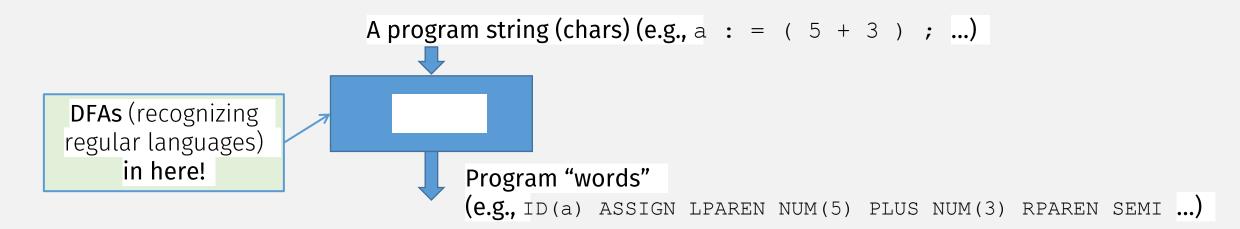
NON-CFLS

Wednesday, March 27, 2024

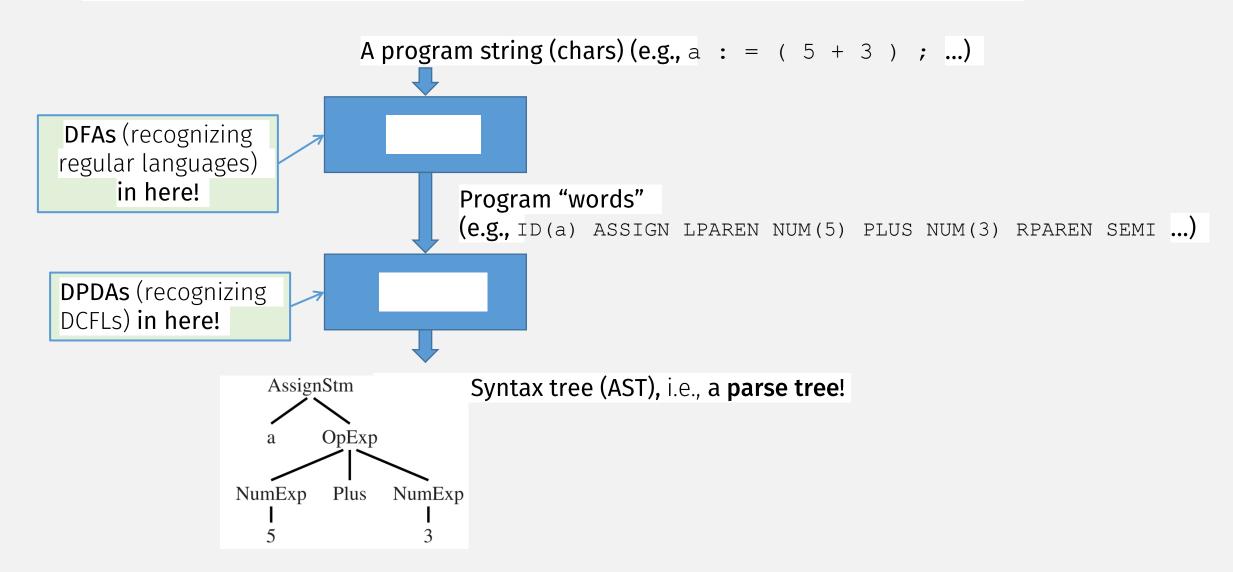
Announcements

- HW 6
 - Due Monday 4/1 12pm noon

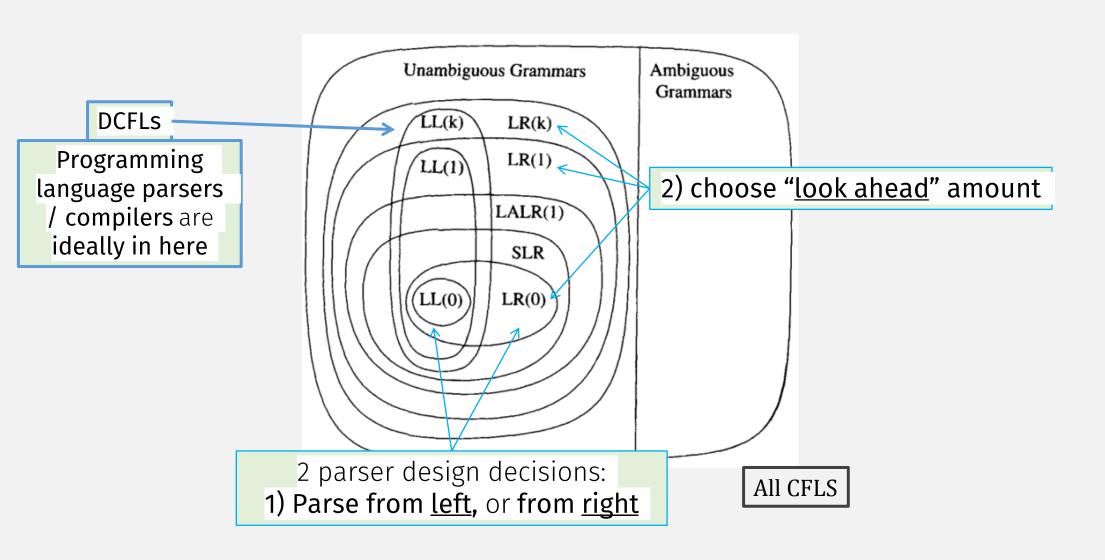
Application of this class: Compilers



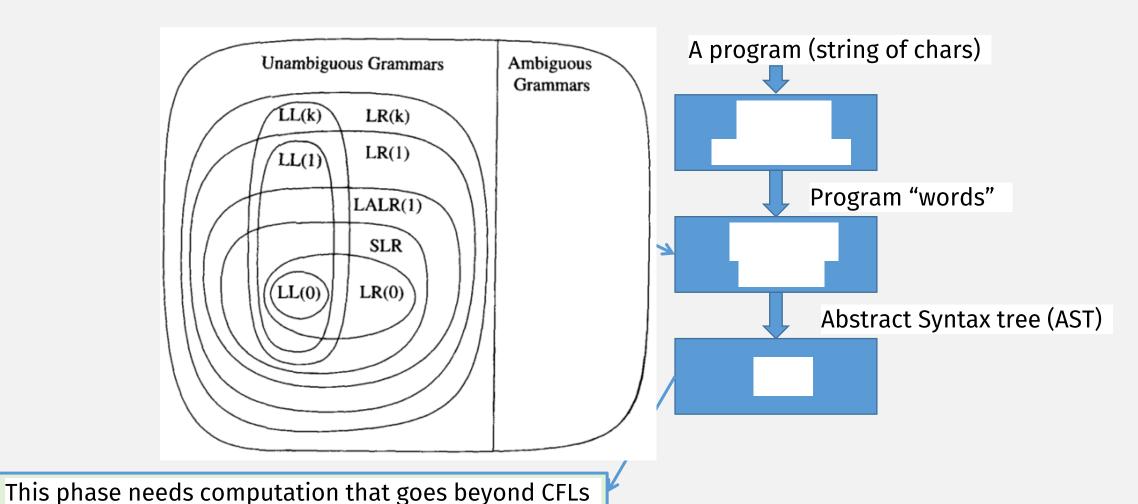
Application of this class: Compilers



Subclasses of CFLs

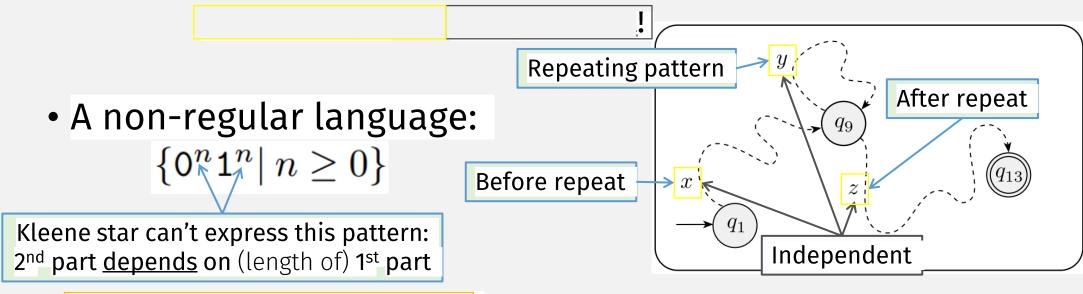


To learn more, take a Compilers Class!



Flashback: Pumping Lemma for Regular Langs

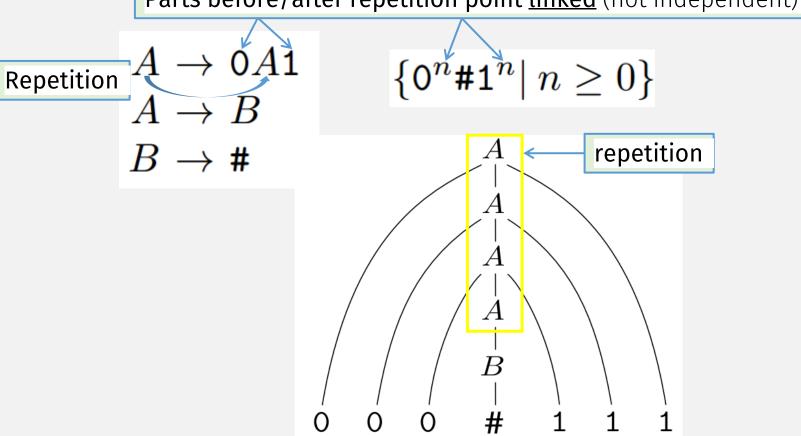
• Pumping Lemma describes how strings repeat



• Q: How do CFLs repeat?

Repetition and Dependency in CFLs

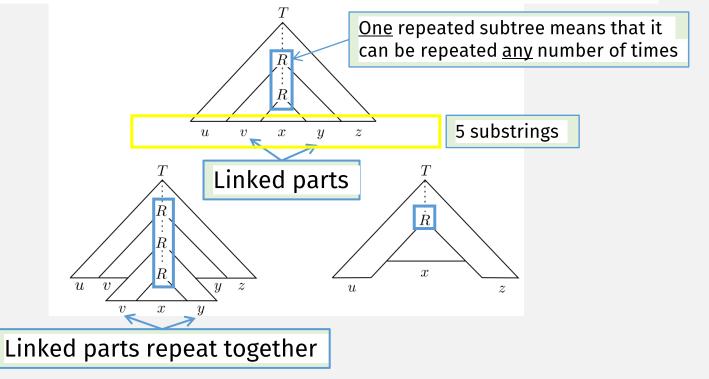
Parts before/after repetition point <u>linked</u> (not independent)



 $A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 000A111 \Rightarrow 000B111 \Rightarrow 000#111$

How Do Strings in CFLs Repeat?

• Strings in CFLs repeat subtrees in the parse tree



Pumping Lemma for CFLS

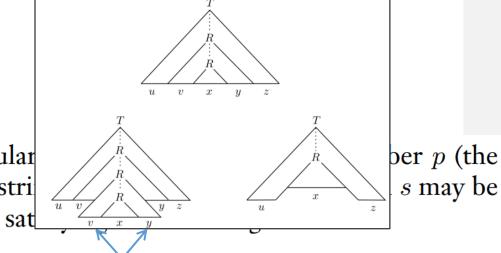
Pumping lemma for context-free languages If A is a context-free language, then there is a number p (the pumping length) where, if s is any string in A of length at least p then s may be divided into five pieces s = uvxyz satisfying the conditions

But they must be pumped together!

- **1.** for each $i \ge 0$, $uv^i xy^i z \in A$,
- **2.** |vy| > 0, and
- 3. $|vxy| \le p$.

Pumping lemma If A is a regular pumping length) where if s is any stridivided into three pieces, s = xyz sat

- 1. for each $i \geq 0$, $xy^i z \in A$,
- **2.** |y| > 0, and
- 3. $|xy| \leq p$. One pumpable part



Two pumpable parts, pumped together

Previously

A Non CFL example

language $B = \{ \mathbf{a}^n \mathbf{b}^n \mathbf{c}^n | n \ge 0 \}$ is not context free

Intuition

- Strings in CFLs can have two parts that are "pumped" together
- Language B requires three parts to be "pumped" together
- So it's not a CFL!

Proof?

Want to prove: $a^nb^nc^n$ is not a CFL

Proof (by contradiction): Now we must find a contradiction ...

- Assume: $a^nb^nc^n$ is a CFL
 - So it must satisfy the pumping lemma for CFLs
 - I.e., all strings \geq length p are pumpable
- Counterexample = $a^p b^p c^p$

Contradiction if:

- A string in the language 🗸
- ≥ length p 🔽
- Is **not_splittable** into *uvxyz* where *v* and *y* are pumpable

p bs p as p bs

Pumping lemma for context-free languages If A is a context-free language, then there is a number p (the pumping length) where, if s is any string in A of length at least p, then s may be divided into five pieces s = uvxyz satisfying the conditions

- 1. for each $i \geq 0$, $uv^i x y^i z \in A$
- **2.** |vy| > 0, and
- 3. $|vxy| \le p$.

Reminder: CFL Pumping lemma says: all strings $a^n b^n c^n \ge \text{length } p$ are splittable into uvxvz where v and v are pumpable

Want to prove: $a^nb^nc^n$ is not a CFL

Possible Splits

Proof (by contradiction):

Contradiction

Not

pumpable

- Assume: $a^nb^nc^n$ is a CFL
 - So it must satisfy the pumping lemma for CFLs
 - I.e., all strings \geq length p are pumpable
- Counterexample = $a^p b^p c^p$

Contradiction if:

- A string in the language
- $\ge \text{length } p$
- Is **not splittable** into *uvxyz* where *v* and *y* are pumpable

conditions

2. |vy| > 0, and 3. $|vxy| \le p$.

1. for each $i \geq 0$, $uv^i x y^i z \in A$,

- Possible Splits (using condition # 3: $|vxy| \le p$)
- vxy is all as
- vxy is all bs
- vxy is all cs
- vxy has as and bs
- vxy has bs and cs
 - (vxy cannot have as, bs, and cs)

 $a^p b^p c^p$ cannot be split into uvxyz

where v and y are pumpable

So $a^n b^n c^n$ is not a CFL (<u>justification</u>:

contrapositive of CFL pumping lemma)

p bs p as p bs

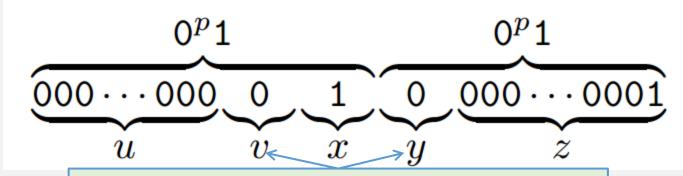
Pumping lemma for context-free languages If A is a context-free language,

then there is a number p (the pumping length) where, if s is any string in A of length at least p, then s may be divided into five pieces s = uvxyz satisfying the

Another Non-CFL $D = \{ww | w \in \{0,1\}^*\}$

Be careful when choosing counterexample s: $0^p 10^p 1$

This s can be pumped according to **CFL pumping lemma**:



Pumping v and y (together) produces string still in D!

• CFL Pumping Lemma conditions: $\boxed{1}$. for each $i \ge 0$, $uv^i xy^i z \in A$,

So <u>this attempt</u> to <u>prove</u> that the <u>language</u> is <u>not</u> a CFL <u>failed</u>.

(It <u>doesn't prove</u> that the language <u>is a CFL!</u>)

2.
$$|vy| > 0$$
, and

Another Non-CFL $D = \{ww | w \in \{0,1\}^*\}$

Need <u>another counterexample</u> string s:

If *vyx* is contained in first or second half, then any pumping will break the match

So vyx must straddle the middle

But any pumping still breaks the match because order is wrong

- CFL Pumping Lemma conditions:
- 1. for each $i \geq 0$, $uv^i xy^i z \in A$,
- **2.** |vy| > 0, and
- **3.** $|vxy| \le p$.

Now we have proven that this language is not a CFL!

A Practical Non-CFL

- XML
 - ELEMENT → <TAG>CONTENT</TAG>
 - Where TAG is any string
- XML also looks like this <u>non-CFL</u>: $D = \{ww | w \in \{0,1\}^*\}$
- This means XML is not context-free!
 - Note: HTML is context-free because ...
 - ... there are only a <u>finite</u> number of tags,
 - so they can be embedded into a finite number of rules.

<u>In practice</u>:

- XML is <u>parsed</u> as a CFL, with a CFG
- Then matching tags checked in a 2nd pass with a more powerful machine ...

Next: A More Powerful Machine ...

 M_1 accepts its input if it is in language: $B = \{w \# w | w \in \{0,1\}^*\}$

 M_1 = "On input string w:

Infinite memory (initial contents are the input string)

1. Zig-zag across the tape to corresponding positions on either side of the # symbol to check whether these positions contain the same symbol. If they do not, or if no # is found, reject. Cross off symbols as they are checked to keep track of which symbols correspond.

Can move to, and read/write from arbitrary memory locations!