So It must satisfy the pumping lemma for CFLs
« |.e, all strings = length p are pumpable [coniradiction i

* Counterexample =|aPbPcP

- Is not_splittable into uvxyz where v and y are pumpable

e Possible SplItS (using condition # 3: |vxy| < p)

pas pbs pbs

Es:r‘pable X[+ vxyisall as
X[+ vxyis all bs —
x|+ vxyisall cs a..n..cC..
X| » yxy has as and bs J \ ' J
X] « vxy has bs and cs —
. (wg; cannot have ag bs, and cs) aPbPcP cannot be split into uvxyz DD

where vand y are pumpable VX) o oo

So a"bc! is not a CFL
(justification:
contrapositive of CFL pumping lemma)

Another Non-CFL D = {ww| w € {0,1}*}

Be careful when choosing counterexample s:(0P10P1
This s can be pumped according to CFL pumping lemma:

o1 oP1
r— —

rmmm—— —
000---000 O 1 0 000---0001
N’ N N N e

Uu U X Yy Z
Pumping v and y (together) produces string still in D! ' |
« CFL Pumping Lemma conditions:/1 1. for each ¢ > 0, uv'xy’'z € A,

So this attempt to prove that 2. |Uy| >0, and
the language is not a CFL failed. 3. |vzy| < p.
(It doesn't prove that the language is a CFL!)

Another Non-CFL D = {ww| w € {0,1}*}

* Need another counterexample string s:

If vyx is contained in first or second half, then
any pumping will break the match

0P1PQP1P

So vyx must straddle the middle
But any pumping still breaks the match because order is wrong

e CFL Pumping Lemma conditions: 1. foreachi > 0, uv'zy'z € A,
2. |vy| > 0, and

Now we have proven that 3. |vzy| < p.
this language is not a CFL!

A Practical Non-CFL

XML

« ELEMENT - <TAG>CONTENT</TAG>
« Where TAG is any string

« XML also looks like this non-CFL: D = {ww| w € {0,1}*}

* This means XML is not context-free!
« Note: HTML is context-free because ...
o ...there are only a finite number of tags,
« so they can be embedded into a finite number of rules.

In practice:

« XML is parsed as a CFL, with a CFG
« Then matching tags checked in a 2"d pass with a more powerful machine ...

et A More Powerful Machine ...

M accepts its input if it is in language: B = {w#w| w € {0,1}*}

M; = “On input string w: Infinite memory (initial contents are the input string)

1. Zig-zag across the tape to corresponding positions on either
side’ot the # symbol to check whether these positions contain
the same symbol. If they do not, or if no # is found, reject.
Cross off symbols as they are checked to keep track of which
symbols correspond.

Can move to, and read/write from
arbitrary memory locations!

