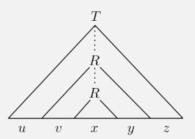
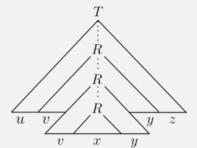
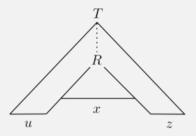
UMB CS 622 CFL Pumping Lemma

Friday, March 29, 2024

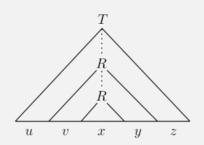


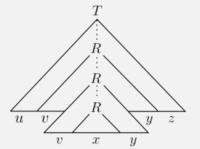


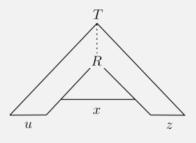


Announcements

- HW 6
 - Due Monday 4/1 12pm noon







Pumping Lemma for CFLS

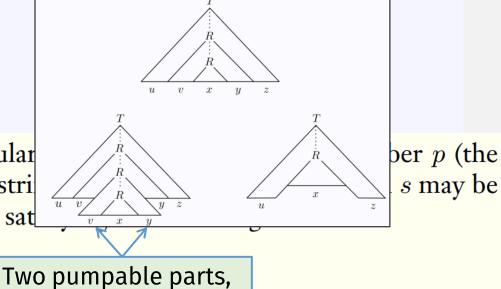
Pumping lemma for context-free languages If A is a context-free language, then there is a number p (the pumping length) where, if s is any string in A of length at least p then s may be divided into five pieces s = uvxyz satisfying the conditions

But they must be pumped together!

- **1.** for each $i \ge 0$, $uv^i xy^i z \in A$,
- **2.** |vy| > 0, and
- 3. $|vxy| \le p$.

Pumping lemma If A is a regular pumping length) where if s is any stridivided into three pieces, s = xyz sat

- 1. for each $i \geq 0$, $xy^i z \in A$,
- **2.** |y| > 0, and
- 3. $|xy| \leq p$. One pumpable part



Previously

pumped together

A Non CFL example

language $B = \{ \mathbf{a}^n \mathbf{b}^n \mathbf{c}^n | n \ge 0 \}$ is not context free

Intuition

- Strings in CFLs can have two parts that are "pumped" together
- Language B requires three parts to be "pumped" together
- So it's not a CFL!

Proof?

Want to prove: $a^nb^nc^n$ is not a CFL

Proof (by contradiction):

Now we must find a contradiction ...

- Assume: $a^nb^nc^n$ is a CFL
 - So it must satisfy the pumping lemma for CFLs
 - I.e., all strings \geq length p are pumpable
- Counterexample = $a^p b^p c^p$

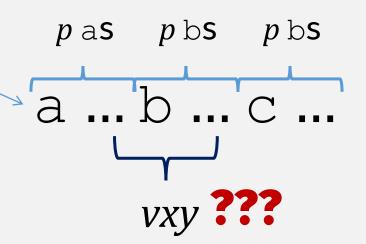
Pumping lemma for context-free languages If A is a context-free language, then there is a number p (the pumping length) where, if s is any string in A of length at least p, then s may be divided into five pieces s = uvxyz satisfying the conditions

- 1. for each $i \geq 0$, $uv^i xy^i z \in A$
- **2.** |vy| > 0, and
- **3.** $|vxy| \le p$.

Reminder: CFL Pumping lemma says: all strings $a^nb^nc^n \ge length p$ are splittable into uvxyz where v and y are pumpable

Contradiction if:

- A string in the language 🗹
- ≥ length p
- Is **not splittable** into *uvxyz* where *v* and *y* are pumpable



Want to prove: $a^nb^nc^n$ is not a CFL

Possible Splits

Proof (by contradiction):

Contradiction

Not

- Assume: $a^n b^n c^n$ is a CFL
 - So it must satisfy the pumping lemma for CFLs
 - I.e., all strings \geq length p are pumpable
- Counterexample = $a^p b^p c^p$

Contradiction if:

- A string in the language
- \geq length p
- Is **not splittable** into *uvxyz* where *v* and *y* are pumpable

conditions

2. |vy| > 0, and 3. $|vxy| \le p$.

1. for each $i \geq 0$, $uv^i x y^i z \in A$,

- Possible Splits (using condition # 3: $|vxy| \le p$)
- vxy is all as pumpable
 - vxy is all bs
 - vxy is all cs
 - 🗷 vxy has as and bs
 - ✓ vxy has bs and cs
 - (vxy cannot have as, bs, and cs --- bc of condition #3)

p bs p bs

Pumping lemma for context-free languages If *A* is a context-free language,

then there is a number p (the pumping length) where, if s is any string in A of length at least p, then s may be divided into five pieces s = uvxyz satisfying the

So $a^nb^nc^n$ is not a CFL

(<u>justification</u>:

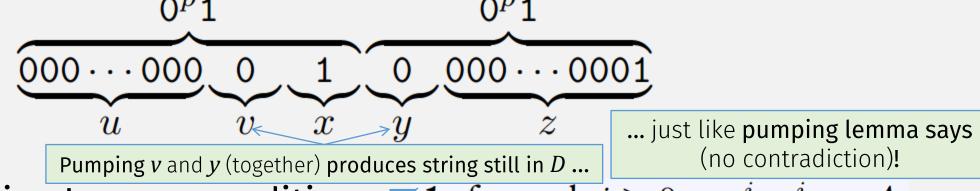
contrapositive of CFL pumping lemma)

 $a^pb^pc^p$ cannot be split into uvxyzwhere *v* and *y* are pumpable!

Another Non-CFL $D = \{ww | w \in \{0,1\}^*\}$

Be careful when choosing counterexample $s: 0^p 10^p 1$

This s can be pumped according to CFL pumping lemma:



• CFL Pumping Lemma conditions: \square 1. for each $i \ge 0$, $uv^i xy^i z \in A$,

So <u>this attempt</u> to <u>prove</u> that the <u>language</u> is <u>not</u> a <u>CFL failed</u>. (It <u>doesn't prove</u> that the language <u>is a CFL!</u>)

2.
$$|vy| > 0$$
, and

Another Non-CFL $D = \{ww | w \in \{0,1\}^*\}$

Need another counterexample string s:

If vyx is contained in first or second half, then any pumping will break the match

$$\boxed{0^p 1^p 0^p 1^p}$$

e.g.,
$$\mathbf{0}^{p}\mathbf{1}^{p-1}\mathbf{10} \mathbf{0}^{p-1}\mathbf{1}^{p}$$

So vyx must straddle the middle

But any pumping still breaks the match because order is wrong

- CFL Pumping Lemma conditions: 1. for each $i \ge 0$, $uv^i xy^i z \in A$,

 - **2.** |vy| > 0, and
 - 3. $|vxy| \le p$.

Now we have proven that this language is **not a CFL!**

A Practical Non-CFL

- XML
 - ELEMENT → <TAG>CONTENT</TAG>
 - Where TAG is any string
- XML also looks like this <u>non-CFL</u>: $D = \{ww | w \in \{0,1\}^*\}$
- This means XML is not context-free!
 - Note: HTML is context-free because ...
 - ... there are only a finite number of tags,
 - so they can be embedded into a finite number of rules.

In practice:

- XML is <u>parsed</u> as a CFL, with a CFG
- Then matching tags checked in a 2nd pass with a more powerful machine ...

Next: A More Powerful Machine ...

 M_1 accepts its input if it is in language: $B = \{w \# w | w \in \{0,1\}^*\}$

 $M_1 =$ "On input string w:

Infinite memory (initial contents are the input string)

1. Zig-zag across the tape to corresponding positions on either side of the # symbol to check whether these positions contain the same symbol. If they do not, or if no # is found, reject. Cross off symbols as they are checked to keep track of which symbols correspond.

Can move to, and read/write from arbitrary memory locations!