CS622 Reducibility

Wednesday, April 24, 2024

I described some of the most beautiful and famous mathematical theorems to Midjourney.

Here is how it imagined them:

1. "The set of real numbers is uncountably infinite."

Announcements

- HW 9 in - Due Wed 4/24 12pm noon
- HW 10 out
	- Due Wed 5/1 12pm noon

I described some of the most beautiful and famous mathematical theorems to Midjourney.

Here is how it imagined them:

1. "The set of real numbers is uncountably infinite."

Last Time

<u>Thm:</u> A_{TM} is undecidable

 $A_{TM} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w \}$

Proof by contradiction:

Assume A_{TM} is decidable. So there exists a decider *H* for it: 1.

$$
H\bigl(\langle M, w\rangle\bigr) = \begin{cases} accept & \text{if M accepts w} \\ reject & \text{if M does not accept w}\end{cases}.
$$

Using Examples (Tables) to understand these kinds of problems are critical!

2. <u>Use H</u> in another TM ... the impossible "opposite" machine:

 $D =$ "On input $\langle M \rangle$, where M is a TM:

- *-* If *D* accepts $\langle D \rangle$, *then D rejects (D)*
- *If D rejects* $\langle D \rangle$ *, D* **D** accepts $\langle D \rangle$
- *D* result with input (D)? 1. Run H on input $\langle M, \langle M \rangle \rangle$ \Longleftarrow H computes: M's result with (M)
	- 2. Output the opposite of what H outputs. That is, if H accepts, *reject*; and if H rejects, $accept$." \longleftarrow D returns opposite of H

Last Time

3 Easy Steps! Thm: A_{TM} is undecidable $A_{TM} = \{ \langle M, w \rangle | M$ is a TM and M accepts w

<u>Proof</u> by contradiction: This cannot be true

<u>Assume</u> A_{TM} is decidable. So there exists a decider *H* for it: 1.

$$
H\bigl(\langle M, w \rangle\bigr) = \begin{cases} accept & \text{if } M \text{ accepts } w \\ reject & \text{if } M \text{ does not accept } w \end{cases}
$$

- 2. Use *H* in another TM ... the impossible "opposite" machine: $D = \Theta$ input $\langle M \rangle$, where M is a TM:
	- 1. Run H on input $\langle M, \langle M \rangle \rangle$.
	- 2. Output the opposite of what H outputs. That is, if H accepts, *reject*; and if H rejects, *accept.*"
- 3. So *D* does not exist! **Contradiction**! So the assumption is false.

Easier Undecidability Proofs

- We proved $A_{TM} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w \}$ undecidable ...
- ... by contradiction:
	- <u>Use</u> hypothetical $A_{\sf TM}$ decider to create an <u>impossible</u> decider "*D*

D A

- Step # 1: coming up with "D
	- Need to invent diagonalization

Known undecidable lang!

• Step # 2: **reduce** "D" problem to A

• From now on: undecidability proofs only need step # 2! • And we now have two "impossible" problems to choose from

The Halting Problem

 $HALT_{TM} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ halts on input } w \}$

Thm: *HALT*_{TM} is undecidable

Proof, by contradiction:

Let $\langle M, \rangle$

where:

 W ^{$\vert S$}

• $\underline{Assume: } HALT_{TM}$ has *decider R*; use it to create decider for A_{TM} :

Examples Table(s) are critical for these kinds of problems!

The Halting Problem

 $HALT_{TM} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ halts on input } w \}$

Thm: *HALT*_{TM} is undecidable **Proof**, by contradiction:

•

reduce (from known undecidable) A_{TM} to $HALT_{TM}$

• \triangle ssume: *HALT*_{TM} has *decider R*; use it to create decider for A_{TM} :

 $A_{\text{TM}} = \{ \langle M, w \rangle | M \}$ is a TM and M accepts $w \}$

contradiction

• But A_{TM} is undecidable and has no decider!

The Halting Problem

 $HALT_{TM} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ halts on input } w \}$

Thm: *HALT*_{TM} is undecidable

Proof, by contradiction: <u>Using our hypothetical HALT_{TM} decider R</u>

• \triangle ssume: *HALT*_{*IM*} has *decider, R*; use it to create decider for A_{TM} :

 $A_{TM} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w \}$

- $S =$ "On input $\langle M, w \rangle$ an encoding of a TM M and a string w:
	- **1.** Run TM R on input $\langle M, w \rangle$.
	- 2. If R rejects, $reject. \leftarrow$ If R rejects $\langle M, w \rangle$, M loops on input w, so S rejects
	- 3. If R accepts, simulate M on w until it halts. \leftarrow This step always halts

4. If M has accepted, accept; if M has rejected, reject."

Examples Table??

Termination argument: Step 1: *R* is a decider so always halts Step 3: *M* always halts because *R* said so

Examples Table??

Undecidability Proof Technique #1:Reduce from known undecidable language (by creating its decider)

 $HALT_{TM} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ halts on input } w \}$

Thm: *HALT*_{TM} is undecidable **Proof**, by contradiction:

The Halting Problem

- \triangle ssume: *HALT*_{*IM*} has *decider R*; use it to create decider for A_{TM} :
	- $S =$ Comput $\langle M, w \rangle$, an encoding of a TM M and a string w:
		- 1. Run IM-R on input $\langle M, w \rangle$.
		- 2. If R rejects, reject.
		- 3. If R accepts, simulate M on w until it halts.
		- 4. If M has accepted, accept; if M has rejected, reject."
- But A_{TM} is undecidable (has no decider)! I.e., this decider does not exist!
	- So *HALT_{TM}* is also undecidable!

Now we have three known undecidable langs, i.e., three "impossible" deciders, to choose from

The Halting Problem ... As Statements / Justifications $HALT_{TM} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ halts on input } w \}$

(Proof by contradiction)

Statements

- 1. *HALT*_{TM} is decidable
- *HALT*_{*rm*} has decider R $2.$
- 3. Construct decider S **using R** ("see below")
- 4. Decider *S* decides A_{TM}
- 5. A_{TM} is undecidable (i.e. it has no decider)
- 6. *HALT*_{TM} is undecidable

Justifications

- 1. Opposite of statement to prove
- 2. Definition of decidable langs
- 3. Definition of TMs and deciders (incl termination argument)
- 4. See Examples Table
- 5. Theorem from last lecture (Sipser Theorem 4.11)
- 6. Contradiction of Stmts #4 & #5

Interlude: Reducing from HALT_{TM}

A practical thought experiment about compiler optimizations

Your compiler changes your program!

If TRUE then A else B
$$
\rightarrow
$$
 A
1 + 2 + 3 \rightarrow 6

Compiler Optimizations

Optmization - docs

\circ -00

- . No optmization, faster compilation time, better for debugging builds.
- \circ -02
- \circ -03
	- . Higher level of optmization. Slower compiletime, better for production builds.
- \circ -OFast
	- . Enables higher level of optmization than (-03). It enables lots of flags as can be seen src (-ffloat-store, -ffsast-math, -ffinite $math>-03$...)
- -finline-functions
- \circ -m64
- -funroll-loops
- \circ -fvectorize
- -fprofile-generate

Types of optimization [edit]

Techniques used in optimization can be broken up among various scopes which can affect anything from a single statement to the entire program. Generally speaking, locally scoped techniques are easier to implement than global ones but result in smaller gains. Some examples of scopes include:

Peephole optimizations

These are usually performed late in the compilation process after machine code has been generated. This form of optimization examines a few adjacent instructions (like "looking through a peephole" at the code) to see whether they can be replaced by a single instruction or a shorter sequence of instructions.^[2] For instance, a multiplication of a value by 2 might be more efficiently executed by left-shifting the value or by adding the value to itself (this example is also an instance of strength reduction).

Local optimizations

These only consider information local to a basic block.^[3] Since basic blocks have no control flow, these optimizations need very little analysis, saving time and reducing storage requirements, but this also means that no information is preserved across jumps. **Global optimizations**

These are also called "intraprocedural methods" and act on whole functions.^[3] This gives them more information to work with, but often makes expensive computations necessary. Worst case assumptions have to be made when function calls occur or global variables are accessed because little information about them is available

Loop optimizations

These act on the statements which make up a loop, such as a for loop, for example loop-invariant code motion. Loop optimizations can have a significant impact because many programs spend a large percentage of their time inside loops. $[4]$

Prescient store optimizations

These allow store operations to occur earlier than would otherwise be permitted in the context of threads and locks. The process needs some way of knowing ahead of time what value will be stored by the assignment that it should have followed. The purpose of this relaxation is to allow compiler optimization to perform certain kinds of code rearrangement that preserve the semantics of properly synchronized programs.[5]

Interprocedural, whole-program or link-time optimization

These analyze all of a program's source code. The greater quantity of information extracted means that optimizations can be more effective compared to when they only have access to local information, i.e. within a single function. This kind of optimization can also allow new techniques to be performed. For instance, function inlining, where a call to a function is replaced by a copy of the function body.

Machine code optimization and object code optimizer

These analyze the executable task image of the program after all of an executable machine code has been linked. Some of the techniques that can be applied in a more limited scope, such as macro compression which saves space by collapsing common sequences of instructions, are more effective when the entire executable task image is available for analysis.^[6]

The Optimal Optimizing Compiler

"Full Employment" Theorem

Thm: The Optimal $(C++)$ Optimizing Compiler does not exist **Proof**, by contradiction:

Assume: OPT is the Perfect Optimizing Compiler

*HALT*_{TM} decider (accepts <*M*,*w*> if *M* halts with *w*

 $S =$ On input <*M*, w >, where *M* is C++ program and w

• If $OPT(M) ==$ a) Then Reject b) Else Accept

In computer science and mathematics, a full employment theorem is a term used, often humorously, to refer to a theorem which states that no algorithm can optimally perform a particular task done by some class of professionals. The name arises because such a theorem ensures that there is endless scope to keep discovering new techniques to improve the way at least some specific task is done.

For example, the full employment theorem for compiler writers states that there is no such thing as a provably perfect size-optimizing compiler, as such a proof for the compiler would have to detect nonterminating computations and reduce them to a one-instruction infinite loop. Thus, the existence of a provably perfect size-optimizing compiler would imply a solution to the halting problem, which cannot exist. This also implies that there may always be a better compiler since the proof that one has the best compiler cannot exist. Therefore, compiler writers will always be able to speculate that they have something to improve.

Summary: The Limits of Algorithms

- $A_{DFA} = \{ \langle B, w \rangle | B \text{ is a DFA that accepts input string } w \}$
- $A_{CFG} = \{ \langle G, w \rangle | G$ is a CFG that generates string w
- $A_{TM} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w \}$

Decidable

Similar

languages

Decidable

Undecidable

• $HALT_{TM} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ halts on input } w \}$

Undecidable

It's straightforward to use hypothetical *HALT_{TM}* decider to **create A_{TM}** decider

Summary: The Limits of Algorithms

- $A_{DFA} = \{ \langle B, w \rangle | B \text{ is a DFA that accepts input string } w \}$
- $A_{CFG} = \{ \langle G, w \rangle | G$ is a CFG that generates string w
- $A_{TM} = \{ \langle M, w \rangle | \overline{M} \text{ is a TM and } \overline{M} \text{ accepts } w \}$
- $HALT_{TM} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ halts on input } w \}$
- $E_{\text{DFA}} = \{ \langle A \rangle | A \text{ is a DFA and } L(A) = \emptyset \}$
- $E_{CFG} = \{ \langle G \rangle | G$ is a CFG and $L(G) = \emptyset \}$

next \bullet $E_{\text{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$

Decidable Decidable Undecidable Undecidable Decidable Decidable Undecidable

How can we use a hypothetical E_{TM} decider to create A_{TM} or $HALT_{TM}$ decider?

Not as similar

languages

Reducibility: Modifying the TM

$$
E_{\mathsf{TM}} = \{ \langle M \rangle | \ M \text{ is a TM and } L(M) = \emptyset \}
$$

Γ hm: E _{TM} is undecidable **Proof**, by contradiction:

• Assume E_{TM} has *decider R*; use it to create *decider* for A_{TM} :

 $S =$ "On input $\langle M, w \rangle$, an encoding of a TM M and a string w:

- RUIL A OIL IIIPUL $\langle M \rangle$ (sometimes), but ...? \boxtimes These must match (like before) Ø
	- If R accepts, $reject$ (because it means $\langle M \rangle$ doesn't accept anything)
	- if R rejects, then ??? $(\langle M \rangle)$ accepts something, but is it w???)

Reducibility: Modifying the TM

$$
E_{TM} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}
$$

 Γ hm: E _{TM} is undecidable **Proof**, by contradiction:

- Assume E_{TM} has *decider R*; use it to create *decider* for A_{TM} :
	- $S =$ "On input $\langle M, w \rangle$, an encoding of a TM M and a string w:
		- Run R on input $\langle M \rangle$
		- If R accepts, reject (because it means $\langle M \rangle$ doesn't accept anything)
		- if R rejects, then ??? $\langle \langle M \rangle$ accepts something, but is it w??? $L(M_1)$ on *M* and *w*!

If *M* accepts *w*,

• <u>Idea</u>: Wrap $\langle M \rangle$ in a new TM that can only (maybe) accept w. $L(M_1) = \{w\}$ $L(M_1) = \{\}$

 $M_1 =$ "On input x:

1. If $x \neq w$, reject. Input not w, always reject

Input is w, maybe accept -2 . If $x = w$, run M on input w and $accept$ if M does." M₁ accepts w if M does

Reducibility: Modifying the TM $\left| {E_{{\rm{TM}}}} = \left\{ {\left\langle M \right\rangle } \right|M\text{ is a TM and }L(M) = \emptyset } \right\}$ Thm: E_{TM} is undecidable **Proof**, by contradiction Now opposites! $\overline{\mathbf{M}}$

- Assume E_{TM} has decider R_i use it to create decider for A_{TM} :
	- $S =$ "On input $\langle M, w \rangle$, an encoding of a TM M and a string w:

• <u>Idea</u>: Wrap $\langle M \rangle$ in a new TM that can only (maybe) accept w. $L(M_1) = \{w\}$ $L(M_1) = \{\}$

 $M_1 =$ "On input x:

1. If $x \neq w$, reject.

2. If $x = w$, run M on input w and accept if M does."

Reducibility: Modifying the TM

$$
E_{\text{TM}} = \{ \langle M \rangle | \ M \text{ is a TM and } L(M) = \emptyset \}
$$

 Γ hm: E _{TM} is undecidable **Proof**, by contradiction:

- Assume E_{TM} has *decider R*; use it to create *decider* for A_{TM} :
	- $S = \frac{W_0 \cdot W_1}{\sinh W_1}$ (*M*, *w*), an encoding of a TM *M* and a string *w*:
		- \bullet $\overline{\text{Run }R \text{ on input }\langle M_{\bigsqcup} \longleftarrow \text{Note: } M_1 \text{ is only used as arg to } R}$
		- If R accepts, reject (because it means $\langle M \rangle$ doesn't accept $L(M_1)$ *w*
		- if R rejects, then *accept* $(\langle M \rangle)$ accepts we we have a set of \mathbb{R}^n on M and $w!$
- <u>Idea</u>: Wrap $\langle M \rangle$ in a new TM that can only (maybe) accept w . $L(M_1) = \{w\}$ If M accepts w , $L(M_1) = \{\}$
	- M_1 = "On input x:
		- 1. If $x \neq w$, reject.
		- 2. If $x = w$, run M on input w and accept if M does."

Reducibility: Modifying the TM

 $E_{TM} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$ **Proof**, by contradiction:

$$
\mathcal{L}^{\mathcal{L}}(\mathcal{L}
$$

This decider for A_{TM} cannot exist!

- Assume E_{TM} has decider R; use it to create decider for A
	- *M* 1
		- **Run** R on input $\langle M_1 \rangle$

Thm *E*

- •
• • If R accepts, reject (because it means $\langle M \rangle$ doesn't accept *w*
- if R rejects, then \sqrt{accept} *w w*
- $\underline{\text{Idea}}$: Wrap $\langle M \rangle$ in a new TM that can only (maybe) accept w:

 M_1 = "On input x: 1. If $x \neq w$, reject. 2. If $x = w$, run M on input w and accept if M does."

Summary: The Limits of Algorithms

- $A_{DFA} = \{ \langle B, w \rangle | B \text{ is a DFA that accepts input string } w \}$
- $A_{CFG} = \{ \langle G, w \rangle | G$ is a CFG that generates string w
- $A_{TM} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w \}$
- $E_{\text{DFA}} = \{ \langle A \rangle | A \text{ is a DFA and } L(A) = \emptyset \}$
- $E_{\text{CFG}} = \{ \langle G \rangle | G \text{ is a CFG and } L(G) = \emptyset \}$
- $E_{TM} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$
- $EQ_{DFA} = \{ \langle A, B \rangle | A \text{ and } B \text{ are } DFA \text{ and } L(A) = L(B) \}$
- $EQ_{\text{CFG}} = \{ \langle G, H \rangle | G \text{ and } H \text{ are CFGs and } L(G) = L(H) \}$

• $EQ_{TM} = \{ \langle M_1, M_2 \rangle | M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$ $next$

Decidable Decidable Undecidable Decidable Decidable **Undecidable** Decidable Undecidable Undecidable

needs

Reduce to something else: EQ_{TM} is undecidable $|EQ_{\text{TM}} = \{\langle M_1, M_2 \rangle | M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2)\}|$ **Proof**, by contradiction:

- Assume: EQ_{TM} has decider R; use it to create decider for $A_{TM}^{E_{TM}E}$. $E_{\text{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$
- $S =$ "On input $\langle M \rangle$, where M is a TM:
	- 1. Run R on input $\langle M, M_1 \rangle$, where M_1 is a TM that rejects all inputs.
	- 2. If R accepts, $accept$; if R rejects, reject."

<u>Reduce to something else</u>: EQ_{TM} is undecidable $EQ_{TM} = \{ \langle M_1, M_2 \rangle | M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$ Proof, by contradiction:

• $\underline{\begin{array}{c} \textrm{Assume: } EQ_{TM} \end{array}}$ has *decider R*; use it to create *decider* for E_{TM} :

 $S \equiv \Theta$ A input $\langle M \rangle$, where M is a TM:

1. Run R on input $\langle M, M_1 \rangle$, where M_1 is a TM that rejects all inputs.

 $=\{ \langle M \rangle | M$ is a TM and $L(M) = \emptyset \}$

- 2. If R accepts, accept; if R rejects, reject."
- But E_{TM} is undecidable!

Sammary: Undecidability Proof Techniques

 $A_{\text{TM}} = \{ \langle M, w \rangle | M$ is a TM and M accepts $w \}$ • Proof Technique #1: • Use hypothetical decider to implement impossible A_{TM} decider

Reduce

Reduce

• Example Proof: $HALT_{TM} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ halts on input } w \}$

• Proof Technique #2:

• Use hypothetical decider to implement impossible A_{TM} decider

• But first modify the input M

Can also combine

techniques

these

• Example Proof: $E_{TM} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$

- Proof Technique #3:
	- Use hypothetical decider to implement $\underline{\text{non-}A_{TM}}$ impossible decider \downarrow
	- Example Proof: $EQ_{TM} = \{ \langle M_1, M_2 \rangle | M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$

Summary: Decidability and Undecidability

- $A_{DFA} = \{ \langle B, w \rangle | B \text{ is a DFA that accepts input string } w \}$
- $A_{CFG} = \{ \langle G, w \rangle | G$ is a CFG that generates string w
- $A_{TM} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w \}$
- $E_{\text{DFA}} = \{ \langle A \rangle | A \text{ is a DFA and } L(A) = \emptyset \}$
- $E_{\text{CFG}} = \{ \langle G \rangle | G$ is a CFG and $L(G) = \emptyset \}$
- $E_{TM} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$
- $EQ_{DFA} = \{ \langle A, B \rangle | A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}$
- $EQ_{CFG} = \{ \langle G, H \rangle | G \text{ and } H \text{ are CFGs and } L(G) = L(H) \}$
- $EQ_{TM} = \{ \langle M_1, M_2 \rangle | M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$

Decidable Decidable Undecidable Decidable Decidable **Undecidable** Decidable Undecidable Undecidable

Also Undecidable ...

• $REGULAR_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a regular language} \}$ next

Thm: *REGULAR*TM is undecidable Modify input TM M

 $REGULAR_{TM} = \{ \langle M \rangle | M \text{ is a TM and } L(M) \text{ is a regular language} \}$

Proof, by contradiction:

- \triangle ssume: REGULAR_{TM} has decider R; use it to create decider for A_{TM} :
	- $S =$ "On input $\langle M, w \rangle$, an encoding of a TM M and a string w:
		- <u>First</u>, construct M₂
		- Run R on input $\langle M_{{\bf |2}} \rangle$
		- If R accepts, accept; if R rejects, reject

 $\underline{\text{Want}}$: $L(M_2)$ =

- **regular, if M accepts w**
- **nonregular,** if M does not accept w

Thm: $REGULAR_{TM}$ is undecidable (continued)

 $|REGULAR_{TM} = \{ \langle M \rangle | M \text{ is a TM and } L(M) \text{ is a regular language} \}$

Also Undecidable ...

Seems like no algorithm can compute anything about the language of a Turing Machine, i.e., about the runtime behavior of programs ...

- *REGULAR*_{TM} = $\{*M*>(*M*) is a TM and *L*(*M*) is a regular language\}$
- *CONTEXTFREE*_{TM} = $\{*M*>(*M*)$ is a TM and $L(M)$ is a CFL}
- *DECIDABLE*_{TM} = $\{*M*>(*M*)$ is a TM and $L(M)$ is a decidable language
- *FINITE*_{TM} = $\{*M*>(*M*)$ is a TM and $L(M)$ is a finite language

An Algorithm About Program Behavior?

 $main()$

printf("hello, world\n");

 $\{$

Write a program that, given another program as its argument, returns TRUE if that argument prints "Hello, World!"

TRUE

Also Undecidable ...

•

 $\ddot{\bullet}$

Seems like no algorithm can compute anything about the language of a Turing Machine, i.e., about the runtime behavior of programs ...

- *REGULAR*_{TM} = $\{*M*>(*M*)$ is a TM and $L(M)$ is a regular language
- *CONTEXTFREE*_{TM} = $\{*M*>(*M*)$ is a TM and $L(M)$ is a CFL}
- *DECIDABLE*_{TM} = $\{*M*>(*M*)$ is a TM and $L(M)$ is a decidable language
- *FINITE*_{TM} = $\{*M*>(*M*)$ is a TM and $L(M)$ is a finite language

Rice's Theorem

• $ANYTHING_{TM} = \{*M*>(*M*)\}$ *M* is a TM and "… **anything** ..." about $L(M)$ }

Rice's Theorem: ANYTHING_{TM} is Undecidable

*ANYTHING*_{TM} = $\{*M*>(*M*)\}$ *M* is a TM and ... **anything** ... about $L(M)$ }

- "... Anything ...", more precisely: For any M_1 , M_2 ,
	- if $L(M_1) = L(M_2)$
	- then $M_1 \in ANYTHING_{TM} \Leftrightarrow M_2 \in ANYTHING_{TM}$
- Also, "... Anything ..." must be "non-trivial":
	- $ANYTHING_{TM}$!= {}
	- *ANYTHING*_{TM}!= set of all TMs

Rice's Theorem: ANYTHING_{TM} is Undecidable

*ANYTHING*_{TM} = $\{*M*>(*M*)\}$ *M* is a TM and ... **anything** ... about *L*(*M*)}

Proof by contradiction

- Assume some language satisfying *ANYTHING*_{TM} has a decider R.
	- Since $ANYTHING_{TM}$ is non-trivial, then there exists $M_{ANY} \in ANYTHING_{TM}$
	- Where *R* accepts M_{ANY}
- Use R to create decider for A_{TM} :

Rice's Theorem Implication

 $\{<\!M\}$ | *M* is a TM that installs malware}

Undecidable! (by Rice's Theorem)

