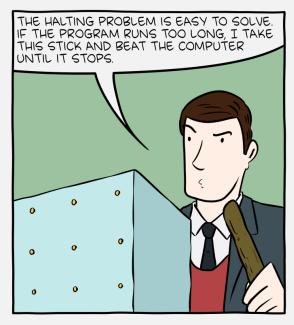
CS622 Reducibility by "Modifying the TM"

Friday, April 26, 2024

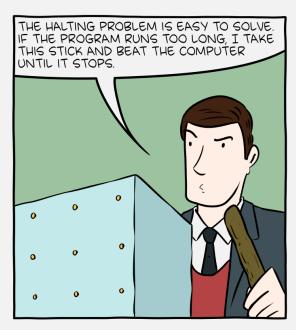


What if Alan Turing had been an engineer?

Announcements

- HW 10 out
 - Due Wed 5/1 12pm noon

- 5/1: HW 11 out
- 5/8: HW 11 in, HW 12 out
- 5/8: last lecture
- 5/15: HW 12 in (no exceptions)



What if Alan Turing had been an engineer?

Summary: The Limits of Algorithms

- $A_{\mathsf{DFA}} = \{ \langle B, w \rangle | \ B \text{ is a DFA that accepts input string } w \}$
- $A_{\mathsf{CFG}} = \{ \langle G, w \rangle | G \text{ is a CFG that generates string } w \}$
- $A_{\mathsf{TM}} = \{\langle M, w \rangle | \ M \text{ is a TM and } M \text{ accepts } w\}$ Similar languages
- $HALT_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ halts on input } w \}$

It's straightforward to use hypothetical $HALT_{TM}$ decider to create A_{TM} decider

Decidable

Decidable

Undecidable

Undecidable

Summary: The Limits of Algorithms

- $A_{\mathsf{DFA}} = \{ \langle B, w \rangle | \ B \text{ is a DFA that accepts input string } w \}$
- $A_{\mathsf{CFG}} = \{ \langle G, w \rangle | G \text{ is a CFG that generates string } w \}$
- $A_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w \}$
- $HALT_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ halts on input } w \}$
- $E_{\mathsf{DFA}} = \{ \langle A \rangle | A \text{ is a DFA and } L(A) = \emptyset \}$
- $E_{\mathsf{CFG}} = \{ \langle G \rangle | G \text{ is a CFG and } L(G) = \emptyset \}$

Not as similar languages

next • $E_{\mathsf{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$

How can we use a hypothetical E_{TM} decider to create A_{TM} or $HALT_{TM}$ decider?

Decidable

Decidable

Undecidable

Undecidable

Decidable

Decidable

Undecidable

Reducibility: Modifying the TM

Thm: E_{TM} is undecidable

Proof, by **contradiction**:

 $E_{\mathsf{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$

• Assume E_{TM} has decider R; use it to create decider for A_{TM} :

S = "On input $\langle M, w \rangle$, an encoding of a TM M and a string w:

"expected" result • Run R on input $\langle M \rangle$ R doesn't help all cases

• If R accepts, reject (because it means $\langle M \rangle$ doesn't accept anything)

no w

• if R rejects, then ??? ($\langle M \rangle$ accepts something, but is it w???)

	1			V	
Let $\langle M, w \rangle$ be a string	String	<i>M</i> on <i>w</i>	<i>R</i> on (<i>M</i>)	S on $\langle M, w \rangle$	In lang A_{TM} ?
where: - <i>M</i> is some TM and	$\langle M, w \rangle$	Accept	Reject, <i>L</i> (<i>M</i>)=??	??	Yes
- w is some string	$\langle M, w \rangle$	Reject	Accept, <i>L</i> (<i>M</i>)={}	Reject	No
"Problem" case,	$\langle M, w \rangle$	Loop	Accept, <i>L</i> (<i>M</i>)={} K	Reject	No
use R to help			no) W	

for A_{TM} decider S

Example Table

 $E_{\mathsf{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$

Reducibility: Modifying the TM

Thm: E_{TM} is undecidable

Proof, by **contradiction**:

• Assume E_{TM} has decider R; use it to create decider for A_{TM} :

S = "On input $\langle M, w \rangle$, an encoding of a TM M and a string w:

- Run R on input $\langle M \rangle$
- If R accepts, reject (because it means $\langle M \rangle$ doesn't accept anything)
- if R rejects, then ??? $(\langle M \rangle)$ accepts something, but is it w??? $L(M_1)$ depends
- Idea: Wrap $\langle M \rangle$ in a new TM that can only (maybe) accept w. $L(M_1) = \{w\}$

$$M_1$$
 = "On input x :

1. If $x \neq w$, reject. Input not w, always reject

Input is w, maybe accept -2. If x = w, run M on input w and accept if M does."

 M_1 accepts w if M does

on M and w!

If *M* accepts *w*,

else $L(M_1) = \{\}$

 $E_{\mathsf{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$

Reducibility: Modifying the TM

Thm: E_{TM} is undecidable

Proof, by contradiction:

• Assume E_{TM} has decider R; use it to create decider for A_{TM} : S = "On input $\langle M, w \rangle$, an encoding of a TM M and a string w:

String x	<i>M</i> on <i>w</i>	M_1 on x	In lang $\{w\} \cap L(M)$?
W	Accept	Accept	Yes $(lang = \{w\})$
W	Reject	Reject	No (lang = {})
not w	-	Reject	No (lang = $\{\}$ or $\{w\}$)

• Idea: Wrap $\langle M \rangle$ in a new TM that can only (maybe) accept w.

 M_1 = "On input x:

- 1. If $x \neq w$, reject.
- 2. If x = w, run M on input w and accept if M does."

Example Table for M_1

 $L(M_1)$ depends on *M* and *w*! If *M* accepts *w*, $L(M_1) = \{w\}$ else $L(M_1) = \{\}$

Reducibility: Modifying the TM

 $E_{\mathsf{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$

Thm: E_{TM} is undecidable Proof, by contradiction:

• Assume E_{TM} has decider R; use it to create decider for A_{TM} : $S = \text{"On input } \langle M, w \rangle$, an encoding of a TM M and a string w:

String x	<i>M</i> on <i>w</i>	M_1 on x	In lang $\{w\} \cap L(M)$?
W	Accept	Accept	$Yes (lang = \{w\})$
W	Reject	Reject	No (lang = {})
not w	-	Reject	No (lang = $\{\}$ or $\{w\}$)

•	Idea:	: \

Examp	le Table
for A_{TM}	decider S

V	String	M on w	$R ext{ on } \langle M \rangle$	S on $\langle M, w \rangle$	In lang A_{TM} ?,
	$\langle M, w \rangle$	Accept	Reject, <i>L</i> (<i>M</i>)=??	??	Yes
	$\langle M, w \rangle$	Reject	Accept, <i>L</i> (<i>M</i>)={}	Reject	No
	$\langle M, w \rangle$	Loop	Accept, <i>L</i> (<i>M</i>)={}	Reject	No

Example Table for M_1

 $L(M_1)$ depends on M and w! If M accepts w, $L(M_1) = \{w\}$ else $L(M_1) = \{\}$

Undecidability Proof Technique #2

Reducibility: Modifying the TM

 $E_{\mathsf{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$

Thm: E_{TM} is undecidable Proof, by contradiction:

• Assume E_{TM} has decider R; use it to create decider for A_{TM} : S = "On input $\langle M, w \rangle$, an encoding of a TM M and a string w:

String x	<i>M</i> on <i>w</i>	M_1 on x	In lang $\{w\} \cap L(M)$?
W	Accept	Accept	$Yes (lang = \{w\})$
W	Reject	Reject	No (lang = {})
not w	-	Reject	No (lang = $\{\}$ or $\{w\}$)

• <u>Idea</u>: \

Example Table for A_{TM} decider S

String	M on w	<i>R</i> on (M₁)	S on $\langle M, w \rangle$	In lang A_{TM} ?,
$\langle M, w \rangle$	Accept	Reject, $L(M_1)=\{w\}$	Accept	Yes
$\langle M, w \rangle$	Reject	Accept, $L(M_1)=\{\}$	Reject	No
$\langle M, w \rangle$	Loop	Accept, $L(M_1)=\{\}$	Reject	No

Example Table for M_1

 $L(M_1)$ depends on M and w! If M accepts w, $L(M_1) = \{w\}$ else $L(M_1) = \{\}$

on M and w!

If M accepts w,

Reducibility: Modifying the TM

Thm: E_{TM} is undecidable

Proof, by **contradiction**:

 $E_{\mathsf{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$

- Assume E_{TM} has decider R; use it to create decider for A_{TM} :
 - $S = \text{"On input } \langle M, w \rangle$, an encoding of a TM M and a string w:
 - Run R on input $\langle M_1 \rangle$ Note: M_1 is only used as arg to R; it's never run (avoiding loop)!
 - If R accepts, reject (because it means $\langle M \rangle$ doesn't accept $L(M_1)$ depends
 - if R rejects, then accept ($\langle M \rangle$ accepts
- Idea: Wrap $\langle M \rangle$ in a new TM that can only (maybe) accept w. $L(M_1) = \{w\}$

$$M_1 =$$
 "On input x :

- 1. If $x \neq w$, reject.
- 2. If x = w, run M on input w and accept if M does."

Reducibility: Modifying the TM

 $E_{\mathsf{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$

Thm: E_{TM} is undecidable

Proof, by **contradiction**:

This decider for A_{TM} cannot exist!

- Assume E_{TM} has decider R; use it to create decider for A_{TM} :
 - $S = \text{"On input } \langle M, w \rangle$, an encoding of a TM M and a string w:
 - Run R on input $\langle M_1 \rangle$
 - If R accepts, reject (because it means $\langle M \rangle$ doesn't accept w
 - if R rejects, then accept ($\langle M \rangle$ accepts w
- Idea: Wrap $\langle M \rangle$ in a new TM that can only (maybe) accept w:

 $M_1 =$ "On input x:

- 1. If $x \neq w$, reject.
- 2. If x = w, run M on input w and accept if M does."

Summary: The Limits of Algorithms

- $A_{\mathsf{DFA}} = \{ \langle B, w \rangle | \ B \text{ is a DFA that accepts input string } w \}$
- $A_{\mathsf{CFG}} = \{ \langle G, w \rangle | G \text{ is a CFG that generates string } w \}$
- $A_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w \}$
- $E_{\mathsf{DFA}} = \{ \langle A \rangle | A \text{ is a DFA and } L(A) = \emptyset \}$
- $E_{\mathsf{CFG}} = \{ \langle G \rangle | G \text{ is a CFG and } L(G) = \emptyset \}$
- $E_{\mathsf{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$
- $EQ_{\mathsf{DFA}} = \{\langle A, B \rangle | A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}$
- $EQ_{\mathsf{CFG}} = \{ \langle G, H \rangle | \ G \text{ and } H \text{ are CFGs and } L(G) = L(H) \}$

• $EQ_{\mathsf{TM}} = \{ \langle M_1, M_2 \rangle | M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$

Decidable

Decidable

Undecidable

Decidable

Decidable

needs

Undecidable

Decidable

Undecidable

Undecidable

next

Reduce to something else: EQ_{TM} is undecidable

 $EQ_{\mathsf{TM}} = \{ \langle M_1, M_2 \rangle | \ M_1 \ \text{and} \ M_2 \ \text{are TMs and} \ L(M_1) = L(M_2) \}$

Proof, by **contradiction**:

• Assume: EQ_{TM} has decider R; use it to create decider for A_{TM} . $E_{\mathsf{TM}} = \{\langle M \rangle | M \text{ is a TM and } L(M) = \emptyset\}$

S = "On input $\langle M \rangle$, where M is a TM:

- 1. Run R on input $\langle M, M_1 \rangle$, where M_1 is a TM that rejects all inputs.
- 2. If R accepts, accept; if R rejects, reject."

Reduce to something else: EQ_{TM} is undecidable

 $EQ_{\mathsf{TM}} = \{ \langle M_1, M_2 \rangle | M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$

<u>Proof</u>, by **contradiction**:

• Assume: EQ_{TM} has decider R; use it to create decider for E_{TM} :

 $=\{\langle M
angle|\ M \ {\rm is\ a\ TM\ and}\ L(M)=\emptyset\}$

S = "On input $\langle M \rangle$, where M is a TM:

- 1. Run R on input $\langle M, M_1 \rangle$, where M_1 is a TM that rejects all inputs.
- 2. If R accepts, accept; if R rejects, reject."
- But E_{TM} is undecidable!

Summary: Undecidability Proof Techniques

- Proof Technique #1:
- $A_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w \}$
- Use hypothetical decider to implement impossible A_{TM} decider

Reduce

• Example Proof: $HALT_{TM} = \{\langle M, w \rangle | M \text{ is a TM and } M \text{ halts on input } w\}$

Proof Technique #2:

- Use hypothetical decider to implement impossible A_{TM} decider
- But first modify the input M

Can also

combine these

techniques

```
• Example Proof: E_{\mathsf{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}
```

Reduce

- Proof Technique #3:
 - Use hypothetical decider to implement $\underline{\text{non-}A_{TM}}$ impossible decider
 - Example Proof: $EQ_{\mathsf{TM}} = \{\langle M_1, M_2 \rangle | M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$

Summary: Decidability and Undecidability

- Decidable • $A_{\mathsf{DFA}} = \{ \langle B, w \rangle | B \text{ is a DFA that accepts input string } w \}$
- $A_{CFG} = \{ \langle G, w \rangle | G \text{ is a CFG that generates string } w \}$
- $A_{\mathsf{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w \}$
- $E_{\mathsf{DFA}} = \{ \langle A \rangle | A \text{ is a DFA and } L(A) = \emptyset \}$
- $E_{\mathsf{CFG}} = \{ \langle G \rangle | G \text{ is a CFG and } L(G) = \emptyset \}$
- $E_{\mathsf{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$
- $EQ_{DFA} = \{\langle A, B \rangle | A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}$
- $EQ_{CFG} = \{ \langle G, H \rangle | G \text{ and } H \text{ are CFGs and } L(G) = L(H) \}$
- $EQ_{\mathsf{TM}} = \{ \langle M_1, M_2 \rangle | M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$

Decidable

Undecidable

Decidable

Decidable

Undecidable

Decidable

Undecidable

Undecidable

Also Undecidable ...

next

• $REGULAR_{TM} = \{ < M > \mid M \text{ is a TM and } L(M) \text{ is a regular language} \}$

Undecidability Proof Technique #2: **Modify input TM** *M*

Thm: $REGULAR_{TM}$ is undecidable

 $REGULAR_{\mathsf{TM}} = \{ \langle M \rangle | \ M \text{ is a TM and } L(M) \text{ is a regular language} \}$

Proof, by **contradiction**:

- Assume: REGULAR_{TM} has decider R; use it to create decider for A_{TM} : S = "On input $\langle M, w \rangle$, an encoding of a TM M and a string w:
 - First, construct M_2 (??)
 - Run R on input $\langle M_{2}^{\setminus} \rangle$
 - If R accepts, accept; if R rejects, reject

$\underline{\text{Want}}$: $L(M_2) =$

- regular, if M accepts w
- nonregular, if M does not accept w

Thm: $REGULAR_{TM}$ is undecidable (continued)

 $REGULAR_{\mathsf{TM}} = \{\langle M \rangle | M \text{ is a TM and } L(M) \text{ is a regular language} \}$

 $M_2 =$ "On input x:

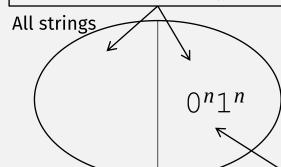
Always accept strings 0^n1^n $L(M_2)$ = **nonregular**, so far

- 1. If x has the form $0^n 1^n$, accept.
- 2. If x does not have this form, run M on input w and If *M* accepts *w*,

accept if M accepts w."

accept everything else, so $L(M_2) = \Sigma^* = \mathbf{regular}$

if M does not accept w, M_2 accepts all strings (regular lang)



Want: $L(M_2) =$

- regular, if M accepts w=
- **nonregular,** if *M* does not accept *w*

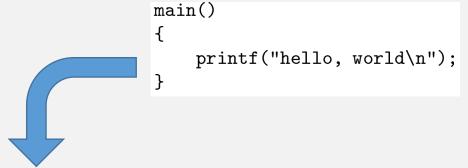
if M accepts w, M_2 accepts this **nonregular** lang

Also Undecidable ...

Seems like no algorithm can compute anything about the language of a Turing Machine, i.e., about the runtime behavior of programs ...

- $REGULAR_{TM} = \{ < M > \mid M \text{ is a TM and } L(M) \text{ is a regular language} \}$
- $CONTEXTFREE_{TM} = \{ < M > \mid M \text{ is a TM and } L(M) \text{ is a CFL} \}$
- $DECIDABLE_{TM} = \{ < M > \mid M \text{ is a TM and } L(M) \text{ is a decidable language} \}$
- $FINITE_{\mathsf{TM}} = \{ < M > \mid M \text{ is a TM and } L(M) \text{ is a finite language} \}$

An Algorithm About Program Behavior?



Write a program that, given another program as its argument, returns TRUE if that argument prints "Hello, World!"

Fermat's Last Theorem (unknown for ~350 years.

(unknown for ~350 years, solved in 1990s)

```
}
```

main()

```
{
If x^n + y^n = z^n, for any integer n > 2
printf("hello, world\n");
```

Write a program that, given another program as its argument, returns TRUE if that argument prints "Hello, World!"

?????

Also Undecidable ...

Seems like no algorithm can compute anything about the language of a Turing Machine, i.e., about the runtime behavior of programs ...

- $REGULAR_{TM} = \{ < M > \mid M \text{ is a TM and } L(M) \text{ is a regular language} \}$
- $CONTEXTFREE_{TM} = \{ < M > \mid M \text{ is a TM and } L(M) \text{ is a CFL} \}$
- $DECIDABLE_{TM} = \{ < M > \mid M \text{ is a TM and } L(M) \text{ is a decidable language} \}$
- $FINITE_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a finite language} \}$

• ...

Rice's Theorem

• $ANYTHING_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and "... anything ..." about } L(M) \}$

Rice's Theorem: $ANYTHING_{TM}$ is Undecidable

 $ANYTHING_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } \dots \text{ anything } \dots \text{ about } L(M) \}$

• "... Anything ...", more precisely:

For any M_1 , M_2 ,

- if $L(M_1) = L(M_2)$
- then $M_1 \in ANYTHING_{\mathsf{TM}} \Leftrightarrow M_2 \in ANYTHING_{\mathsf{TM}}$
- Also, "... Anything ..." must be "non-trivial":
 - $ANYTHING_{TM} != \{\}$
 - *ANYTHING*_{TM}!= set of all TMs

Rice's Theorem: $ANYTHING_{TM}$ is Undecidable

 $ANYTHING_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } \dots \text{ anything } \dots \text{ about } L(M) \}$

complement of $ANYTHING_{TM}$ instead!

Proof by contradiction

• Else reject

- Assume some language satisfying $ANYTHING_{TM}$ has a decider R.
 - Since $ANYTHING_{TM}$ is non-trivial, then there exists $M_{ANY} \in ANYTHING_{TM}$
 - Where R accepts M_{ANY}
- Use R to create decider for A_{TM} :

On input <*M*, *w*>: These two cases must be different, $M_w = \text{on input } x$: • Create M_{w} : If M accepts w: $M_w = M_{ANY}$ (so R can distinguish - Run M on w If M doesn't accept w: M_w accepts nothing when M accepts w) - If *M* rejects *w*: reject *x* Wait! What if the TM that accepts - If *M* accepts *w*: Run M_{ANY} on x and accept if it accepts, else reject nothing is in $ANYTHING_{TM}$! • Run R on M_w • If it accepts, then $M_w = M_{ANY}$, so M accepts w, so accept Proof still works! Just use the

Rice's Theorem Implication

{<*M*> | *M* is a TM that installs malware}

Undecidable!
(by Rice's Theorem)

```
unction check(n)
 // check if the number n is a prime
 var factor; // if the checked number is not a prime, this is its first factor
  // try to divide the checked number by all numbers till its square root
  for (c=2; (c <= Math.sqrt(n)); c++)
     if (n%c == 0) // is n divisible by c?
        { factor = c; break}
  return (factor);
   // end of check function
unction communicate()
                         checked number
  var factor; // if the
                         necked number is not
                                               rime, this is its first factor
                         number.value;
                                               t the checked number
 if ((isNaN(i)) || (i <
                         0) || (Math.floor(i = i))
                         iect should be a le positive number")} ;
   { alert ("The checked
    factor = check (i);
    if (factor == 0)
       {alert (i + " is a prime")} ;
      // end of communicate function
```

